13
σ σ σ(E) = S(E) e –2πη πη πη πη E -1 2πη = 31.29 Ζ πη = 31.29 Ζ πη = 31.29 Ζ πη = 31.29 Ζ 1 1 1 Ζ Ζ Ζ 2 2 2 √μ/Ε μ/Ε μ/Ε μ/Ε μ = μ = μ = μ = m 1 m 2 / (m 1 + m 2 29 , Ε in keV Reaction Rate(star) ÷ ÷ ÷ Φ Φ Φ(E) σ σ σ(E) dE Gamow Peak Maxwell Boltzmann Extrap. Meas. σ σ σ Carlo Broggini INFN-Padova Stellar Energy+Nucleosynthesis σ(E star ) with E star << E Coulomb Hydrogen Burning LUNA: from Sun to Novae and beyond S(E) Men in pits or wells sometimes see the stars…. Aristotle

2 Ζ m / ( m ), Φ(E) (E) dE · σ(E) = S(E) e–2πηππηηπηE-1 2πη = 31.29 Ζ1111ΖΖΖ2222√√√√µ/Εµ/Ε µ = m1m2 / (m1+m2), Ε in keV Reaction Rate(star) ÷∫Φ(E)

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 2 Ζ m / ( m ), Φ(E) (E) dE · σ(E) = S(E) e–2πηππηηπηE-1 2πη = 31.29 Ζ1111ΖΖΖ2222√√√√µ/Εµ/Ε µ = m1m2 / (m1+m2), Ε in keV Reaction Rate(star) ÷∫Φ(E)

σσσσ(E) = S(E) e–2πηπηπηπη E-1

2πη = 31.29 Ζπη = 31.29 Ζπη = 31.29 Ζπη = 31.29 Ζ1111ΖΖΖΖ2222 √√√√µ/Εµ/Εµ/Εµ/Ε µ = µ = µ = µ = m1m2 / (m1+m2), Ε in keV

Reaction Rate(star) ÷÷÷÷ ∫ΦΦΦΦ(E) σσσσ(E) dE

Gamow Peak

MaxwellBoltzmann

Extrap. Meas.σσσσ

Carlo BrogginiINFN-Padova

Stellar Energy+Nucleosynthesis

σ(Estar) with Estar << ECoulomb

Hydrogen Burning

LUNA: from Sun to Novae and beyond

S(E)

Men in pits or wells sometimes see the stars…. Aristotle

Page 2: 2 Ζ m / ( m ), Φ(E) (E) dE · σ(E) = S(E) e–2πηππηηπηE-1 2πη = 31.29 Ζ1111ΖΖΖ2222√√√√µ/Εµ/Ε µ = m1m2 / (m1+m2), Ε in keV Reaction Rate(star) ÷∫Φ(E)

Background due to cosmic rays:- Electromagnetic component- Hadrons- Muons: ionization, spallation,

radioactive nuclei, neutrons- Mu-stop: radioactive nuclei- Gamma rays

1979 proposal by A. Zichichi

1989 first underground experiment running

Surface: 17 800 m2, Volume: 180 000 m3, Ventilation: 1 vol / 3 hoursMuon flux: 3.0 10-8 cm-2s-1

Neutron flux, mainly from (αααα,n) : 2.92 10-6 cm-2s-1 (0-1 keV), 0.86 10-6 cm-2s-1 (> 1 keV)

Rn in air: 20-80 Bq m-3

Page 3: 2 Ζ m / ( m ), Φ(E) (E) dE · σ(E) = S(E) e–2πηππηηπηE-1 2πη = 31.29 Ζ1111ΖΖΖ2222√√√√µ/Εµ/Ε µ = m1m2 / (m1+m2), Ε in keV Reaction Rate(star) ÷∫Φ(E)

Laboratory for UndergroundNuclear Astrophysics: LUNA

Beam: H,HeVoltage Range :50-400 kVOutput Current: ~1 mA Absolute Energy error

±300 eVBeam energy spread:

<100 eVLong term stability (1 h) :

5 eVTerminal Voltage ripple:5 Vpp Ge detector

Page 4: 2 Ζ m / ( m ), Φ(E) (E) dE · σ(E) = S(E) e–2πηππηηπηE-1 2πη = 31.29 Ζ1111ΖΖΖ2222√√√√µ/Εµ/Ε µ = m1m2 / (m1+m2), Ε in keV Reaction Rate(star) ÷∫Φ(E)

no resonance @ solar Gamow peak

Hydrogen burning in the Sun@15*106 degrees:

