45
Design of RF and Microwave Filters 초고주파공학 (교재 * 5) 서강대학교 전자공학과 윤상원 교수 * “RF Circuit Design: Theory and Applications, R. Ludwig & P. Bretchko

5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

Embed Size (px)

Citation preview

Page 1: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

Design of RF and Microwave Filters

초고주파공학

(교재*의 5장)

서강대학교 전자공학과윤상원 교수

* “RF Circuit Design: Theory and Applications”, R. Ludwig & P. Bretchko

Page 2: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

차 례

1. Introduction ; types of Filters --------------------------------------2. Characterization of Filters ------------------------------------------3. Approximate Design Methods --------------------------------------4. Lowpass Prototype Network ---------------------------------------5.1. Impedance Scaling ------------------------------------------------5.2. frequency Expansion ----------------------------------------------5.3. Lowpass to highpass transformation -----------------------------5.4. Lowpass to bandpass transformation ----------------------------5.5. Lowpass to bandstop transformation -----------------------------5.6. Immitance Inverters ----------------------------------------------5.7. Bandpass filters using J-, K- inverters ---------------------------6.1. LC filters -----------------------------------------------------------6.2. Distribute filters ---------------------------------------------------

34815181921222527283340

Microwave & Millimeter-wave Lab. 2

1. Introduction ; types of Filters --------------------------------------2. Characterization of Filters ------------------------------------------3. Approximate Design Methods --------------------------------------4. Lowpass Prototype Network ---------------------------------------5.1. Impedance Scaling ------------------------------------------------5.2. frequency Expansion ----------------------------------------------5.3. Lowpass to highpass transformation -----------------------------5.4. Lowpass to bandpass transformation ----------------------------5.5. Lowpass to bandstop transformation -----------------------------5.6. Immitance Inverters ----------------------------------------------5.7. Bandpass filters using J-, K- inverters ---------------------------6.1. LC filters -----------------------------------------------------------6.2. Distribute filters ---------------------------------------------------

34815181921222527283340

Page 3: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

1. Introduction

Types of Filters

A. Lowpass Filters B. Highpass Filters

C. Bandpass Filters D. Bandstop Filters

attenuation

passband transitionband

stopband

freq

attenuation

passbandtransitionband

stopband

freqcutoffwc ; cutoff

Microwave & Millimeter-wave Lab. 3

Types of Filters

A. Lowpass Filters B. Highpass Filters

C. Bandpass Filters D. Bandstop Filters

attenuation

passband transitionband

stopband

freq

attenuation

passbandtransitionband

stopband

freqcutoffwc ; cutoff

atten

pass-band

transitionband

stop-band

freq

atten

pass-band

transitionband

stop-band

freqf1

stop-band

transitionband

f2

pass-band

transitionband

f1 f2

Page 4: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

2. Filter Characterization

n Two-port Network ;

H(w)Input Output )()()( wqww jeHH =

Microwave & Millimeter-wave Lab. 4

H(w)Input Output

Fig. 1 Two-port Network

)()()( wqww jeHH =

Page 5: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

1

Freq.

lH(w)l

q(w)

Characteristics of ideal bandpass filters ;

îíì

><££

=21

21

, 0 1

)(fffffor

fffforH w dand wtwq -=)(

Microwave & Millimeter-wave Lab. 5

Fig. 2 Characteristics of

ideal bandpass filter

1

Freq.

lH(w)l

q(w)

→ not realizable→ approximation required

Page 6: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

n Practical specifications ;

1) Passband

; lower cutoff frequency - upper cutoff frequency

2) Insertion loss

; must be as small as possible

3) Return Loss

; degree of impedance matching

4) Ripple

; variation of insertion loss within the passband

2f

)( )(log20 dBH w1f

Microwave & Millimeter-wave Lab. 6

1) Passband

; lower cutoff frequency - upper cutoff frequency

2) Insertion loss

; must be as small as possible

3) Return Loss

; degree of impedance matching

4) Ripple

; variation of insertion loss within the passband

)( 1log20 dBr

Page 7: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

5) Group delay

; time to required to pass the filter

6) Skirt frequency characteristics

; depends on the system specifications

7) Power handling capability

wwqt

dd

d)(

-=

Microwave & Millimeter-wave Lab. 7

5) Group delay

; time to required to pass the filter

6) Skirt frequency characteristics

; depends on the system specifications

7) Power handling capability

Page 8: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

3. Approximate Design Methods

1) based on Amplitude characteristics

A. Image parameter method B. Insertion loss method

a) J-K inverters

b) Unit element - Kuroda identity

2) based on Linear Phase characteristics

Microwave & Millimeter-wave Lab. 8

1) based on Amplitude characteristics

A. Image parameter method B. Insertion loss method

a) J-K inverters

b) Unit element - Kuroda identity

2) based on Linear Phase characteristics

Page 9: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

3.1 Filter Design based on the insertion loss

Definition of Power Loss Ratio (PLR) ; impedance matching as well as frequency selectivity

