30
1 49 th Moriond - Cosmology March 28 th , 2014 Sergio Colafrancesco Wits University - DST/NRF SKA Research Chair Email: Sergio.C [email protected] The SZE in the SKA & MILLIMETRON Era

49 th Moriond - Cosmology March 28 th , 2014

  • Upload
    shyla

  • View
    18

  • Download
    0

Embed Size (px)

DESCRIPTION

49 th Moriond - Cosmology March 28 th , 2014. The SZE in the SKA & MILLIMETRON Era. Sergio Colafrancesco Wits University - DST/NRF SKA Research Chair Email : Sergio.C [email protected]. T he SZE: Physics. The SZ effect is a specific form of - PowerPoint PPT Presentation

Citation preview

Page 1: 49 th Moriond  -  Cosmology March 28 th , 2014

1

49th Moriond - Cosmology March 28th, 2014

Sergio Colafrancesco Wits University - DST/NRF SKA Research Chair Email: [email protected]

The SZE in the SKA & MILLIMETRON

Era

Page 2: 49 th Moriond  -  Cosmology March 28 th , 2014

The SZE: Physics

high-energyphoton

The SZ effect is a specific form of Radiation-Matter interaction

Photon fields External ↓ ↓ CMB 21-cm

Internal High-E electrons - thermal (supra-thermal)- relativistic

Use CMB photons to extract

plasma information

Page 3: 49 th Moriond  -  Cosmology March 28 th , 2014

The SZE: manifestations

SZE polarization

SZDM

SZkin

SZwarm

SZthSZE Intensity

5 keV

20 keV

SZrel

depends on fe(p) and ICMB vectorial

depends on fe(p) and ICMB scalar

Page 4: 49 th Moriond  -  Cosmology March 28 th , 2014

SZE: multi-n Astro Physics

SPTMUSTANG

OVRO

Accessible from Space

Independent of astrophysics

Strongly dependent on astrophysics

)()(

)(2

2

30 xgyhc

kTI thth

kT= 7 keVkT=10 keVkT=15 keVkT=20 keV

Sensitive to CMB Insensitive to CMB

Need:

• wide-n coverage

(≈10 - 800 GHz)

• sensitivity (< mK)

• Imaging (arcsec)

Page 5: 49 th Moriond  -  Cosmology March 28 th , 2014

Exploiting SZE information

[DeBernardis, Colafrancesco et al. 2012]

Different spectroscopic configurationsfor studying the SZE in cosmic structures

SZ th

SZ non-th

SZ kin

Foreground

Page 6: 49 th Moriond  -  Cosmology March 28 th , 2014

Exploiting SZE information

[DeBernardis, Colafrancesco et al. 2012]

EC23mpassive

EC312mpassive

EC512mactive

Different spectroscopic configurationsfor studying the SZE in cosmic structures

PLANCK

SPT Herschel

OLIMPO

Millimetron

PLANCK

Page 7: 49 th Moriond  -  Cosmology March 28 th , 2014

Millimetroncold DFTS, cold telescope (4K) on a satellite in L2(de Bernardis, S.C. et al. 2012)

SZE: parameter extraction1 hour

Page 8: 49 th Moriond  -  Cosmology March 28 th , 2014

OLIMPO: warm DFTS, warm telescopeon a balloon

(de Bernardis, S.C. et al. 2012)

SZE: parameter extraction3 hours

Page 9: 49 th Moriond  -  Cosmology March 28 th , 2014

SZE: best frequency bands5-30 GHz 100-1000 GHz

DFTS (baseline)

Band 1 Band 2

Band 3

Band 4

Frequency (GHz) 100–200 130–350

350–700

700–1000

FWHM (arcmin) 1.3 1.0 0.36 0.18

# of independent beams/detectors

6/24 9/36 16/48 25/100

Background (pW) 5.4 8.2 9.7 7.8

Detector NEP (aW s1/2)

18 18 6.0 1.2

Spectral Resolution (GHz)

1.25 1.25 1.25 1.25

Spectral sensitivity (aW s1/2 /GHz)

8.7 8.6 2.9 0.95

SKA -1 Mid GHz GHz

Band 1 0.35 1.05

Band 2 0.95 1.76

Band 3 1.65 3.05

Band 4 2.80 5.18

Band 5 4.60 13.8

SKA-1 Low

baseline 0.05 0.35

proposed 0.05 0.65

Square Kilometer Array

Spektr-M

104

0.1

Page 10: 49 th Moriond  -  Cosmology March 28 th , 2014

SZE: frequency & sensitivity

VLA

E-VLAMerKAT

SKA-P1 SKA-P2

Square Kilometer Array

Spektr-M

10-17 W Hz-1/2

10-18

10-19

Page 11: 49 th Moriond  -  Cosmology March 28 th , 2014

SZE: MILLIMETRON (102 - 103 GHz)

Cluster physics characterizationThermal, non-thermal pressure stratificationMultiple componentsRelativistic plasma physics (thermal, non-thermal)

Spectro-polarimetry: 3D tomographyCosmology

Cluster cosmology (with no physics biases/priors)Radio-galaxy cosmology “Galaxy cosmology “

SZE PolarizationMeasuring CMB polarizationThe Cosmological Principle

DM nature

Millimetron n-range probes the electron plasma physics

… and yields related cosmology

Page 12: 49 th Moriond  -  Cosmology March 28 th , 2014

SZE: physics characterizationMACS

J07017.5+3745A Triple-Merger

Cluster ?

