6.3 Snowplough

  • Upload
    sitehab

  • View
    221

  • Download
    0

Embed Size (px)

Citation preview

  • 7/27/2019 6.3 Snowplough

    1/106

    SUBJECT: File No -A400M/TWEOM1E3/D/57-45-046

    A400M Fixed Leading Edge

    AAR Snowplough Bracket Author : Date : Page

    T Arden June 09 6.3.1-1

    6.3 Snowplough Bracket

    6.3.1 Introduction

    The snow plough bracket is attached to the AAR bracket as shown below

    Structure Analysed

    Only the connection angles and fasteners are analysed in this report

    Loading Also see page 5.7-1

    The applied loads to the bracket are determined using forced displacements from the FEM

    and pressure applied to the FLE lower panel

    The method of analysis is given in Ref [40]

    160429985.xls.ms_office 6.3.1 Introduction Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    2/106

    SUBJECT: File No -A400M/TWEOM1E3/D/57-45-046

    A400M Fixed Leading Edge

    AAR Snowplough Bracket Author : Date : Page

    T Arden June 09 6.3.1-2

    Nodal Displacements

    The following Pages present the nodal displacements given in Ref [41]

    The nodes for the analysis are shown pages 6.3.1-2, -3 & -4

    Summary

    The values in the tables below have been extracted from those values on p. 6.3.2-3

    Spanwise Average Displacement Chordwise Average Displacement

    Node x disp Node y disp

    mm mm

    28267 -2.163 bolt 1 28268 0.125

    28268 -2.155 28280 0.099

    28271 -2.097 28267 0.101

    28272 -2.040 28271 0.076

    28273 -1.970 See page 6.15 0.100

    28274 -1.892 bolt 2 28280 0.099

    28280 -2.092 28281 0.050

    28281 -2.026 28271 0.076

    28282 -1.963 28272 0.023

    28283 -1.896 average 0.062

    average -2.03 bolt 3 28281 0.050

    28282 -0.00228272 0.023

    28273 -0.031

    average 0.010

    bolt 4 28282 -0.002

    28283 -0.023

    28284 -0.007

    28273 -0.031

    28274 -0.055

    28275 -0.039

    average -0.026

    x

    y

    160429985.xls.ms_office 6.3.1 Node Displacements Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    3/106

    SUBJECT: File No -A400M/TWEOM1E3/D/57-45-046

    A400M Fixed Leading Edge

    AAR Snowplough Bracket Author : Date : Page

    T Arden June 09 6.3.1-3

    Node Geometry And Displacements

    The following table has been extracted using values in Ref [41] - Attachment 4.3, "rlg_nodes_disp_ult.txt"

    Nodes Coord. (X,Y,Z)(1.3) Nodes Displ. (X,Y,Z)(1.3)

    28260 14706 -280 -275 28260 -2.2871 0.0887 -2.1599

    28261 14675 -280 -275 28261 -2.3477 0.1266 -2.0560

    28262 14717 -255 -277 28262 -2.2383 0.1273 -2.1229

    28263 14645 -264 -277 28263 -2.3887 0.2006 -1.8791

    28264 14699 -257 -277 28264 -2.2803 0.1512 -2.0570

    28265 14677 -259 -277 28265 -2.3232 0.1741 -2.0058

    28266 14653 -252 -278 28266 -2.3604 0.2171 -1.8736

    28267 14749 -256 -277 28267 -2.1631 0.1012 -2.2094

    28268 14749 -246 -278 28268 -2.1553 0.1246 -2.159928269 15049 -254 -274 28269 -1.4990 0.0115 -3.5904

    28270 15049 -245 -274 28270 -1.5088 0.0367 -3.5098

    28271 14779 -255 -276 28271 -2.0967 0.0757 -2.3704

    28272 14809 -255 -276 28272 -2.0400 0.0231 -2.5721

    28273 14839 -255 -276 28273 -1.9697 -0.0314 -2.7735

    28274 14869 -255 -275 28274 -1.8916 -0.0545 -2.9537

    28275 14899 -255 -275 28275 -1.8213 -0.0387 -3.0909

    28276 14929 -255 -275 28276 -1.7637 -0.0216 -3.1975

    28277 14959 -255 -274 28277 -1.7022 -0.0235 -3.3226

    28278 14989 -255 -274 28278 -1.6338 -0.0278 -3.4464

    28279 15019 -254 -274 28279 -1.5635 -0.0166 -3.5327

    28280 14779 -246 -277 28280 -2.0918 0.0986 -2.3243

    28281 14809 -246 -277 28281 -2.0264 0.0495 -2.4823

    28282 14839 -246 -277 28282 -1.9629 -0.0018 -2.6404

    28283 14869 -245 -276 28283 -1.8965 -0.0233 -2.7987

    28284 14899 -245 -276 28284 -1.8330 -0.0066 -2.9393

    28285 14929 -245 -276 28285 -1.7705 0.0095 -3.0592

    28286 14959 -245 -275 28286 -1.7051 0.0069 -3.1865

    28287 14989 -245 -275 28287 -1.6387 0.0020 -3.3104

    28288 15019 -245 -275 28288 -1.5732 0.0121 -3.4129

    28289 15073 -268 -272 28289 -1.4541 0.0047 -3.6249

    28290 15073 -251 -273 28290 -1.4580 0.0429 -3.5518

    160429985.xls.ms_office 6.3.1 Node Displacements Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    4/106

    SUBJECT: File No -A400M/TWEOM1E3/D/57-45-046

    A400M Fixed Leading Edge

    AAR Snowplough Bracket Author : Date : Page

    T Arden June 09 6.3.2-1

    6.3.2 Portal Frame Analysis (INBD Side Deflection)

    Idealisation Ref. Section 3.6

    FWD

    Up

    Outboard

    Forward

    FWD

    Up

    160429985.xls.ms_office 6.3.2 Idealised Portal Frame Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    5/106

    SUBJECT: File No -A400M/TWEOM1E3/D/57-45-046

    A400M Fixed Leading Edge

    AAR Snowplough Bracket Author : Date : Page

    T Arden June 09 6.3.2-2

    Width of Frame

    Pessimistically, assume width of frame = 162.7 mm Ref. 6.3.2-1

    Height and Angle of Frame

    The frame is idealised on a plane through the hinge point on a line angled through the attachment bolts

    The height of the frame is pessimistically assumed as the vertical offset to the first attachment bolt

    The sketch below shows the maximum offset (OB side) - the angle is the same both inbd and outbd

    84.6 28.6

    64.8 22.3

    19.8 6.3

    q = 72.35 deg

    q = -17.65 deg

    19.8

    6.3

    y

    zq

    160429985.xls.ms_office 6.3.2 Idealised Portal Frame Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    6/106

    SUBJECT: File No -A400M/TWEOM1E3/D/57-45-046

    A400M Fixed Leading Edge

    AAR Snowplough Bracket Author : Date : Page

    T Arden June 09 6.3.2-3

    Idealised Frame

    d1 = 11 mm

    Distance to 1st attachment bolt = 64.8 mm

    72.35 deg

    d2 = 57.0 mm

    162.7mm

    64.8m

    A B

    C D

    y'

    z'

    Inbd Outbd

    z

    x

    q

    d1

    d2

    d

    1

    sin

    8.642 dd =

    q

    160429985.xls.ms_office 6.3.2 Idealised Portal Frame Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    7/106

    File No -A400M/TWEOM1E3/D/57-45-046

    SUBJECT:

    A400M Fixed Leading Edge Author : Date : Page

    AAR Snowplough Bracket T Arden June 09 6.3.2-4

    Section Constants

    Hinge

    The hinge does not have the properties of an angle since there is no moment connection at the hinge line

    For the section constants use the flat strip that is attached between the connection angles

    Ref page 3.3-4

    Hinge is a '-12'

    thkns, E = 0.109 in average of .115 & .103

    thkns, E = 2.77 mm

    A = 3.375 inA = 85.73 mm

    Hinge leg = A/2 = 42.86 mm

    I = b*d^3 / 12 Z = b*d^2 / 6

    b = 42.86 mm

    t = 2.77 mm

    Izz = 75.8 mm^4

    Iyy = 18168 mm^4

    Zzz = 54.8 mm^3

    Zyy = 848 mm^3

    A = 119 mm^2

    Section Constants in the Y'Z' plane

    17.65 deg

    Transformation equations can be found in [47], p.800

    Note angle is negative in the clockwise direction.