[Sij]Pin

Prefl

Ptrans

Fig. 3 General filter network

Microwave & Millimeter-wave Lab. 9

[Sij]Pin

Prefl

Ptrans

Fig. 3 General filter network

← network synthesis procedures are required

inintrans

ininrefl

PSPTP

PSPP2

212

211

2

==

=G=

)()(1

11

2 ww

DN

PP

Ptran

inLR +=

G-=º

Page 10: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

Approximation methods :

1) Maximally Flat (Butterworth) response

2) Chebyshev response

3) Elliptic Function response

Microwave & Millimeter-wave Lab. 10

Approximation methods :

1) Maximally Flat (Butterworth) response

2) Chebyshev response

3) Elliptic Function response

Page 11: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

A. Maximally flat response

11.50.5 10 w/w c

PLR

Chebyshev

Maximally flat

Where, ;passband tolerance

; order of filter

Usually

→ degree of freedom=1 (order N)

N

cLR kP

221 ÷÷

ø

öççè

æ+=

ww

3.2 Approximation Methods

Microwave & Millimeter-wave Lab. 11

11.50.5 10 w/w c

PLR

Chebyshev

Maximally flat

Where, ;passband tolerance

; order of filter

Usually

→ degree of freedom=1 (order N)

Fig. 4 Comparison Between Maximally Flat and Chebyshev response

2kN

12 =k

Page 12: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

B. Chebyshev response : equal ripple response in the passband

: Chebyshev Polynomial of order÷÷ø

öççè

æ+=

0

221ww

NLR TkPNT N

Microwave & Millimeter-wave Lab. 12

)()(2)(34)( ,12 ,)(

21

33

221

xTxxTxTxxxTxTxxT

nnn -- -=-=-==

; ripple (0.01 dB, 0.1 dB, etc.)

; order of filter

→ degree of freedom=2 (ripple and order)

2kN

Page 13: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

10 w/wc

PLR

Chebyshev Response, N=4-1

1+k2

ws w

as

ar

wp

Elliptic function response N=5

attenuation

Microwave & Millimeter-wave Lab. 13

10 w/wc

PLR

Chebyshev Response, N=4-1

1+k2

ws w

as

ar

wp

Elliptic function response N=5

attenuation

Fig. 5 Chebyshev and Elliptic Function response

Page 14: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

C. Elliptic Function responseequal ripple passband in both passband and stopband

: stopband minimum attenuation : transmission zero at stopband

degree of freedom=3 (order N, ripple, transmission zero at stopband )

sa

sw

Microwave & Millimeter-wave Lab. 14

C. Elliptic Function responseequal ripple passband in both passband and stopband

: stopband minimum attenuation : transmission zero at stopband

degree of freedom=3 (order N, ripple, transmission zero at stopband )sw

Page 15: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

4. Lowpass Prototype Filter

; normalized to 1

...

...

R gN

g0=1g1

g2

g3g5

g4g6a

a'

sradgRL / 1 , 1 c0 =W== w

Microwave & Millimeter-wave Lab. 15

...

...

R gN

g0=1g1

g2

g3g5

g4g6a

a'

...

...