6*1011 kg/s H He+0.7% MH E

activation=prompt gamma

no monopole contribution to σσ at low energy with 4% error

3He burning in the p-p chain

Page 5: 2 Ζ m / ( m ), Φ(E) (E) dE · σ(E) = S(E) e–2πηππηηπηE-1 2πη = 31.29 Ζ1111ΖΖΖ2222√√√√µ/Εµ/Ε µ = m1m2 / (m1+m2), Ε in keV Reaction Rate(star) ÷∫Φ(E)

- 504

-21

278

14N+p

72977556

7276

68596793

6176

5241

5183

015O

1/2 +

7/2 +

5/2 +

3/2 +

3/2 -

5/2 +

1/2 +

1/2 -

1) “High” energy: solid target + HpGe

14N(p,γγγγ)15O 2) Low energy: gas target + BGO

beam energy 90 keV13C

(p,γ)14N

(p,γ)

15O

β+

(p,α)12C

(p,γ)

13N

β+

15N

The CNO Cycle

St(0)=1.57±0.13 keV bas reported by indirect measurements (Mukhamedzhanov et al. 2003)

*½ννννcno from the Sun * Globular Cluster age +1Gy

* more C at the surface of AGB

ννννcno = F(S1,14,Zcore)probe of the metallicity Z of the Sun core

Page 6: 2 Ζ m / ( m ), Φ(E) (E) dE · σ(E) = S(E) e–2πηππηηπηE-1 2πη = 31.29 Ζ1111ΖΖΖ2222√√√√µ/Εµ/Ε µ = m1m2 / (m1+m2), Ε in keV Reaction Rate(star) ÷∫Φ(E)

LUNA beyond the Sun: isotope production in the hydrogen burning shell of AGB stars (~30-100 T6), Nova nucleosynthesis (~100-400 T6) and BBN

Nova Cigni 1992

Page 7: 2 Ζ m / ( m ), Φ(E) (E) dE · σ(E) = S(E) e–2πηππηηπηE-1 2πη = 31.29 Ζ1111ΖΖΖ2222√√√√µ/Εµ/Ε µ = m1m2 / (m1+m2), Ε in keV Reaction Rate(star) ÷∫Φ(E)

2H(α,γ)6Li Q=1.47 MeV, BBN

15N(p,γ)16O Q=12.13 MeV

17O(p,γ)18F Q=5.6 MeV

23Na(p,γ)24Mg Q=11.7 MeV

22Ne(p,γ)23Na Q=8.8 MeV

18O(p,γ)19F Q=8.0 MeV

25Mg(p,γ)26Al Q=6.3 MeV

............

17O(p,α)14N Q=1.2 MeV

18O(p,α)15N Q=4.0 MeV

R. Depalo talk

Uncertainty on 16O, 17O, 18O, 18F and 19Fat Nova temperature less than 10%

(from 40-50%)

Isotopic abundances: how and where

Production of 26Algs in H-burning regions

is less efficient than previously obtained

Page 8: 2 Ζ m / ( m ), Φ(E) (E) dE · σ(E) = S(E) e–2πηππηηπηE-1 2πη = 31.29 Ζ1111ΖΖΖ2222√√√√µ/Εµ/Ε µ = m1m2 / (m1+m2), Ε in keV Reaction Rate(star) ÷∫Φ(E)

Big Bang Nucleosynthesis

Possible nuclear explanation of the 6Li problem?

The 6Li problem: in some very old stars 6Li/7Li measured(from the asymmetry of the 7Li absorption line) ~5*10-2, BBN predicted ~10-5

6Li source: D(α,γ)6Li, measured only down to 711 keV (BBN production below 400 keV)

D(α,γ)6Li Q=1.47 MeV

~3He(α,γ)7Be set-up(similar Q-value) but…

important γγγγ backgrounddue to (n,n’ γ)γ)γ)γ) on Ge, Cu,Fe…..