[Mroczkowski et al. 2011]

Bullet clusterA multi-plasma stratification ?

Radio + X-rays Radio + Temperature Radio + Lensing

Page 13: 49 th Moriond  -  Cosmology March 28 th , 2014

SZE: Bullet tomographyMorphological SZE

A2219

345 GHz Laboca 600 GHz Herschel

GHz

GHz

I

I

345

600

Shockhot

Bulletcold

[Prokhorov, S.C. et al. 2011]

T standard deviationFirst measurement of the

Temperature standard deviation in galaxy clusters using the SZE

[Prokhorov & Colafrancesco 2012]

<T> ~ 13.9 keVs = 10.6 ± 3.8 keV

• Measure of the temperature stratification in clusters • Measure of plasma in-homogeneity (th.+non-th.) along the line-of-sight

Bullet Cluster

Page 14: 49 th Moriond  -  Cosmology March 28 th , 2014

SZE: Bullet Astro Physics

kT1= 13.9 keV t=3.5 10-3

kT2= 25 keV, t=5.5 10-3

Multi - Temperature Thermal + non-thermalkT = 13.9 keV t=1.1 10-2

ne~E-2.7, p1=1, t=2.4 10-4

Evidence of non-gravitational activity in the cluster merging

Shock acceleration or MHD acceleration

Stochastic electron acceleration Continuous hadron acceleration

Non-thermal

Thermal

T1

T2

[S.C. et al. 2011] [S.C. et al. 2011]

c2=1.27d.o.f.=1rms fom=1

c2=0.44d.o.f.=2rms fom=0.35

Page 15: 49 th Moriond  -  Cosmology March 28 th , 2014

SZE: resolving cluster atmospheres

150 GHz

350 GHz

3 m. 12 m.X-ray

Chandra

MS0735150 GHz

350 GHz

R=100Millimetron

Page 16: 49 th Moriond  -  Cosmology March 28 th , 2014

MACS J07017.5+3745

B) kT = 12.8 kev (+2.1/-1.6) V = 3600 km/s (+3440/-2160) V = 3238 km/s (252/-242)

C) kT = 34.0 kev (+11/-7.9) V = -3720 km/s (+2960/-2480) V = -733 k/s (+486/-478)

D) kT ≈ 4 keV V = 831 km/s (843/-700)

A) kT ≈ 2 keV V = 278 km/s (+295/-339)

A Triple-Merger Cluster ?

Page 17: 49 th Moriond  -  Cosmology March 28 th , 2014

MACS J07017.5+3745

B) kT = 12.8 kev (+2.1/-1.6) V = 3600 km/s (+3440/-2160) V = 3238 km/s (252/-242)

C) kT = 34.0 kev (+11/-7.9) V = -3720 km/s (+2960/-2480) V = -733 k/s (+486/-478)

D) kT ≈ 4 keV V = 831 km/s (843/-700)

A) kT ≈ 2 keV V = 278 km/s (+295/-339)

A Triple-Merger Cluster ?

E) Non-thermal component s=3.5, p1=0.1 t=5 10-4 – 2 10-2

Page 18: 49 th Moriond  -  Cosmology March 28 th , 2014

MACS J07017.5+3745

Comp. B

Comp. C

Comp. C

[S.C. &Marchegiani 2013]

Cluster physicsand Dynamicsat high frequency

n > 350 GHz

Page 19: 49 th Moriond  -  Cosmology March 28 th , 2014

SZE spectro-polarimetry

JuttnerMaxwell-BoltzmannNon-relativistic

1) Derive the velocity DF of electrons by using SZE observations at > 4 frequencies [Prokhorov, Colafrancesco, et al. 2011]

2

11

)(

)(40

cm

kT

xf

xgI

etV

5 keV 8 keV13 keV20 keV

BB spectrum

2) Polarization due to finite optical depth t allow to measure density and velocity distribution of the electrons

Page 20: 49 th Moriond  -  Cosmology March 28 th , 2014

SZE cluster cosmology

Perseus

[Colafrancesco & Marchegiani 2010]