R

gNg0=1

g1

g2

g3g5

g4g6

a

a'

g7

Fig. 5 Lowpass prototype

Page 16: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

n Maximally Flat response ;

n Equal Ripple response ;

11 02 ==®+= gRP LN

LR w

),( , ... 2, 1, ,2

12sin2 FHNiNigi =-

= p

Microwave & Millimeter-wave Lab. 16

n Maximally Flat response ;

n Equal Ripple response ;

ïî

ïíì

+-+==®+=

even 1212

odd 1,1)(1

22022

Nkkk

NRgTkP LNLR w

÷÷ø

öççè

æ

++

-+==

-==

--

-

1111ln ,

2sinh ,

212sin ,

42

22

11

1

kk

Nb

Nia

gbaa

g iiii

iii bbp

Page 17: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

TypeElement No

Butterworth0.1 dB rippleChebyshev

0.5 dB rippleChebyshev

1 0.6180 1.1468 1.7058

Table1. Element values for Butterworth and chebyshev filters (n=5)

Microwave & Millimeter-wave Lab. 17

2 1.6180 1.3712 1.2296

3 2.0000 1.9750 2.5408

4 1.6180 1.3712 1.2296

5 0.6180 1.1468 1.7058

Page 18: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

5. Impedance Scaling and Frequency Mapping

5.1 Impedance Scaling

Impedance level × 50; same reflection coefficient maintained

series branch (impedance) elements ;

shunt branch (admittance) elements ;

W=®W= 50 1 LL RR

Microwave & Millimeter-wave Lab. 18

5.1 Impedance Scaling

Impedance level × 50; same reflection coefficient maintained

series branch (impedance) elements ;

shunt branch (admittance) elements ;

( )iiii gggjgj 5050 ®® ww

( )50/50/ rrrr gggjgj ®® ww

Page 19: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

5.2 Frequency Expansion

cutoff frequency 1 → lowpass cutoff frequency

mapping function ;series and shunt branch elements ;

cw

( )iciici gggjgj wwww ®®

www cf =)(

Microwave & Millimeter-wave Lab. 19

( )iciici gggjgj wwww ®®

Page 20: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

PLR

w'1-1

PLR

wwc-wc

PLR

wc-wc

w

PLR

w-w1

-w0-w2w0w1 w2

(a) Lowpass Prototype response

(d) Lowpass to Bandpass Transformation

(b) Frequency expansion

(c) Lowpass to Highpass transformation

Microwave & Millimeter-wave Lab. 20

PLR

w'1-1

PLR

wwc-wc

PLR

wc-wc

w

PLR

w-w1

-w0-w2w0w1 w2

(a) Lowpass Prototype response

(d) Lowpass to Bandpass Transformation

(b) Frequency expansion

(c) Lowpass to Highpass transformation

Fig. 6 Various mapping relations derived from lowpass prototype network

Page 21: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

5.3 Lowpass to Highpass transformation

(lowpass cutoff freq. 1 → highpass cutoff freq. ) mapping function ; series branch (impedance) elements ;

shunt branch (admittance) elements ;

cwwww /)( cf -=

( ))/(1 )/( iciici gggjgj wwww ®-®

Microwave & Millimeter-wave Lab. 21

...

...

R

gN' RL=1

g1'g3'g5'

g4' g2'

( ))/(1 )/( rcrrcr gggjgj wwww ®-®

Fig. 7 Highpass filter derived from lowpass prototype

Page 22: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

5.4 Lowpass to bandpass transformation

(low cutoff freq. , high cutoff freq. )

mapping function ;

1w 2w

÷÷ø

öççè

æ-

-=

ww

ww

www

w 0

012

0)(f

12210

21

0

and

,1'0'

wwwwww

wwwwwww

-=D=®

±±=®±=±=®=

Microwave & Millimeter-wave Lab. 22

12210

21

0

and

,1'0'

wwwwww

wwwwwww

-=D=®

±±=®±=±=®=

Page 23: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

n series branch element : impedance

n shunt branch element : admittance

ss

iiii Cj

Ljjggjgjggj

ww

www

ww

ww

ww

www 1 ;

200

0

01 +=

D+

D®÷÷

ø

öççè

æ-

D=

pp

rrrrr Lj

Cjjggjgjggj

ww

www

ww

ww

ww

ww

w 1 ; 200

0

0 +=D

+D

®÷÷ø

öççè

æ-

D=

Microwave & Millimeter-wave Lab. 23

n series branch element : impedance

n shunt branch element : admittance

pp

rrrrr Lj

Cjjggjgjggj

ww

www

ww

ww

ww

ww

w 1 ; 200

0

0 +=D

+D

®÷÷ø

öççè

æ-

D=

...

...

