16
JN Reddy The Finite Element Method Read: Chapter 14 3D Problems Heat Transfer and Elasticity CONTENTS Finite element models of 3-D Heat Transfer Finite element model of 3-D Elasticity Typical 3-D Finite Elements

3D Problems Heat Transfer and Elasticity Read: Chapter …mechanics.tamu.edu/wp-content/uploads/2016/09/12_3D-FEM.pdf · Read: Chapter 14 3D Problems Heat Transfer and Elasticity

Embed Size (px)

Citation preview

Page 1: 3D Problems Heat Transfer and Elasticity Read: Chapter …mechanics.tamu.edu/wp-content/uploads/2016/09/12_3D-FEM.pdf · Read: Chapter 14 3D Problems Heat Transfer and Elasticity

JN Reddy

The Finite Element Method

Read: Chapter 14

3D Problems Heat Transfer and Elasticity

CONTENTS

Finite element models of 3-D Heat Transfer

Finite element modelof 3-D Elasticity

Typical 3-D Finite Elements

Page 2: 3D Problems Heat Transfer and Elasticity Read: Chapter …mechanics.tamu.edu/wp-content/uploads/2016/09/12_3D-FEM.pdf · Read: Chapter 14 3D Problems Heat Transfer and Elasticity

JN Reddy

3-D HEAT TRANSFER

T = T on Γ1,

kx∂T

∂xnx + ky

∂T

∂yny + kz

∂T

∂znz + β(T − T∞) = q on Γ2( )

where kx, ky and kz are conductivities of an or-

thotropic solid in the three coordinate directions,

g is the internal heat generation per unit volume

in a three-dimensional domain Ω, and T and q

are specified functions of position on the portions

Γ1 and Γ2, respectively, of the surface Γ of the

domain (see Fig.1); β is the convection coefficient

and T∞ is the ambient temperature.

− ∂

∂xkx

∂T

∂x− ∂

∂yky

∂T

∂y− ∂

∂zkz

∂T

∂z= g in Ω

Boundary Conditions

Governing Equation

3-D Problems 2

Page 3: 3D Problems Heat Transfer and Elasticity Read: Chapter …mechanics.tamu.edu/wp-content/uploads/2016/09/12_3D-FEM.pdf · Read: Chapter 14 3D Problems Heat Transfer and Elasticity

JN Reddy

z

x

y

n

xn

ynzn

ds

ΓSurface

ΩDomain

A six-face 3-D finite element

eΓParts of the boundary

3-D HEAT TRANSFER (continued)

Ωe

w − ∂

∂xkx

∂T

∂x− ∂

∂yky

∂T

∂y− ∂

∂zkz

∂T

∂z− g dx

Ωe

kx∂w

∂x

∂T

∂x+ ky

∂w

∂y

∂T

∂y+ kz

∂w

∂z

∂T

∂z−wg dx

+Γe

βwT ds−Γew (qn + βT∞) ds (3)

Weak Form

0=

=

3-D Problems 3

Page 4: 3D Problems Heat Transfer and Elasticity Read: Chapter …mechanics.tamu.edu/wp-content/uploads/2016/09/12_3D-FEM.pdf · Read: Chapter 14 3D Problems Heat Transfer and Elasticity

JN Reddy

KeTe = fe +Qe

T =n

j=1

Tjψej (x, y, z)

3-D HEAT TRANSFER (continued)

Finite element approximation

Finite element model

where

Keij =

Ωe

kx∂ψei∂x

∂ψej∂x

+ ky∂ψei∂y

∂ψej∂y

+ kz∂ψei∂z

∂ψej∂z

dx

+Γe

βψeiψj ds

fei =Ωe

fψei dx, Qei =Γe(qn + βT∞)ψei ds

( )

3-D Problems 4

Page 5: 3D Problems Heat Transfer and Elasticity Read: Chapter …mechanics.tamu.edu/wp-content/uploads/2016/09/12_3D-FEM.pdf · Read: Chapter 14 3D Problems Heat Transfer and Elasticity