    72.35 deg Iy'y' = Izz(sin q) + Iyy(cos q) - Ixy*sin2q

    Zy'y' = (2*Izz(sin q)/b) + (2*Iyy(cos q)/b)

    q -17.65 deg -0.31 rad

    Iy'y' = 16505 mm^4

    Zy'y' = 770 mm^3

    Product of Inertia value is zero since the reference axes lie on

    the lines of symmetry of the cross section.

    y y

    z

    z

    yy

    z

    z

    z'

    z'

    y'

    y'

    160429985.xls.ms_office 6.3.2 Section Constants Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    8/106

    SUBJECT: File No -A400M/TWEOM1E3/D/57-45-046

    A400M Fixed Leading Edge

    AAR Snowplough Bracket Author : Date : Page

    T Arden June 09 6.3.2-5

    Iz'z' = Izz(sin2q) + Iyy(cos

    2q) - Ixy*sin2q

    Zz'z' = (2*Iyy(sin2q)/b) + (2*Izz(cos

    2q)/b)

    q -17.65 deg -0.31 rad

    Iz'z' = 1739 mm^4

    Zz'z' = 11923 mm^3

    Connection Angles Both angles are similar, ref pages 3.3-5 & 6

    t = 2.0 mm Ref. [46]

    Width = 22.0 mm

    I = b*d^3 / 12 Z = b*d^2 / 6

    Ixx = 14.7 mm^4

    Iyy = 1775 mm^4Zxx = 14.7 mm^3

    Zyy = 161 mm^3

    A = 44 mm^2

    Product of Inertia value is zero since the reference axes lie on the

    lines of symmetry of the cross section.

    xx

    y

    y

    22

    2

    160429985.xls.ms_office 6.3.2 Section Constants Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    9/106

    File No -A400M/TWEOM1E3/D/57-45-046

    SUBJECT:

    A400M Fixed Leading Edge Author : Date : Page

    AAR Snowplough Bracket T Arden June 09 6.3.2-6

    Portal Frame Analysis

    Side Load Ref. [45]Table 4 Cases 5f

    Geometry parameters Ref pages 6.3.2-3 to -5

    L1 = 64.80 mm Ref. p. 6.3.2-3 I1 = 14.7 mm^4 Ref. p. 6.3.2-5

    L2 = 64.80 mm Ref. p. 6.3.2-3 I2 = 14.7 mm^4 Ref. p. 6.3.2-5

    L3 = 162.7 mm Ref. p. 3.3-1 I3 = 1739.0 mm^4 Ref. p. 6.3.2-5

    E1 = 69000 MPa Ref. p. 4.7-1

    E2 = 69000 MPa Ref. p. 4.7-2

    E3 = 72000 MPa Ref. p. 4.8-1

    Loading

    Wx = 275.04 N Load to give deflection of 2.03 mm

    See page 6.3.2-11

    Distance from edge to load a = 64.80 mm

    Initially a unit load is applied, then the load required to give the applied deflection of 2.03 mm - Ref page

    6.3.1-5

    z'

    x

    160429985.xls.ms_office 6.3.2 Frame Side Load Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    10/106

    File No -A400M/TWEOM1E3/D/57-45-046

    SUBJECT:

    A400M Fixed Leading Edge Author : Date : Page

    AAR Snowplough Bracket T Arden June 09 6.3.2-7

    Ref. [45]Table 4 Cases 5a & 5f

    160429985.xls.ms_office 6.3.2 Frame Side Load Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    11/106

    File No -A400M/TWEOM1E3/D/57-45-046

    SUBJECT:

    A400M Fixed Leading Edge Author : Date : Page

    AAR Snowplough Bracket T Arden June 09 6.3.2-8

    Constants

    These constants are used in the formulas to calculate the reaction moment, horizontaland vertical end reactions, horizontal and vertical deflections and angular rotation at A:

    CHH 0.184 mm/N

    CVH 0.344 mm/N

    CHV 0.344 mm/N

    CMH 0.004 /N

    CHM 0.004 /N

    CVV 1.703 mm/N

    CMV 0.011 /N

    CVM 0.011 /N

    CMM 0.000129 /Nmm

    Loading Terms

    LFH -12.30 mm

    LFV -92.6 mm

    LFM -0.57

    CHH

    L13

    3 E1 I1

    L13

    L1 L2 3

    3 E2 I2

    L12

    L3

    E3 I3=

    CVH

    L2 L3

    2 E2 I22 L1 L2

    L1 L32

    2 E3 I3=

    CHV CVH=

    CMH

    L12

    2 E1 I1

    L2

    2 E2 I22 L1 L2

    L1 L3

    E3 I3=

    CHM CMH=

    CVV

    L2 L32

    E2 I2

    L33

    3 E3 I3=

    CMV

    L2 L3

    E2 I2

    L32

    2 E3 I3=

    CVM CMV=

    CMM

    L1

    E1 I1

    L2

    E2 I2

    L3

    E3 I3=

    LFM W CMH a CMMa

    2

    2 E1 I1

    =

    LFV W CVH a CVM =

    LFH W CHH a CHMa3

    6 E1 I1

    =

    160429985.xls.ms_office 6.3.2 Frame Side Load Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    12/106

  • 7/27/2019 6.3 Snowplough

    13/106

    File No -A400M/TWEOM1E3/D/57-45-046

    SUBJECT:

    A400M Fixed Leading Edge Author : Date : Page

    AAR Snowplough Bracket T Arden June 09 6.3.2-10

    Calculation of HB, VB and MB from equilibrium equations:

    It follows that

    HB = 138 N

    VB = 55 N

    MB = -4471 Nmm

    HA = 138 N HB = 138 N

    VA = -55 N VB = 55 N

    MA = -4471 Nmm MB = -4471 Nmm

    Fx HA HB W 0

    Fy VA VB 0

    MB MB VA L3 HA L1 L2 W a L2 L1 MA 0

    HB W HA=

    VB V=

    MB VA L3 HA L1 L2 W a L2 L1 MA=

    160429985.xls.ms_office 6.3.2 Frame Side Load Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    14/106

    File No -A400M/TWEOM1E3/D/57-45-046

    SUBJECT:

    A400M Fixed Leading Edge Author : Date : Page

    AAR Snowplough Bracket T Arden June 09 6.3.2-11

    Portal Frame deflection

    Vertical leg balance

    Mint Ref page 6.3.2-6

    L1 = 64.8 mm

    I1 = 14.7 mm^4

    E1 = 69000 MPa

    64.8

    4471 HA Ref Previous page

    138 MA

    = -4471 Nmm

    MB = -4471 Nmm

    55

    Mint = HA*L1-MA Mint = 4441 Nmm MD = 4441 Nmm

    MC = 4441 Nmm

    BM Diagram

    4441 4441

    4441

    4441

    -4471 -4471

    Frame Deflection

    Due to direct load d = 12.30 mm =P*L^3/(3*E*I)

    Due to Moment d = 9.19 mm =M*L^2/(2*E*I)

    d tot = 3.11 mm Difference

    FEM Deflection Ref page 6.3.1-5

    The average displacement from the FEM d = 2.03 mm Absolute value shown

    Unit load = 1000 N

    d unit load = 7.38 mm

    Then, the applied load = 275.0 N

    CD

    BA

    CD

    BA

    160429985.xls.ms_office 6.3.2 Frame Side Load Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    15/106

    File No -A400M/TWEOM1E3/D/57-45-046

    SUBJECT:

    A400M Fixed Leading Edge Author : Date : Page

    AAR Snowplough Bracket T Arden June 09 6.3.2-12

    Frame Vertical Deflection

    Pessimistically assume the frame horizontal member CD is an encastre beam

    a Ref. [47] - Table 8.8, Case 1d

    162.7 (Ref. p. 3.3-1)

    Bolt 1 Bolt 2 Bolt 3 Bolt 4

    Unit Load Deflection

    Bolt P L3 I3 E3 a b Max of d max

    Posn a & b

    N mm mm4 MPa mm mm mm mm

    1 1000 162.7 75.8 72000 19.84 142.86 142.86 0.70

    2 1000 162.7 75.8 72000 61.84 100.86 100.86 3.61

    3 1000 162.7 75.8 72000 103.74 58.96 103.74 3.46

    4 1000 162.7 75.8 72000 145.74 16.96 145.74 0.53

    Ref. p. 3.3-1 p. 6.3.2-4 p. 4.7-1

    Applied Loads

    The following table gives the applied loads relative to FEM displacements shown page 6.3.1-5

    Unit Calculated Applied AppliedLoad d d Load

    N mm mm N

    1000 0.7 0.100 143.5

    1000 3.61 0.062 17.1

    1000 3.46 0.010 2.8

    1000 0.53 -0.026 -49.4

    Sum 114.0

    b

    C D

    Inbd

    C D

    160429985.xls.ms_office 6.3.2 Applied Vert Loads Printed 7 /27/2013

  • 7/27/2019 6.3 Snowplough

    16/106

    File No -A400M/TWEOM1E3/D/57-45-046

    SUBJECT:

    A400M Fixed Leading Edge Author : Date : Page

    AAR Snowplough Bracket T Arden June 09 6.3.2-13

    Loads resolved into the Portal Frame Plane

    Py'

    a = 17.65

    Pz'

    Pappl a Py' Pz'

    N deg N N

    143.5 17.65 136.70 43.50

    17.1 17.65 16.30 5.18

    2.8 17.65 2.71 0.86

    -49.4 17.65 -47.08 -14.98

    Ref. p. 6.3.2-4

    arm

    A & B

    C & D

    160429985.xls.ms_office 6.3.2 Applied Vert Loads Printed 7 /27/2013

  • 7/27/2019 6.3 Snowplough

    17/106

    SUBJECT: File No -A400M/TWEOM1E3/D/57-45-046

    A400M Fixed Leading Edge

    AAR Snowplough Bracket Author : Date : Page

    T Arden June 09 6.3.2-14

    Portal Frame Analysis

    Vertical Load Ref. [45] Table 4 Case 5a

    Geometry parameters Ref pages 6.3.2-3 & -4

    L1 = 64.80 mm Ref. p. 6.3.2-3 I1 = 14.7 mm4

    Ref. p. 6.3.2-5

    L2 = 64.80 mm Ref. p. 6.3.2-3 I2 = 14.7 mm4

    Ref. p. 6.3.2-5

    L3 = 162.7 mm Ref. p. 3.3-1 I3 = 1739 mm4 Ref. p. 6.3.2-5

    E1 = 69000 MPa Ref. p. 4.7-1

    E2 = 69000 MPa Ref. p. 4.7-2

    E3 = 72000 MPa Ref. p. 4.8-1

    LoadingWx = 43.5 N Ref page 6.3.2-13

    x Bolt 1 Bolt 2 Bolt 3 Bolt 4

    Initial Initial Bolt Pitch X

    Posn Posn mm mm

    25.16 45 1 0 19.84

    25.16 45 2 42 61.84

    25.16 45 3 83.9 103.74

    25.16 45 4 125.9 145.74

    Distance from edge to load a = 19.84 mm

    160429985.xls.ms_office 6.3.2 Frame Vert Load 1 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    18/106

    SUBJECT: File No -A400M/TWEOM1E3/D/57-45-046

    A400M Fixed Leading Edge

    AAR Snowplough Bracket Author : Date : Page

    T Arden June 09 6.3.2-15

    Ref. [47] Table 4 Cases 5a & 5f

    SUBJECT: File No -A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.2 Frame Vert Load 1 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    19/106

    A400M Fixed Leading Edge

    AAR Snowplough Bracket Author : Date : Page

    T Arden June 09 6.3.2-16

    Constants

    These constants are used in the formulas to calculate the reaction moment, horizontal

    and vertical end reactions, horizontal and vertical deflections and angular rotation at A:

    CHH 0.184 mm/N

    CVH 0.344 mm/N

    CHV 0.344 mm/N

    CMH 0.004 /N

    CHM 0.004 /N

    CVV 1.703 mm/N

    CMV 0.011 /N

    CVM 0.011 /N

    CMM 0.000129 /Nmm

    Loading Terms

    LFH 13.09 mm

    LFV 65.0 mm

    LFM 0.40

    CHH

    L13

    3 E1 I1

    L13

    L1 L2 3

    3 E2 I2

    L12

    L3

    E3 I3=

    CVH

    L2 L3

    2 E2 I22 L1 L2

    L1 L32

    2 E3 I3=

    CHV CVH=

    CMH

    L12

    2 E1 I1

    L2

    2 E2 I22 L1 L2

    L1 L3

    E3 I3=

    CHM CMH=

    CVV

    L2 L32

    E2 I2

    L33

    3 E3 I3=

    CMV

    L2 L3

    E2 I2

    L32

    2 E3 I3=

    CVM CMV=

    CMM

    L1

    E1 I1

    L2

    E2 I2

    L3

    E3 I3=

    LFH WL2

    2 E2

    I2

    2 L1 L2 L3 a L1

    2 E3

    I3

    L3 a 2

    =

    LFV W CVV a CVMa

    3

    6 E3 I3

    =

    LFM WL2

    E2 I2L3 a

    1

    2 E3 I3L3 a

    2

    =

    160429985.xls.ms_office 6.3.2 Frame Vert Load 1 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    20/106

    SUBJECT: File No -A400M/TWEOM1E3/D/57-45-046

    A400M Fixed Leading Edge

    AAR Snowplough Bracket Author : Date : Page

    T Arden June 09 6.3.2-17

    Boundary Conditions

    Horizontal deflection

    Vertical deflection

    Angular rotation

    Because the above equal zero, the following three equations are solved simultaneously

    Chh Chv Chm 0.184 0.344 0.004

    C = Cvh Cvv Cvm = 0.344 1.703 0.011

    Cmh Cmv Cmm 0.004 0.011 0.000129

    Ha

    X = Va

    Ma

    LFhx 13.09

    L = LFvx = 65.0

    LFmx 0.40

    Now calculate the solution as: X = Cinv*L

    where Cinv is the inverse of matrix C, calculated below using Excel function MINVERSE

    21.71051 0 -710.502

    Cinv = 0 1.178627 -95.8813

    -710.502 -95.8813 38799.6

    X is calculated below using Excel function MMULT

    Ha 0 N

    So that X = Va = 38 N

    Ma 6 Nmm

    Notes Build C matrix Build L matrix

    Inverse C matrix Multiply inverse C matrix by L matrix

    block out matrix size (9x9), block out 3 cells vertically,

    =minvers(C matrix) in top left corner =mmult in top cell

    select the range containing 'C' select the ranges containing 'Cinv' & 'L'

    press cntl+shift+enter press cntrl+shift+enter

    CHH HA CHV VA CHM MA LFH

    CVH HA CVV VA CVM MA LFV

    CMH HA CMV VA CMM MA LFM

    HA 0 m=

    VA 0 m=

    A 0 deg=

    160429985.xls.ms_office 6.3.2 Frame Vert Load 1 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    21/106

    SUBJECT: File No -A400M/TWEOM1E3/D/57-45-046

    A400M Fixed Leading Edge

    AAR Snowplough Bracket Author : Date : Page

    T Arden June 09 6.3.2-18

    Calculation of HB, VB and MB from equilibrium equations:

    It follows that

    HB = 0 N

    VB = 5 N

    MB = -8 Nmm

    HA = -0.34 N HB = 0.34 NVA = 38.20 N VB = 5.29 N

    MA = 6.44 Nmm MB = -8.37 Nmm

    HB HA=

    VB W VA=

    MB VA L3 HA L1 L2 W L3 a MA=

    Fx HA HB 0

    Fy VA VB W 0

    MB MB VA L3 HA L1 L2 W L3 a MA 0

    DCInbd

    160429985.xls.ms_office 6.3.2 Frame Vert Load 1 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    22/106

    SUBJECT: File No -A400M/TWEOM1E3/D/57-45-046

    A400M Fixed Leading Edge

    AAR Snowplough Bracket Author : Date : Page

    T Arden June 09 6.3.2-19

    Internal Moment

    P = 43.5 N

    L1 = 64.8 mm L2 = 64.8 mm

    Mint = HA*L1+MA = -15.8 Nmm Mint = HB*L2+MB= 13.8 Nmm

    MC = -15.8 Nmm MD = 13.8 Nmm

    BM Under Vertical Load

    43.519.84 142.86

    -0.34 -15.8 13.8 0.34

    38.20 5.29

    162.7

    Check

    BM at Load position MP = 742.2 Nmm 742.2 Nmm

    C D

    160429985.xls.ms_office 6.3.2 Frame Vert Load 1 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    23/106

    SUBJECT: File No -A400M/TWEOM1E3/D/57-45-046

    A400M Fixed Leading Edge

    AAR Snowplough Bracket Author : Date : Page

    T Arden June 09 6.3.2-20

    Portal Frame Analysis

    Vertical Load Ref. [45] Table 4 Case 5a

    Geometry parameters Ref pages 6.3.2-3 & -4

    L1 = 64.80 mm Ref. p. 6.3.2-3 I1 = 14.7 mm4

    Ref. p. 6.3.2-5

    L2 = 64.80 mm Ref. p. 6.3.2-3 I2 = 14.7 mm4

    Ref. p. 6.3.2-5

    L3 = 162.7 mm Ref. p. 3.3-1 I3 = 1739.0 mm4

    Ref. p. 6.3.2-5

    E1 = 72000 MPa Ref. p. 4.7-1

    E2 = 72000 MPa Ref. p. 4.7-2

    E3 = 72000 MPa Ref. p. 4.8-1

    LoadingWx = 5.2 N ref page 6.3.2-13

    x Bolt 1 Bolt 2 Bolt 3 Bolt 4

    Initial Initial Bolt Pitch X

    Posn Posn mm mm

    25.16 45 1 0 19.84

    25.16 45 2 42 61.84

    25.16 45 3 83.9 103.74

    25.16 45 4 125.9 145.74

    Distance from edge to load a = 61.84 mm

    160429985.xls.ms_office 6.3.2 Frame Vert Load 2 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    24/106

    SUBJECT: File No -A400M/TWEOM1E3/D/57-45-046

    A400M Fixed Leading Edge

    AAR Snowplough Bracket Author : Date : Page

    T Arden June 09 6.3.2-21

    Roark 6th Table 4 Cases 5a & 5f

    160429985.xls.ms_office 6.3.2 Frame Vert Load 2 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    25/106

    SUBJECT: File No -A400M/TWEOM1E3/D/57-45-046

    A400M Fixed Leading Edge

    AAR Snowplough Bracket Author : Date : Page

    T Arden June 09 6.3.2-22

    Constants

    These constants are used in the formulas to calculate the reaction moment, horizontaland vertical end reactions, horizontal and vertical deflections and angular rotation at A:

    CHH 0.177 mm/N

    CVH 0.330 mm/N

    CHV 0.330 mm/N

    CMH 0.004 /N

    CHM 0.004 /N

    CVV 1.632 mm/N

    CMV 0.010 /N

    CVM 0.010 /N

    CMM 0.000124 /Nmm

    Loading Terms

    LFH 1.05 mm

    LFV 5.2 mm

    LFM 0.03

    CHH

    L13

    3 E1 I1

    L13

    L1 L2 3

    3 E2 I2

    L12

    L3

    E3 I3=

    CVH

    L2 L3

    2 E2 I22 L1 L2

    L1 L32

    2 E3 I3=

    CHV CVH=

    CMH

    L12

    2 E1 I1

    L2

    2 E2 I22 L1 L2

    L1 L3

    E3 I3=

    CHM CMH=

    CVV

    L2 L32

    E2 I2

    L33

    3 E3 I3=

    CMV

    L2 L3

    E2 I2

    L32

    2 E3 I3=

    CVM CMV=

    CMM

    L1

    E1 I1

    L2

    E2 I2

    L3

    E3 I3=

    LFH WL2

    2 E2 I22 L1 L2 L3 a L

    1

    2 E3 I3L3 a

    2

    =

    LFV W CVV a CVMa

    3

    6 E3 I3

    =

    LFM WL2

    E2 I2L3 a

    1

    2 E3 I3L3 a

    2

    =

    160429985.xls.ms_office 6.3.2 Frame Vert Load 2 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    26/106

    SUBJECT: File No -A400M/TWEOM1E3/D/57-45-046

    A400M Fixed Leading Edge

    AAR Snowplough Bracket Author : Date : Page

    T Arden June 09 6.3.2-23

    Boundary Conditions

    Horizontal deflection

    Vertical deflection

    Angular rotation

    Because the above equal zero, the following three equations are solved simultaneously

    Chh Chv Chm 0.177 0.330 0.004

    C = Cvh Cvv Cvm = 0.330 1.632 0.010

    Cmh Cmv Cmm 0.004 0.010 0.000124

    Ha

    X = Va

    Ma

    LFhx 1.05

    L = LFvx = 5.2

    LFmx 0.03

    Now calculate the solution as: X = Cinv*L

    where Cinv is the inverse of matrix C, calculated below using Excel function MINVERSE

    22.625908 -2.02E-15 -740.7772

    Cinv = -2.03E-15 1.2296915 -100.0354

    -740.7772 -100.0354 40472

    X is calculated below using Excel function MMULT

    Ha 0 N

    So that X = Va = 3 NMa 2 Nmm

    Notes Build C matrix Build L matrix

    Inverse C matrix Multiply inverse C matrix by L matrix

    block out matrix size (9x9), block out 3 cells vertically,

    =minvers(C matrix) in top left corner =mmult in top cell

    select the range containing 'C' select the ranges containing 'Cinv' & 'L'

    press cntl+shift+enter press cntrl+shift+enter

    CHH HA CHV VA CHM MA LFH

    CVH HA CVV VA CVM MA LFV

    CMH HA CMV VA CMM MA LFM

    HA 0 m=

    VA 0 m=

    A 0 deg=

    160429985.xls.ms_office 6.3.2 Frame Vert Load 2 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    27/106

  • 7/27/2019 6.3 Snowplough

    28/106

    SUBJECT: File No -A400M/TWEOM1E3/D/57-45-046

    A400M Fixed Leading Edge

    AAR Snowplough Bracket Author : Date : Page

    T Arden June 09 6.3.2-25

    Internal Moment

    P = 5.2 N

    L1 = 64.8 mm L2 = 64.8 mm

    Mint = HA*L1+MA = -4.1 Nmm Mint = HB*L2+MB= 4.0 Nmm

    MC = -4.1 Nmm MD = 4.0 Nmm

    BM Under Vertical Load

    5.2

    61.84 100.86

    -0.09 -4.13 3.96 0.09

    3.22 1.97

    162.7

    Check

    BM at Load position MP = 194.7 Nmm 194.7 Nmm

    C D

    160429985.xls.ms_office 6.3.2 Frame Vert Load 2 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    29/106