R

CN RL=1

C1L1L3L5

C4L4

C5

C2

C3

L2LN

Fig. 8 Bandpass filter derived from the lowpass prototype

Page 24: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

Example : Design a bandpass filter having a 0.5dB equal-ripple response, with N=3. The f0 is 1GHz, bandwidth is 10%, and the input and output impedance 50Ω.

step 1 : from the element values of lowpass prototype

(0.5dB ripple Chebyshev)

step 2 : apply impedance scaling

step 3 : apply bandpass transformation

0000.1 ,5963.1 ,0967.1 ,5963.1 4321 ==== gggg

Microwave & Millimeter-wave Lab. 24

Example : Design a bandpass filter having a 0.5dB equal-ripple response, with N=3. The f0 is 1GHz, bandwidth is 10%, and the input and output impedance 50Ω.

step 1 : from the element values of lowpass prototype

(0.5dB ripple Chebyshev)

step 2 : apply impedance scaling

step 3 : apply bandpass transformation

HZgLFZgCHZgL 815.79 , 022.0/ , 815.79505963.1 031022011 =====´==

012

022

202

3101

3011

/)( 91.34/' 726.0/'

' 199.0/'' 127/'

wwww

www

-=D=D==D=

==D===D=

pFCCnHCL

CpFLCLnHLL R=50 W

RL=50 W

L3'=127nH

C3'=0.199pF

L2'=0.726nH C2'=34.91pF

L1'=127nH

C1'=0.199pF

Page 25: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

5.5 Lowpass to bandstop transformation

(low cutoff freq. , high cutoff freq. )

mapping function ;

inverse of bandpass mapping function

1w 2w1

0

00

12)(-

÷÷ø

öççè

æ-

-=

ww

ww

www

wf

Microwave & Millimeter-wave Lab. 25

12210

21

0

and

,1'0'

wwwwww

wwwwwww

-=D=®

±±=®±=±=®=

Page 26: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

n series branch element : admittance

n shunt branch element : impedance

ss

iiii Lj

Cjjgg

jgjggjw

www

ww

www

ww

www 1 ;

20

-1

0

001 +=

D+

D®÷÷

ø

öççè

æ-

D=

pp

rrrrr Cj

Ljjggjgjggj

ww

www

ww

ww

ww

www 1 ;

20

-1

0

00

+=D

+D

®÷÷ø

öççè

æ-

D=

Microwave & Millimeter-wave Lab. 26

pp

rrrrr Cj

Ljjggjgjggj

ww

www

ww

ww

ww

www 1 ;

20

-1

0

00

+=D

+D

®÷÷ø

öççè

æ-

D=

Fig. 9 Bandstop network derived from the lowpass prototype

...

...

R

CN

RL=1C1

L1L3L5 C4

L4

C5

C2

C3

L2LN

Page 27: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

5.6 Immitance Inverters

n K ; impedance inverter →

n J ; admittance inverter →

K(or J)

immittanceinverter

ZL(or YL)Zin(or Yin)

Fig. 10 Immitance inverter

Lin ZKZ /2=

Microwave & Millimeter-wave Lab. 27

n K ; impedance inverter →

n J ; admittance inverter →

ex. simplest form of inverter : λ/4 transformer

series LC → J-inverter + shunt LC shunt LC → K-inverter + series LC

Lin ZKZ /2=

Lin YJY /2=

Page 28: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

5.7 Bandpass filters using J-, K-inverters

g0 Rn+1

LosslessLowpassNetwork

Zin(w) or Glow

gn+1 R0

Lossless Bandpass Network

Zin'(w) orGband

Fig. 11 Equivalent Network for lowpass prototype and bandpass network

Reflection coefficient ;

lowpass :

bandpass :

If (mapping relation)

G

Microwave & Millimeter-wave Lab. 28

Reflection coefficient ;

lowpass :

bandpass :

If (mapping relation)

G

1/)'(1/)'(

0

0

+-

=GgZgZ

in

inLow w

w

1/)(1/)(

0

0

+-

=GRZRZ

in

inBand w

w

)()'(/)(/)'( 00 wwww BandLowinin RZgZ G=G®=

Page 29: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

...

...

R0

g1 gn+1

gn

gn-

1

g5

g4

g3

a

a'

g2

Zin(w')

Microwave & Millimeter-wave Lab. 29

...

...