Page 9: 2 Ζ m / ( m ), Φ(E) (E) dE · σ(E) = S(E) e–2πηππηηπηE-1 2πη = 31.29 Ζ1111ΖΖΖ2222√√√√µ/Εµ/Ε µ = m1m2 / (m1+m2), Ε in keV Reaction Rate(star) ÷∫Φ(E)

E1E2

A.M. Mukhamedzhanov et al., 2011

F. Hammache et al., 2010

LUNA results, 2014, PRL 113, 042501

J. Kiener et al., 2010

BBN predictions with LUNA results:6Li/7Li =(1.5±0.3)*10-5, no nuclear solution

R.G.H. Robertson et al., 1981

P. Mohr et al., 1994

F.E. Cecil et al., 1996

Page 10: 2 Ζ m / ( m ), Φ(E) (E) dE · σ(E) = S(E) e–2πηππηηπηE-1 2πη = 31.29 Ζ1111ΖΖΖ2222√√√√µ/Εµ/Ε µ = m1m2 / (m1+m2), Ε in keV Reaction Rate(star) ÷∫Φ(E)

12C(αααα,γγγγ)16O the most important reaction of nuclear astrophysics: production of the elements heavier than A=16, star evolution from He burning to the explosive phase (core collapse and thermonuclear SN) and ratio C/O

Sources of the neutrons responsible for the S-process: 50% of the elements beyond Iron

(αααα,γγγγ) on 3He, 14N, 15N, 18O……

What Next: 3.5 MV accelerator mainly devoted to Helium-Burning (in stars: ~100 T6, ~105 gr/cm3)

22Ne(αααα,n)25Mg: isotopes with A‹90 during He and C burning in massive stars

13C(αααα,n)16O: isotopes with A≥90 during AGB phase of low mass stars

Page 11: 2 Ζ m / ( m ), Φ(E) (E) dE · σ(E) = S(E) e–2πηππηηπηE-1 2πη = 31.29 Ζ1111ΖΖΖ2222√√√√µ/Εµ/Ε µ = m1m2 / (m1+m2), Ε in keV Reaction Rate(star) ÷∫Φ(E)

LUNA-MV accelerator financed by MIUR, to be installed in Hall C of LNGS (Opera space), very preliminary design

Page 12: 2 Ζ m / ( m ), Φ(E) (E) dE · σ(E) = S(E) e–2πηππηηπηE-1 2πη = 31.29 Ζ1111ΖΖΖ2222√√√√µ/Εµ/Ε µ = m1m2 / (m1+m2), Ε in keV Reaction Rate(star) ÷∫Φ(E)

3He(α,γ)7Be:

14N(p,γ)15O: σ down to 70 keV

νcno reduced by ∼ 2 with 8% error Sun core metallicityGlobular cluster age increased by 0.7-1 GyMore carbon at the surface of AGB stars

3He (3He,2p)4He: σ down to 16 keVno resonance within the solar Gamow Peak

, cross section measured with 4% error7Be ≈ prompt γγγγ

25Mg(p,γ)26Al: first measurement of the 92 keV resonance,

strength ωγ=(2.9±0.6)x 10-10 eV

15N(p,γ)16O: σ down to 70 keV, reduced by ∼ 2

D(α,γ)6Li: no nuclear solution to the 6Li problem

17O(p,γ)18F: rate uncertainty @ Novae temperature reduced to 5%

uncertainty on 18O, 18F and 19F less than 10% (from 40-50%)

Future: Hydrogen and Helium burning (3.5 MV accelerator)

Page 13: 2 Ζ m / ( m ), Φ(E) (E) dE · σ(E) = S(E) e–2πηππηηπηE-1 2πη = 31.29 Ζ1111ΖΖΖ2222√√√√µ/Εµ/Ε µ = m1m2 / (m1+m2), Ε in keV Reaction Rate(star) ÷∫Φ(E)

LUNA CollaborationINFN - LNGS (Italia): A. Best, A. Formicola, S. Gazzana, M. Junker, L. Leonzi, A. Razeto

HZDR (Germania): D. Bemmerer, T. Szücs, M. Takács

INFN Padova (Italia): C. Broggini, A. Caciolli, R. Depalo, R. Menegazzo

INFN Roma La Sapienza (Italia): C. Gustavino

ATOMKI, Debrecen (Ungheria): Z. Elekes, Zs.Fülöp, Gy. Gyurky, E.Somorjai

Osservatorio di Collurania (Italia): O. Straniero

Ruhr-Universität Bochum (Germania): F. Strieder

University of Edinburgh (UK): M. Aliotta, T. Davinson, C. Bruno

Università di Genova (Italia): F. Cavanna, P. Corvisiero, F. Ferraro, P. Prati

Università e INFN Milano (Italy): A. Guglielmetti, D. Trezzi

Università e INFN Napoli (Italia): G. Imbriani, A. Di Leva

Università e INFN Torino (Italia): G.Gervino