JN Reddy

3-D ELASTICITY

Equations of Motion

Strain-Displacement Relations

εxx =∂ux∂x

, εyy =∂uy∂y

, εzz =∂uz∂z

2εxy =∂ux∂y

+∂uy∂x

, 2εxz =∂ux∂z

+∂uz∂x

2εyz =∂uy∂z

+∂uz∂y

3-D Problems 5

∂σxx∂x

+∂σxy∂y

+∂σxz∂z

+ fx = ρ∂ux∂t2

∂σxy∂x

+∂σyy∂y

+∂σyz∂z

+ fy = ρ∂uy∂t2

∂σxz∂x

+∂σyz∂y

+∂σzz∂z

+ fz = ρ∂uz∂t2

2

2

2

Page 6: 3D Problems Heat Transfer and Elasticity Read: Chapter …mechanics.tamu.edu/wp-content/uploads/2016/09/12_3D-FEM.pdf · Read: Chapter 14 3D Problems Heat Transfer and Elasticity

JN Reddy

3-D ELASTICITY (continued)

Constitutive Relations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σxxσyyσzzσxzσyzσxy

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭=

⎡⎢⎢⎢⎢⎢⎣c11 c12 c13 0 0 0c12 c22 c23 0 0 0c13 c23 c33 0 0 00 0 0 c44 0 00 0 0 0 c55 00 0 0 0 0 c66

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

εxxεyyεzz2εxz2εyz2εxy

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭( )

tx ≡ σxxnx + σxyny + σxznz = txty ≡ σxynx + σyyny + σyznz = tytz ≡ σxznx + σyzny + σzznz = tz

⎫⎬⎭ on Γσ u = u on Γuor

Boundary Conditions

The material axes are assumed coincide with the global axes and the material is orthotropic with respect to the global axes.

3-D Problems 6

Page 7: 3D Problems Heat Transfer and Elasticity Read: Chapter …mechanics.tamu.edu/wp-content/uploads/2016/09/12_3D-FEM.pdf · Read: Chapter 14 3D Problems Heat Transfer and Elasticity

JN Reddy

3-D ELASTICITY (continued)

MATRIX FORM OF THE GOVERNING EQUATIONS

ε =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

εxxεyyεzz2εxz2εyz2εxy

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭,

DT =

⎡⎣∂/∂x 0 0 ∂/∂z 0 ∂/∂y0 ∂/∂y 0 0 ∂/∂z ∂/∂x0 0 ∂/∂z ∂/∂x ∂/∂y 0

⎤⎦

σ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σxxσyyσzzσxyσxzσyz

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭, f =

⎧⎨⎩ fxfyfz

⎫⎬⎭ , u =⎧⎨⎩uxuyuz

⎫⎬⎭

DTσ + f = ρu σ = Cεε = Du,

Notation

Governing equations

3-D Problems 7

Page 8: 3D Problems Heat Transfer and Elasticity Read: Chapter …mechanics.tamu.edu/wp-content/uploads/2016/09/12_3D-FEM.pdf · Read: Chapter 14 3D Problems Heat Transfer and Elasticity

JN Reddy 3-D Problems 8

3-D ELASTICITY (continued)

u =

⎧⎨⎩uxuyuz

⎫⎬⎭ =Ψ∆, w = δu =

⎧⎨⎩ δuxδuyδuz

⎫⎬⎭ =Ψδ∆

0 =Ωe

(Dδu)TC (Du) + ρuTu dx −Ωe

(δu)Tf dx−Γe

(δu)Tt ds

Principle of virtual displacements (in matrix form)

Finite element approximation (in matrix form)