R0

Rn+1

CnLnL2L1

L4

C1 C2

K01 K12 Kn,n+1

Zin(w)

Fig. 12 Lowpass network and bandpass network

Page 30: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

n From the partial fraction expansion including bandpass mapping relation

: fractional bandwidth, : center frequency

n In the same manner, J-inverter values are derived as

1

011,

1

12

01,

10

10001 , ,

+

++

+

++ ===

nn

nnnn

ii

iiii gg

LWRK

ggLL

WKggLWR

Kwww

W 0w

Microwave & Millimeter-wave Lab. 30

n From the partial fraction expansion including bandpass mapping relation

: fractional bandwidth, : center frequency

n In the same manner, J-inverter values are derived as

1

011,

1

12

01,

10

10001 , ,

+

++

+

++ ===

nn

nnnn

ii

iiii gg

CWGJ

ggCC

WJggCWG

Jwww

Page 31: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

n Typical immittance inverters ;

CK w/1= LK w=

-L

L

-L-C

C

-C

Microwave & Millimeter-wave Lab. 31

Fig. 13 Impedance(K-) inverters

CK w/1= LK w=

X=negative

F

F=positive

Z0 X=positive

F

F=negative

Z0

Page 32: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

CJ w= LJ w/1=

-C

C

-C -L

L

-L

Microwave & Millimeter-wave Lab. 32

B=positiveY0

F/2 F/2

F=negative

Y0

B=negative

F/2 F/2

F=positive

Fig. 14 Admittance(J-) inverters

Page 33: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

6.1. LC filters

A. C-coupled bandpass filters

...

...

Y0

Yb

CnLnL2L1 L4

C1C2J01 J12 Jn,n+1

Fig. 14 Bandpass filter network using ideal J-inverters

Microwave & Millimeter-wave Lab. 33

Fig. 14 Bandpass filter network using ideal J-inverters

...

...

Y0

Yb

CnLnL2L1C1

C2J01 Jn,n+1

J-inverter

-C12

C12

Fig. 15 Bandpass filter network containing practical inverters

Page 34: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

YaL1

C1-Ca'J01 Ya L1C1

Yin1Yin2

C01

Ca'

Fig. 16 Inverter of first and last stages

( ) ( )201

012

01

201

2

012

201

1

/1/1/

/1/11

'

aa

a

ain

aa

in

YCCj

YCYC

CjYY

CjYJ

Y

ww

ww

w

w

++

+=

+=

+=

Microwave & Millimeter-wave Lab. 34

( ) ( )201

012

01

201

2

012

201

1

/1/1/

/1/11

'

aa

a

ain

aa

in

YCCj

YCYC

CjYY

CjYJ

Y

ww

ww

w

w

++

+=

+=

+=

By equating the real and imaginary part of and1inY 2inY

aa YCifCJCC <<== 01010101 ,' ww

Page 35: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

B. L-coupled bandpass filter

......

Zb

Cn+1C1 C3C2

Cp1CpnCp2

Lp1 Lp2 Lpn

Za

Fig.17 C-coupled Bandpass filter

Microwave & Millimeter-wave Lab. 35

B. L-coupled bandpass filter

......

Zb

Ln+1L1 L3L2

Cp1CpnCp2

Lp1 Lp2 Lpn

Za

Fig.18 L-coupled Bandpass filter

Page 36: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

Example : Design a LC bandpass filter. The f0 is 2.8 GHz, bandwidth is 500 MHz, and the input and output impedance 50Ω.