SZE X-Ray

SZE spectroscopy will allow to derive spatially resolved T-profiles for nearby clusters out to large radii:

Separate thermal and non-thermal pressure components:

T profile uniquely sampled in the outer parts of the cluster

Inversion Technique SZE → T, t, Vp, TCMB

SZE sensitivity (10-100 nK) will allow to reach the mass limit at which clusters and groups can be found

Unbiased total mass reconstruction due to sensitivity to total pressure DI SZE

and internal velocity fields DP SZE

Page 21: 49 th Moriond  -  Cosmology March 28 th , 2014

SZE: Cosmology with clusters

Measure the CMB anisotropy at positions U1 and U2 by using galaxy cluster SZE

S

CMB Quadrupole Q2

CMB Quadrupole Q2

Cluster

Cluster

Polarized SZEreflects Q2

[Colafrancesco, Tullio & Emritte 2013-14]

Cosmological Principle

Page 22: 49 th Moriond  -  Cosmology March 28 th , 2014

SZE: Cosmology with clusters

Cluster Π−(th) RG Π−(non-th)

Cluster Π−(th) RG Π−(non-th)

S.C. et al.[2012-14]

Measure the CMB multipoles at the position of clusters/RGs in the Universe

1 mJy/arcmin2

0.042 mJy/arcmin2

0.005 mJy/arcmin2

0.05 mJy/arcmin2

Quadrupole Quadrupole

Octupole Octupole

Page 23: 49 th Moriond  -  Cosmology March 28 th , 2014

SZE: SKA (10-30 GHz)

Cluster cosmology: SZE and SZE-21cm

CMB spectral modifications at early epochs: SZE-21cm

Dark Ages and EoR: SZE 21cmDM heating: SZE-21cmPrimordial B-field

Fundamental physicsPhoton mass and decay…

SKA n-range probes the background radiation fields

… and yields related cosmology

Page 24: 49 th Moriond  -  Cosmology March 28 th , 2014

SZE cluster cosmology

3C2923C294

Bullet cls VLAE-VLA

MerKAT SKA-P1 SKA-P2

The SKA can measure SZE in various objects:

- Clusters- Radiogalaxies- Galaxy halos/winds

Page 25: 49 th Moriond  -  Cosmology March 28 th , 2014

SZE-21cm: DA and EoRCMB field modified SZE-21cm

Collision/abs.z=200-30

Ly-az=30-20

X-rayz=20-6

1+z=3

no DM extremeMmin=10-6 Mo

Mmin=10-3 Mo

no DM

(Colafrancesco & Marchegiani 2014)

kTe=7 keV

kTe=7 keV

Page 26: 49 th Moriond  -  Cosmology March 28 th , 2014

SZE: the photon0m is not a theoretical requirement

• Classical electrodynamics: Maxwell equations are substituted by Proca (1936) equations for mg ≠ 0

• Quantum theory: QED with Stuckelberg mechanism (1938) allows a non-zero photon mass without violation of Gauge invariance [Goldhaber & Nieto 2010]

0m Photon can decay with lifetime tg ≠ 0 Good limits on

mg:

No tight limit on tg: ?

Experiment Result Reference

Laboratory Williams, Faller & Hill (1971)

Earth B-field Davis, Goldhaber & Nieto (1975)

Solar wind Ryutov (2007)

eV 10 142 cm

eV 10 182 cm

Page 27: 49 th Moriond  -  Cosmology March 28 th , 2014

SZE with g decay

eV 105 ; 0 9* E

eV 10 5* E

eV 10 4* E

CMB spectrum modified by photon decay

as function of

keV 15eBTk2101 e

[Colafrancesco & Marchegiani 2014]

eV 10 4* E

Page 28: 49 th Moriond  -  Cosmology March 28 th , 2014

Difference between the SZE without g decay and the SZE with g decay

eV 105 9* E

eV 103 9* E

eV 102 9* E

eV 101 9* E

SKA (30 h)

260 h

SZE with g decay: A2163SKA can measure, or set the most stringent limits on, the g decay

(Colafrancesco & Marchegiani 2014, A&A, 562, L2)

Page 29: 49 th Moriond  -  Cosmology March 28 th , 2014

ConclusionsMillimetron and SKA observations of the SZE have the potential of addressing several key questions for Cosmology and fundamental

Astro-PhysicsCosmological parameters and standard cosmological probesThe Nature of Dark Matter (DM)The proof of the Cosmological Principle (CP)Origin of Cosmological magnetic field (B)The Dark Ages and EoR (DA - EoR)Fundamental properties of the Photon (g)

This is possible thanks to the un-precedentWide-band spectro-polarimetry High sensitivityHigh spatial resolutionSurvey and pointed observation modes

Page 30: 49 th Moriond  -  Cosmology March 28 th , 2014

THANKS

for your attention