Ψ =

⎡⎢⎣ψ1 0 0 ψ2 0 0 . . . ψn 0 00 ψ1 0 0 ψ2 0 . . . ψn 00 0 ψ1 0 0 ψ2 0 . . . 0 ψn

⎤⎥⎦∆ = u1x u1y u1z u2x u2y u2z . . . unx uny unz T

d

Page 9: 3D Problems Heat Transfer and Elasticity Read: Chapter …mechanics.tamu.edu/wp-content/uploads/2016/09/12_3D-FEM.pdf · Read: Chapter 14 3D Problems Heat Transfer and Elasticity

JN Reddy 3-D Problems 9

3-D ELASTICITY (continued)

Finite Element Model

Me∆e +Ke∆e = Fe +Qe

At each node ( , , )u v w

••

••

1

2

35

64

••

1

2

3

4

where

Ke =Ωe

heBTCB dx, Me =

Ωe

ρheΨTΨe dx

Fe =Ωe

ΨTf dx, Qe =Γe

ΨTt ds

( )

Page 10: 3D Problems Heat Transfer and Elasticity Read: Chapter …mechanics.tamu.edu/wp-content/uploads/2016/09/12_3D-FEM.pdf · Read: Chapter 14 3D Problems Heat Transfer and Elasticity

JN Reddy 3-D Problems 10

TYPICAL 3-D FINITE ELEMENTS

L1 = 0

••

1

2

3

4

•L3 = 0

L4 = 0

u = a0 + a1x+ a2y + a3z

Ψe =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1(2L1 − 1)L2(2L2 − 1)L3(2L3 − 1)L4(2L4 − 1)4L1L24L2L34L3L14L1L44L2L44L3L4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Ψe =

⎧⎪⎨⎪⎩L1L2L3L4

⎫⎪⎬⎪⎭

••

1 7•

25

4•

••

3

6

8

910

Quadratic tetrahedral elementLinear tetrahedral element

Page 11: 3D Problems Heat Transfer and Elasticity Read: Chapter …mechanics.tamu.edu/wp-content/uploads/2016/09/12_3D-FEM.pdf · Read: Chapter 14 3D Problems Heat Transfer and Elasticity

JN Reddy 3-D Problems 11

TYPICAL 3-D FINITE ELEMENTS

••

15

1

10

11

121314

•••

• •

•2

3

4

5

6

7

9

8

L1 = 0

••

••

1

2

35

64

•L3 = 0

L2 = 0

ξ

ζη

1+=ζ

1−=ζ

u = a0 + a1x+ a2y + a3z + a4xz + a5yz

Ψe = 1

2

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L1(1− ζ)L2(1− ζ)L3(1− ζ)L1(1 + ζ)L2(1 + ζ)L3(1 + ζ)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Linear prism element Quadratic prism element

Page 12: 3D Problems Heat Transfer and Elasticity Read: Chapter …mechanics.tamu.edu/wp-content/uploads/2016/09/12_3D-FEM.pdf · Read: Chapter 14 3D Problems Heat Transfer and Elasticity

JN Reddy

Quadratic Prism Element

Ψe = 1

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1[(2L1 − 1)(1− ζ)− (1− ζ2)]L2[(2L2 − 1)(1− ζ)− (1− ζ2)]L3[(2L3 − 1)(1− ζ)− (1− ζ2)]L1[(2L1 − 1)(1 + ζ)− (1− ζ2)]L2[(2L2 − 1)(1 + ζ)− (1− ζ2)]L3[(2L3 − 1)(1 + ζ)− (1− ζ2)]

4L1L2(1− ζ)4L2L3(1− ζ)4L3L1(1− ζ)2L1(1− ζ2)2L2(1− ζ2)2L3(1− ζ2)4L1L2(1 + ζ)4L2L3(1 + ζ)4L3L1(1 + ζ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

TYPICAL 3-D FINITE ELEMENTS (cont…)