step 1 : from the element values of lowpass prototype

step 2 : apply impedance scaling

step 3 : apply bandpass transformation using J-inverters

Step 4 : simulation

Microwave & Millimeter-wave Lab. 36

Page 37: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

Step 5 : Realization

0.5 pF 0.5 pF

6.8

nH

air-coil

2.7

nH

chip 1 p

F1.5

pF

1 pF 0.5 pF

6.8

nH

air-coil

2.7

nH

chip 1 p

F1.5

pF

1 pF

6.8

nH

air-coil

2.7

nH

chip

0.5

pF

5 p

F

0.5 pF 1 pF

6.8

nH

air-coil

2.7

nH

chip

0.5

pF

5 p

F

1 pF

Microwave & Millimeter-wave Lab. 37

Insertion loss < 3.1 dB

Return loss > 15.5 dB

Attenuation @ 3.3 GHz : 15 dB

Page 38: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

Step 6. improvement

20 pF9.5 nH air-coil 9.5 nH air-coil 6.8 nH air-coil

6.8

nH

air-coil

6.8

nH

air-coil

6.8

nH

air-coil

0.5

pF

1 p

F

1 p

F

1 p

F

1 pF 1.5 pF 0.5 pF 0.5 pF 0.5 pF 0.5 pF

6.8

nH

air-coil

6.8

nH

air-coil

6.8

nH

air-coil

2.7

nH

chip

2.7

nH

chip

2.7

nH

chip

0.5

pF 1

pF

1.5

pF

Microwave & Millimeter-wave Lab. 38

20 pF9.5 nH air-coil 9.5 nH air-coil 6.8 nH air-coil

6.8

nH

air-coil

6.8

nH

air-coil

6.8

nH

air-coil

0.5

pF

1 p

F

1 p

F

1 p

F

1 pF 1.5 pF 0.5 pF 0.5 pF 0.5 pF 0.5 pF

6.8

nH

air-coil

6.8

nH

air-coil

6.8

nH

air-coil

2.7

nH

chip

2.7

nH

chip

2.7

nH

chip

0.5

pF 1

pF

1.5

pF

C-couplingLC filter

L-couplingLC filter

+ =

Page 39: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

Microwave & Millimeter-wave Lab. 39

27 dB

Page 40: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

6.2 Distributed filters

At microwave frequencies :

Resonators made of Lumped elements are lossy(low Q) or bulky → Distributed Resonators

Distributed resonators ; quarter-wavelength or half-wavelength transmission lines such as microstrip lines, coaxial lines and waveguides

Microwave & Millimeter-wave Lab. 40

At microwave frequencies :

Resonators made of Lumped elements are lossy(low Q) or bulky → Distributed Resonators

Distributed resonators ; quarter-wavelength or half-wavelength transmission lines such as microstrip lines, coaxial lines and waveguides

Page 41: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

A. Combline filters: cellular base stations as well as handy phone

Fig. 17(a) Top View of Combline Filter

conductor

air or ceramic

a

Microwave & Millimeter-wave Lab. 41

Fig. 17(a) Top View of Combline Filter

conductor

air or ceramic

a

Fig. 17(b) Side View of Combline Filter

conductor tuning screw

L

Fig. 19 (a) Top view of Combline Filter

Fig. 19 (b) Side view of Combline Filter

Page 42: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

n Instead of lumped element inductors distributed inductors (L < λ/4) are used.

n Overall equivalent circuit :

In

out

Fig. 18 Coupled line

Yoe

Yoe

YooIn OutYoe Yoe

(Yoe-Yoo)/2

Fig. 20 Coupled line

Microwave & Millimeter-wave Lab. 42

n Instead of lumped element inductors distributed inductors (L < λ/4) are used.

n Overall equivalent circuit :

In OutYoe Yoe

(Yoe-Yoo)/2

L1 L2 L4L3

Lc1 Lc5Lc4Lc3Lc2

C1 C2 C3 C4

Cc1 Cc2 Cc3

Fig. 20 Coupled lineFig. 21 Equivalent circuit of Fig.20

Fig. 22 Equivalent circuit of Fig. 19

Page 43: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

B. Microstrip filters: Compact, light weight and low cost

Fig. 21 Side-couple microstrip filter

Microwave & Millimeter-wave Lab. 43

Fig. 23 Side-coupled Microstrip filterFig. 21 Side-couple microstrip filter

Page 44: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

n Practical specifications ;

1) Passband

; lower cutoff frequency - upper cutoff frequency

2) Insertion loss

; must be as small as possible

3) Return Loss

; degree of impedance matching

4) Ripple

; variation of insertion loss within the passband

2f

)( )(log20 dBH w1f

Microwave & Millimeter-wave Lab. 44

1) Passband

; lower cutoff frequency - upper cutoff frequency

2) Insertion loss

; must be as small as possible

3) Return Loss

; degree of impedance matching

4) Ripple

; variation of insertion loss within the passband

)( 1log20 dBr

Page 45: 5 Design of RF and Microwave Filters [호환 모드]home.sogang.ac.kr/sites/eemic/lecture/note02/Lists... · PTPSP PPSP 2 21 2 2 11 2 == =G= () 1 1 1 2w w D N P P P tran in LR =+-G

5) Group delay

; time to required to pass the filter

6) Skirt frequency characteristics

; depends on the system specifications

7) Power handling capability

wwqt

dd

d)(

-=

Microwave & Millimeter-wave Lab. 45

5) Group delay

; time to required to pass the filter

6) Skirt frequency characteristics

; depends on the system specifications

7) Power handling capability