    6.3.2-26

    Portal Frame Analysis

    Vertical Load Ref. [45] Table 4 Case 5a

    Geometry parameters Ref pages 6.3.2-3 & -4

    L1 = 64.80 mm Ref. p. 6.3.2-3 I1 = 14.7 mm4

    Ref. p. 6.3.2-5

    L2 = 64.80 mm Ref. p. 6.3.2-3 I2 = 14.7 mm Ref. p. 6.3.2-5

    L3 = 162.7 mm Ref. p. 3.3-1 I3 = 1739 mm4

    Ref. p. 6.3.2-5

    E1 = 69000 MPa Ref. p. 4.7-1

    E2 = 69000 MPa Ref. p. 4.7-2

    E3 = 72000 MPa Ref. p. 4.8-1

    Loading

    Wx = 0.9 N ref page 6.3.2-13

    x Bolt 1 Bolt 2 Bolt 3 Bolt 4

    Initial Initial Bolt Pitch X

    Posn Posn mm mm

    25.16 45 1 0 19.84

    25.16 45 2 42 61.84

    25.16 45 3 83.9 103.74

    25.16 45 4 125.9 145.74

    Distance from edge to load a = 103.74 mm

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :T Arden

    Date :June 09

    Page

    160429985.xls.ms_office 6.3.2 Frame Vert Load 3 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    30/106

    6.3.2-27

    Roark 6th Table 4 Cases 5a & 5f

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket Author :

    T ArdenDate :

    June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.2 Frame Vert Load 3 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    31/106

    6.3.2-28

    Constants

    These constants are used in the formulas to calculate the reaction moment, horizontal

    and vertical end reactions, horizontal and vertical deflections and angular rotation at A:

    CHH 0.184 mm/N

    CVH 0.344 mm/N

    CHV 0.344 mm/N

    CMH 0.004 /N

    CHM 0.004 /N

    CVV 1.703 mm/N

    CMV 0.011 /N

    CVM 0.011 /N

    CMM 0.000129 /Nmm

    Loading Terms

    LFH 0.11 mm

    LFV 0.5 mm

    LFM 0.00

    CHH

    L13

    3 E1 I1

    L13

    L1 L2 3

    3 E2 I2

    L12

    L3

    E3 I3=

    CVH

    L2 L3

    2 E2 I22 L1 L2

    L1 L32

    2 E3 I3=

    CHV CVH=

    CMH

    L12

    2 E1 I1

    L2

    2 E2 I22 L1 L2

    L1 L3

    E3 I3=

    CHM CM=

    CVV L2 L3

    2

    E2 I2L3

    3

    3 E3 I3=

    CMV

    L2 L3

    E2 I2

    L32

    2 E3 I3=

    CVM CM=

    CMM

    L1

    E1 I1

    L2

    E2 I2

    L3

    E3 I3=

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket Author :

    T ArdenDate :

    June 09

    Page

    LFH WL2

    2 E2 I22 L1 L2 L3 a

    L1

    2 E3 I3L3 a

    2

    =

    LFV W CVV a CVMa

    3

    6 E3 I3

    =

    LFM WL2

    E2 I2L3 a

    1

    2 E3 I3L3 a

    2

    =

    File No-A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.2 Frame Vert Load 3 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    32/106

    6.3.2-29

    Boundary Conditions

    Horizontal deflection

    Vertical deflection

    Angular rotation

    Because the above equal zero, the following three equations are solved simultaneously

    Chh Chv Chm 0.184 0.344 0.004

    C = Cvh Cvv Cvm = 0.344 1.703 0.011

    Cmh Cmv Cmm 0.004 0.011 0.000129

    Ha

    X = Va

    Ma

    LFhx 0.11

    L = LFvx = 0.5

    LFmx 0.00

    Now calculate the solution as: X = Cinv*L

    where Cinv is the inverse of matrix C, calculated below using Excel function MINVERSE

    21.71051 0 -710.502

    Cinv = 0 1.1786275 -95.8813

    -710.5022 -95.88134 38799.57

    X is calculated below using Excel function MMULT

    Ha 0 N

    So that X = Va = 0 N

    Ma 0 Nmm

    Notes Build C matrix Build L matrix

    Inverse C matrix Multiply inverse C matrix by L matrix

    block out matrix size (9x9), block out 3 cells vertically,

    =minvers(C matrix) in top left corner =mmult in top cell

    select the range containing 'C' select the ranges containing 'Cinv' & 'L'

    press cntl+shift+enter press cntrl+shift+enter

    CHH HA CHV VA CHM MA LF

    CVH HA CVV VA CVM MA LFV

    CMH HA CMV VA CMM MA LFM

    HA 0 m=

    VA 0 m=

    A 0 deg=

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket Author :

    T ArdenDate :

    June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.2 Frame Vert Load 3 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    33/106

    6.3.2-30

    Calculation of HB, VB and MB from equilibrium equations:

    It follows that

    HB = 0 N

    VB = 1 N

    MB = 0 Nmm

    HA = -0.01 N HB = 0.01 N

    VA = 0.31 N VB = 0.55 N

    MA = 0.33 Nmm MB = -0.30 Nmm

    HB H=

    VB W V=

    MB VA L3 HA L1 L2 W L3 a MA=

    Fx HA HB 0

    Fy VA VB W 0

    MB MB VA L3 HA L1 L2 W L3 a MA 0

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :T Arden

    Date :June 09

    Page

    InbdDC

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.2 Frame Vert Load 3 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    34/106

    6.3.2-31

    Internal Moment

    P = 0.9 N

    L1 = 64.8 mm L2 = 64.8 mm

    Mint = HA*L1+MA = -0.6 Nmm Mint = HB*L2+MB= 0.6 Nmm

    MC = -0.6 Nmm MD = 0.6 Nmm

    BM Under Vertical Load

    0.9

    103.74 58.96

    -0.01 -0.62 0.65 0.01

    0.31 0.55

    162.7

    Check

    BM at Load position MP = 31.8 Nmm 31.8 Nmm

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :T Arden

    Date :June 09

    Page

    C D

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.2 Frame Vert Load 3 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    35/106

    6.3.2-32

    Portal Frame Analysis

    Vertical Load Ref [45] Table 4 Case 5a

    Geometry parameters Ref pages 6.3.2-3 & -4

    L1 = 64.80 mm Ref. p. 6.3.2-3 I1 = 14.7 mm4

    Ref. p. 6.3.2-5

    L2 = 64.80 mm Ref. p. 6.3.2-3 I2 = 14.7 mm4

    Ref. p. 6.3.2-5

    L3 = 162.7 mm Ref. p. 3.3-1 I3 = 1739.0 mm4 Ref. p. 6.3.2-5

    E1 = 69000 MPa Ref. p. 4.7-1

    E2 = 69000 MPa Ref. p. 4.7-2

    E3 = 72000 MPa Ref. p. 4.8-1

    LoadingWx = -14.98 N ref page 6.3.2-13

    x Bolt 1 Bolt 2 Bolt 3 Bolt 4

    Initial Initial Bolt Pitch X

    Posn Posn mm mm

    25.16 45 1 0 19.84

    25.16 45 2 42 61.84

    25.16 45 3 83.9 103.74

    25.16 45 4 125.9 145.74

    Distance from edge to load a = 145.74 mm

    SUBJECT:A400M Fixed Leading Edge

    AAR Snowplough BracketAuthor :

    T ArdenDate :

    June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.2 Frame Vert Load 4 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    36/106

    6.3.2-33

    Roark 6th Table 4 Cases 5a & 5f

    SUBJECT:

    A400M Fixed Leading EdgeAAR Snowplough Bracket Author :

    T ArdenDate :

    June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.2 Frame Vert Load 4 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    37/106

    6.3.2-34

    Constants

    These constants are used in the formulas to calculate the reaction moment, horizontal

    and vertical end reactions, horizontal and vertical deflections and angular rotation at A:

    CHH 0.184 mm/N

    CVH 0.344 mm/N

    CHV 0.344 mm/N

    CMH 0.004 /N

    CHM 0.004 /N

    CVV 1.703 mm/N

    CMV 0.011 /N

    CVM 0.011 /N

    CMM 0.000129 /Nmm

    Loading Terms

    LFH -0.53 mm

    LFV -2.6 mm

    LFM -0.02

    CHH

    L13

    3 E1 I1

    L13

    L1 L2 3

    3 E2 I2

    L12

    L3

    E3 I3=

    CVH

    L2 L3

    2 E2 I22 L1 L2

    L1 L32

    2 E3 I3=

    CHV CVH=

    CMH

    L12

    2 E1 I1

    L2

    2 E2 I22 L1 L2

    L1 L3

    E3 I3=

    CHM CMH=

    CVV

    L2 L32

    E2 I2

    L33

    3 E3 I3

    =

    CMV

    L2 L3

    E2 I2

    L32

    2 E3 I3=

    CVM CMV=

    CMM

    L1

    E1 I1

    L2

    E2 I2

    L3

    E3 I3=

    SUBJECT:A400M Fixed Leading Edge

    AAR Snowplough BracketAuthor :T Arden

    Date :June 09

    Page

    LFH WL2

    2 E2 I22 L1 L2 L3 a

    L1

    2 E3 I3L3 a

    2

    =

    LFV W CVV a CVMa

    3

    6 E3 I3

    =

    LFM WL2

    E2 I2L3 a

    1

    2 E3 I3L3 a

    2

    =

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.2 Frame Vert Load 4 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    38/106

    6.3.2-35

    Boundary Conditions

    Horizontal deflection

    Vertical deflection

    Angular rotation

    Because the above equal zero, the following three equations are solved simultaneously

    Chh Chv Chm 0.184 0.344 0.004

    C = Cvh Cvv Cvm = 0.344 1.703 0.011

    Cmh Cmv Cmm 0.004 0.011 0.000129

    Ha

    X = Va

    Ma

    LFhx -0.53

    L = LFvx = -2.6LFmx -0.02

    Now calculate the solution as: X = Cinv*L

    where Cinv is the inverse of matrix C, calculated below using Excel function MINVERSE

    21.71051 0 -710.5022

    Cinv = 0 1.1786275 -95.88134

    -710.5022 -95.88134 38799.57

    X is calculated below using Excel function MMULT

    Ha 0 N

    So that X = Va = -2 N

    Ma -3 Nmm

    Notes Build C matrix Build L matrix

    Inverse C matrix Multiply inverse C matrix by L matrix

    block out matrix size (9x9), block out 3 cells vertically,

    =minvers(C matrix) in top left corner =mmult in top cell

    select the range containing 'C' select the ranges containing 'Cinv' & 'L'

    press cntl+shift+enter press cntrl+shift+enter

    CHH HA CHV VA CHM MA LFH

    CVH HA CVV VA CVM MA LFV

    CMH HA CMV VA CMM MA LFM

    HA 0 m=

    VA 0 m=

    A 0 deg=

    SUBJECT:

    A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :T Arden

    Date :June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.2 Frame Vert Load 4 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    39/106

    6.3.2-36

    Calculation of HB, VB and MB from equilibrium equations:

    It follows that

    HB = 0 N

    VB = -13 N

    MB = 2 Nmm

    HA = 0.10 N HB = -0.10 N

    VA = -1.56 N VB = -13.42 N

    MA = -2.53 Nmm MB = 1.92 Nmm

    HB HA=

    VB W VA=

    MB VA L3 HA L1 L2 W L3 a MA=

    Fx HA HB 0

    Fy VA VB W 0

    MB MB VA L3 HA L1 L2 W L3 a MA 0

    SUBJECT:

    A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :

    T ArdenDate :

    June 09

    Page

    InbdD

    C

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.2 Frame Vert Load 4 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    40/106

    6.3.2-37

    Internal Moment

    P = -15.0 N

    L1 = 64.8 mm L2 = 64.8 mm

    Mint = HA*L1+MA = 4.1 Nmm Mint = HB*L2+MB= -4.8 Nmm

    MC = 4.1 Nmm MD = -4.8 Nmm

    BM Under Vertical Load

    -15.0145.74 16.96

    0.10 4.14 -4.75 -0.10

    -1.56 -13.42

    162.7

    Check

    BM at Load position MP = -222.9 Nmm -222.9 Nmm

    SUBJECT:A400M Fixed Leading Edge

    AAR Snowplough BracketAuthor :

    T ArdenDate :

    June 09

    Page

    C D

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.2 Frame Vert Load 4 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    41/106

    6.3.2-38

    Portal Frame Analysis

    Vertical Load Ref [45] Table 4 Case 5a

    Geometry parameters Ref pages 6.3.2-3 & -4

    L1 = 64.80 mm Ref. p. 6.3.2-3 I1 = 14.7 mm^4 Ref. p. 6.3.2-5

    L2 = 64.80 mm Ref. p. 6.3.2-3 I2 = 14.7 mm^4 Ref. p. 6.3.2-5

    L3 = 162.7 mm Ref. p. 3.3-1 I3 = 1739.0 mm^4 Ref. p. 6.3.2-5

    E1 = 69000 MPa Ref. p. 4.7-1E2 = 69000 MPa Ref. p. 4.7-2

    E3 = 72000 MPa Ref. p. 4.8-1

    Loading Applied Aero Loading:-

    Reference:- File:-

    Pressure for all 176 cases-new case files-LE Fix for Sonaca.xls

    From Report:-

    M57RP0404691_v2 Target Wingbox & FLE Air Pressures.doc

    For point 661, the nearest location to the centre of the access panel 4 held by the snowplough,for case CMR#27500F-TLL2-L, the Largest Pressure value from either Left or Right Hand Wing

    Max Pressure = 89196 Pa

    Max Pressure = 0.089 MPa

    Total load on Snowplough side = 438.22 N Ref AAR_Pod_Snowplough_Calcs_v5.xmcd

    Frame width = 162.7 mm

    Running Load, wa = 2.69 N/mm

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :T Arden

    Date :June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.2 Frame Vert Distr Load Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    42/106

    6.3.2-39

    Applied load in Portal Frame plane

    a =

    Pz'

    Distr a

    Distr Load

    Resolving Load into Protal frame plane

    Running Load, wa = 2.69 N/mm

    Resolved Running Load, wa = 2.69 N/mm = wa/cos a

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :T Arden

    Date :June 09

    Page

    A & B

    C & D

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.2 Frame Vert Distr Load Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    43/106

    6.3.2-40

    Roark 6th Table 4 Cases 5a & 5f

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket Author :

    T ArdenDate :

    June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.2 Frame Vert Distr Load Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    44/106

    6.3.2-41

    Constants

    These constants are used in the formulas to calculate the reaction moment, horizontal

    and vertical end reactions, horizontal and vertical deflections and angular rotation at A:

    CHH 0.184 mm/N

    CVH 0.344 mm/N

    CHV

    0.344 mm/N

    CMH 0.004 /N

    CHM 0.004 /N

    CVV 1.703 mm/N

    CMV 0.011 /N

    CVM 0.011 /N

    CMM 0.000129 /Nmm

    Loading Terms Note Wa = Wb, then Wa-Wb = 0

    LFH 74.79 mm

    LFV 372.4 mm^2

    LFM 2.29 mm

    CHH

    L13

    3 E1 I1

    L13

    L1 L2 3

    3 E2 I2

    L12

    L3

    E3 I3=

    CVH

    L2 L3

    2 E2 I22 L1 L2

    L1 L32

    2 E3 I3=

    CHV

    CVH

    =

    CMH

    L12

    2 E1 I1

    L2

    2 E2 I22 L1 L2

    L1 L3

    E3 I3=

    CHM CMH=

    CVV

    L2 L32

    E2 I2

    L33

    3 E3 I3=

    CMVL2 L3E2 I2

    L32

    2 E3 I3=

    CVM CM=

    CMML1

    E1 I1

    L2

    E2 I2

    L3

    E3 I3=

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :T Arden

    Date :June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.2 Frame Vert Distr Load Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    45/106

    6.3.2-42

    Boundary Conditions

    Horizontal deflection

    Vertical deflection

    Angular rotation

    Because the above equal zero, the following three equations are solved simultaneously