3-D Problems 12

••

15

1

10

11

121314

•••

• •

•2

3

4

5

6

7

9

8

Page 13: 3D Problems Heat Transfer and Elasticity Read: Chapter …mechanics.tamu.edu/wp-content/uploads/2016/09/12_3D-FEM.pdf · Read: Chapter 14 3D Problems Heat Transfer and Elasticity

JN Reddy

•• •

••

•• • •

••

••

••

ζ

ξη

15

1

2

3

5

6

7

8

9

10 11

12

14

4

1316

17

18

19

20

ξ = +1

ξ = −1η = −1

η = +1

ζ = +1

ζ = −1

••

••

••

nodes••1

2

3

4

56 8

η

ζ

TYPICAL 3-D FINITE ELEMENTS (cont…)

Linear brick element Quadratic brick element

Ψe = 1

8

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− ξ)(1− η)(1− ζ)(1 + ξ)(1− η)(1− ζ)(1 + ξ)(1 + η)(1− ζ)(1− ξ)(1 + η)(1− ζ)(1− ξ)(1− η)(1 + ζ)(1 + ξ)(1− η)(1 + ζ)(1 + ξ)(1 + η)(1 + ζ)(1− ξ)(1 + η)(1 + ζ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

u = a0 + a1x+ a2y + a3z + a4yz + a5xz+ a6xy + a7xyz

3-D Problems 13

Page 14: 3D Problems Heat Transfer and Elasticity Read: Chapter …mechanics.tamu.edu/wp-content/uploads/2016/09/12_3D-FEM.pdf · Read: Chapter 14 3D Problems Heat Transfer and Elasticity

JN Reddy

TYPICAL 3-D FINITE ELEMENTS (cont…)

Ψe = 1

8

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− ξ)(1− η)(1− ζ)(−ξ − η − ζ − 2)(1 + ξ)(1− η)(1− ζ)(ξ − η − ζ − 2)(1 + ξ)(1 + η)(1− ζ)(ξ + η − ζ − 2)(1− ξ)(1 + η)(1− ζ)(−ξ + η − ζ − 2)(1− ξ)(1− η)(1 + ζ)(−ξ − η + ζ − 2)(1 + ξ)(1− η)(1 + ζ)(ξ − η + ζ − 2)(1 + ξ)(1 + η)(1 + ζ)(ξ + η + ζ − 2)(1− ξ)(1 + η)(1 + ζ)(−ξ + η + ζ − 2)

2(1− ξ2)(1− η)(1− ζ)2(1 + ξ)(1− η2)(1− ζ)2(1− ξ2)(1 + η)(1− ζ)2(1− ξ)(1− η2)(1− ζ)2(1− ξ)(1− η)(1− ζ2)2(1 + ξ)(1− η)(1− ζ2)2(1 + ξ)(1 + η)(1− ζ2)2(1− ξ)(1 + η)(1− ζ2)2(1− ξ2)(1− η)(1 + ζ)2(1 + ξ)(1− η2)(1 + ζ)2(1− ξ2)(1 + η)(1 + ζ)2(1− ξ)(1− η2)(1 + ζ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

•• •

••

•• • •

••

••

••

ζ

ξη

15

1

2

3

5

6

7

8

9

10 11

12

14

4

1316

17

18

19

20

Quadratic Brick Element

Page 15: 3D Problems Heat Transfer and Elasticity Read: Chapter …mechanics.tamu.edu/wp-content/uploads/2016/09/12_3D-FEM.pdf · Read: Chapter 14 3D Problems Heat Transfer and Elasticity

JN Reddy 2-D Problems: 15

TYPICAL 3-D or SHELL FINITE ELEMENT MESHES

Page 16: 3D Problems Heat Transfer and Elasticity Read: Chapter …mechanics.tamu.edu/wp-content/uploads/2016/09/12_3D-FEM.pdf · Read: Chapter 14 3D Problems Heat Transfer and Elasticity

JN Reddy 2-D Problems: 16

TYPICAL 3-D FINITE ELEMENT MESHES