    Chh Chv Chm 0.184 0.344 0.004

    C = Cvh Cvv Cvm = 0.344 1.703 0.011

    Cmh Cmv Cmm 0.004 0.011 0.000129

    Ha

    X = Va

    Ma

    LFhx 74.79

    L = LFvx = 372.4

    LFmx 2.29

    Now calculate the solution as: X = Cinv*L

    where Cinv is the inverse of matrix C, calculated below using Excel function MINVERSE

    21.71051 0 -710.5022

    Cinv = 0 1.1786275 -95.88134

    -710.5022 -95.88134 38799.57

    X is calculated below using Excel function MMULT

    Ha -5 N

    So that X = Va = 219 N

    Ma 116 Nmm

    Notes Build C matrix Build L matrix

    Inverse C matrix Multiply inverse C matrix by L matrix

    block out matrix size (9x9), block out 3 cells vertically,

    =minvers(C matrix) in top left corner =mmult in top cell

    select the range containing 'C' select the ranges containing 'Cinv' & 'L'

    press cntl+shift+enter press cntrl+shift+enter

    CHH HA CHV VA CHM MA LFH

    CVH HA CVV VA CVM MA LFV

    CMH HA CMV VA CMM MA LFM

    HA 0 m=

    VA 0 m=

    A 0 deg=

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :T Arden

    Date :June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.2 Frame Vert Distr Load Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    46/106

    6.3.2-43

    Calculation of HB, VB and MB from equilibrium equations:

    It follows that Note Wa = Wb

    HB = 5 N

    VB = 219 N

    MB = -116 Nmm

    HA = -5 N HB = 5 N

    VA = 219 N VB = 219 N

    MA = 116 Nmm MB = -116 Nmm

    HB H=

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :T Arden

    Date :June 09

    Page

    InbdD

    C

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.2 Frame Vert Distr Load Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    47/106

    6.3.2-44

    Internal Moment

    P = 438.2 N

    L1 = 64.8 mm L2 = 64.8 mm

    Mint = HA*L1+MA = -232.3 Nmm Mint = HB*L2+MB= 232.3 Nmm

    MC = -232.3 Nmm MD = 232.3 Nmm

    BM Under Vertical Load

    -5.38 -232.25 232.25 5.38

    219.11 219.11

    162.7

    C D

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :T Arden

    Date :June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.2 Frame Vert Distr Load Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    48/106

    6.3.3-1

    6.3.3 Portal Frame Summary

    Reactions in the XZ' plane

    Constraints in the XZ' plane

    At A & B

    Load HA VA MA HB VB MB Ref

    Posn Page

    N N Nmm N N Nmm

    Side Load 137.5 -48 -3935.1 137.5 48.0 -3935.1 6.3.2-10 & -11

    Bolt 1 -0.5 38 7.6 0.5 5.3 -9.8 6.3.2-18

    Bolt 2 -0.1 3 2.2 0.1 2.0 -2.4 6.3.2-24

    Bolt 3 -0.02 0 0.39 0.02 0.55 -0.35 6.3.2-30

    Bolt 4 0.1 -2 -3.0 -0.1 -13.4 2.3 6.3.2-36

    Distr Load -7.2 219 136.5 7.2 219.1 -136.5 6.3.2-43Sum 130 211 -3791 145 261 -4082

    Internal Moments At C & D

    Load MC MD MP Ref

    Posn Page

    Nmm Nmm Nmm

    Side Load 3904 3904 3904 6.3.2-11

    Load MC MD MP

    Posn

    Nmm Nmm Nmm

    Bolt 1 -19 16 739 6.3.2-19

    Bolt 2 -5 4 194 6.3.2-25

    Bolt 3 -1 1 32 6.3.2-31

    Bolt 4 5 -6 -222 6.3.2-37

    Sum -19 16 743

    Load MC MD MP Ref

    Posn Page

    Nmm Nmm Nmm

    Distr Load -273 273 273 6.3.2-44

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :T Arden

    Date :June 09

    Page

    A B

    C D

    z'

    Inbd Outbd

    xHB

    VBVA

    HA

    MAMB

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.3 Summary Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    49/106

    6.3.3-2

    Reactions in the Z'Y' plane

    The moments below cause a torsion on the connection angles

    Py'

    Fixing Moments Moments due to Py'

    Member CD in the XY' Plane

    Below, A=C & B = D

    Bolt Py' L3 a Rc Mc RD MD

    Posn

    N mm mm N Nmm N Nmm

    1 137 162.7 19.84 131 2091 6 290

    2 16 162.7 61.84 11 387 5 237

    3 3 162.7 103.74 1 37 2 65

    4 -47 162.7 145.74 -1 -75 -46 -641

    Sum 109 142 2441 -33 -48

    Maximum Total Ry = 142 N Max Abs of Rc & RD

    Maximum Torsion, Mz = 2441 Nmm

    McMd

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :T Arden

    Date :June 09

    Page

    Ry Ry

    Py'

    arm

    A & B

    C & D

    y'

    x

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.3 Summary Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    50/106

    6.3.4-1

    6.3.4 Connection Angles Both angles are similar, ref pages 3.6-1 & -2

    t = 2.0 mm

    Width = 22 mm

    Hole dia = 4.83 mm

    Net Width = 17.17 mm

    Bending about yy

    About yy - bending about the edge of the AAR bracket flange

    Use the Gross Section

    I = b*d^3 / 12 Z = b*d^2 / 6

    Iyy = 14.7 mm4

    Gross

    Ixx = 1775 mm4

    Gross

    Zyy = 14.7 mm3

    Gross

    Zxx = 161.3 mm3

    Gross

    A = 44.0 mm2

    Gross

    MB = Myy = 4082 Nmm From Portal Frame reactions, page 6.3.3-1

    Zyy = 14.7 mm3

    Bending sy= 278 MPa =M/Z

    End Load VA =Pel = 261 N From Portal Frame reactions, page 6.3.3-1

    End Load sel= 5.94 MPa =P/A

    Total sy + sel = 284 MPa

    SUBJECT:

    A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author : Date :Page

    22

    2

    y y

    x

    x

    22

    2

    Snowplough deflects

    Outboard for thisanalysis

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.4 Stress Levels Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    51/106

    6.3.4-2

    Bending about xx

    For this section, through the fastner hole, use NET Sections

    I = b*d^3 / 12 Z = b*d^2 / 6

    Iyy = 11.4 mm^4 Net

    Ixx = 844 mm^4 Net

    Zyy = 11.4 mm^3 Net

    Zxx = 98.3 mm^3 Net

    A = 34.3 mm^2 Net

    Maximum Total Ry = 142 N Ref Rc page 6.3.3-2

    Py'

    57.00

    Ry'

    Mx = 8066 Nmm = Py'*arm

    Zxx = 98.3 mm^3 Previous Page

    sx= 82 MPa =M/Z

    End Load VA =Pel = 261 N Previous Page

    End Load sel= 7.61 MPa =P/A

    sy + sel = 284 MPa Previous page

    s total = 366 MPa Combination is Pressimistic

    Ftu = 425 MPa Ref Section 4 RF = 1.16

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket Author :

    T ArdenDate :

    June 09

    Page

    y'

    z'

    Mx

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.4 Stress Levels Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    52/106

    6.3.4-3

    Shear

    Torsional t = 2.0 mm

    Width = 17.17 mm

    Maximum Torsion, Mz = 2441 Nmm Ref Mc page 6.3.3-2

    t tors= 114 MPa

    Direct Ry' = 142 N

    Rx = 145 N = max H, page

    Resultant direct shear = 203 N

    Area = w*t = 34.34 mm^2

    t direct= 5.9 MPa

    t tot= 120 MPa

    Ftu = 425 MPa Previous Page

    Fsu = 245 MPa =Ftu/Sqrt(3) RF = >2

    Combined Shear & Bending

    Maximum Principle Stress

    s princ = 402 MPa

    Ftu = 425 MPa RF = 1.06

    Ref Roark 6th Table 20 Case 18

    SUBJECT:

    A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author : Date :Page

    File No - A400M/TWEOM1E3/D/57-45-046

    t

    sss

    ss

    = 2xy

    yx

    2

    yx

    2,142

    160429985.xls.ms_office 6.3.4 Stress Levels Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    53/106

    6.3.5-1

    6.3.5 Fastener Analysis

    Loading

    Maximum Loading on one leg

    Shear Loads in the ZY Plane

    Mx = 8066 Nmm Ref Page 6.3.4-2

    Hy = 142 N Ref Page 6.3.3-2

    V max = 261 N Max of VA & VB - ref page

    Pitch Per fastener

    20.78

    Ry max = 530 N Mx/pitch + Hy

    Rz max = 131 N Vmax/2

    R res = sqrt (Ry 2+Rz^2)

    R res = 546

    Ref AP6-020-00 Table 12 - 2024-T351 3B Protruding Head Bolts

    3/16" in t = 2.0 mm P allow = 7520 N RF = >2

    Bolt Shear

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author : Date :Page

    Hy

    V

    Mx

    y'

    z'

    A B

    C D

    z'

    Inbd Outbd

    xHB

    VBVA

    HA

    MAMB

    Hy

    V

    Mx

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.5 Fasteners Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    54/106

    6.3.5-2

    Tension Loads in the XZ Plane

    My = 4082 Nmm Ref Page 6.3.4-1

    Hx = 145 N Max (HA ,HB) Ref Page 6.3.3-2

    Per fastener

    Pitch Rx max = 342 N My/pitch + Hx

    20.78

    R tens= 342 N

    Ref AP6-020-00 Table 13

    Minimum 3/16" allowable, P allow = 7110 N RF = >2

    Bolt Tension

    Shear & Tension Interaction

    RF = PBI

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket Author :

    T ArdenDate :

    June 09

    Page

    Hx

    My

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.5 Fasteners Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    55/106

    6.3.6-1

    6.3.6 Portal Frame Analysis (OTBD Side Deflection)

    Idealisation

    Ref. Section 3.6

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author : Date :Page

    y

    z

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Idealised Portal Frame Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    56/106

    6.3.6-2

    Width of Frame

    Assume width of frame = 162.7 mm Ref. 6.3.6-1

    Height and Angle of Frame

    The frame is idealised on a plane through the hinge point on a line angled through the attachment bolts

    The height of the frame is pessimistically assumed as the vertical offset to the first attachment bolt

    The sketch below shows the maximum offset (OB side) - the angle is the same both inbd and outbd

    84.6 28.6

    64.8 22.3

    19.8 6.3

    q = 72.35 deg

    q= 17.65 deg

    Idealised Frame

    Offset to 1st attachment bolt = 64.8 mm

    72.35 deg

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author : Date :Page

    19.8

    6.3

    y

    zq

    162.7mm

    64.8mm

    A B

    C D

    y'

    z'

    Inbd Outbd

    z

    x

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Idealised Portal Frame Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    57/106

    6.3.6-3

    Section Constants

    Hinge

    The hinge does not have the properties of an angle since there is no moment connection at the hinge line

    For the section constants use the flat strip the is attached between the connection angles

    Ref page 3.3-5

    Hinge is a '-12'

    thkns, E = 0.109 in average of .115 & .103

    thkns, E = 2.77 mm

    A = 3.375 in

    A = 85.73 mm

    Hinge leg = A/2 = 42.86 mm

    I = b*d^3 / 12 Z = b*d^2 / 6

    b = 42.86 mm

    t = 2.77 mm

    Ixx = 75.8 mm^4

    Iyy = 18168 mm^4

    Zxx = 54.8 mm^3

    Zyy = 848 mm^3A = 119 mm^2

    Section Constants in the Y'Z' plane Ref. page 6.15

    Iyy = t*b3*

    (sin2q/12 + b*t

    3*(cosq)/12

    17.65 Zyy = t*b2*

    (sinq/6 + b*t2*(cosq)/6

    b = 42.86 mm

    t = 2.77 mm

    72.35 For y'y' q = 72.35 deg

    I y'y' = 16521 mm4

    Z y'y' = 824 mm3

    For z'z', q = 17.65 deg

    I z'z' = 1742 mm4

    Z z'z' = 309 mm3

    A = 119 mm2

    SUBJECT:A400M Fixed Leading EdgeButtstraps

    Author :T Arden

    Date :June 09

    Page

    y y

    z

    z

    y y

    z

    z

    z'

    z'

    y'

    y'

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Section Constants Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    58/106

    6.3.6-4

    Connection Angles Both angles are similar, ref pages 3.3-6 & -7

    t = 2.0 mm

    Width = 22.0 mm

    I = b*d^3 / 12 Z = b*d^2 / 6

    Ixx = 14.7 mm4

    Iyy = 1775 mm4

    Zxx = 14.7 mm3

    Zyy = 161 mm3

    A = 44 mm2

    x x

    y

    y

    22

    2

    SUBJECT:A400M Fixed Leading EdgeButtstraps Author :

    T ArdenDate :

    June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Section Constants Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    59/106

    6.3.6-5

    Portal Frame Analysis

    Ref Roarks 6th Ed Table 4

    Side Load Ref Roarks 6th Ed Table 4 Case 5f

    Geometry parameters Ref pages 6.3.6-2 & -3

    L1 = 64.80 mm Ref. p. 6.3.2-3 I1 = 14.7 mm4

    Ref. p. 6.3.2-5

    L2 = 64.80 mm Ref. p. 6.3.2-3 I2 = 14.7 mm

    4

    Ref. p. 6.3.2-5L3 = 162.7 mm Ref. p. 3.3-1 I3 = 1739.0 mm

    4Ref. p. 6.3.2-5

    E1 = 69000 MPa Ref. p. 4.7-1

    E2 = 69000 MPa Ref. p. 4.7-2

    E3 = 72000 MPa Ref. p. 4.8-1

    Loading

    Initially a unit load is applied, then the load required to give the applied deflection of 2.03 mm - Ref page 6.4

    Wx = 187.47 N Load to give deflection of 2.03 mm

    See page 6.3.6-10

    Distance from edge to load a = 64.80 mm

    SUBJECT:A400M Fixed Leading EdgeButtstraps

    Author :T Arden

    Date :June 09

    Page

    z'

    x

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Side Load Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    60/106

    6.3.6-6

    Roark 6th Table 4 Cases 5a & 5f

    SUBJECT:A400M Fixed Leading EdgeButtstraps Author :

    T ArdenDate :

    June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Side Load Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    61/106

    6.3.6-7

    Constants

    These constants are used in the formulas to calculate the reaction moment, horizontaland vertical end reactions, horizontal and vertical deflections and angular rotation at A:

    CHH 0.184 mm/N

    CVH 0.344 mm/N

    CHV 0.344 mm/N

    CMH 0.004 /N

    CHM 0.004 /N

    CVV 1.703 mm/N

    CMV 0.011 /N

    CVM 0.011 /N

    CMM 0.000129 /Nmm

    Loading Terms

    LFH -8.38 mm

    LFV -63.1 mm

    LFM -0.39

    CHHL1

    3

    3 E1 I1

    L13

    L1 L2 3

    3 E2 I2

    L12

    L3

    E3 I3=

    CVH

    L2 L3

    2 E2 I22 L1 L2

    L1 L32

    2 E3 I3=

    CHV CVH=

    CMH

    L12

    2 E1 I1

    L2

    2 E2 I22 L1 L2

    L1 L3

    E3 I3=

    CHM CMH=

    CVV

    L2 L32

    E2 I2

    L33

    3 E3 I3=

    CMV

    L2 L3

    E2 I2

    L32

    2 E3 I3=

    CVM CM=

    CMML1

    E1 I1

    L2

    E2 I2

    L3

    E3 I3=

    SUBJECT:A400M Fixed Leading EdgeButtstraps

    Author :T Arden

    Date :June 09

    Page

    LFM W CMH a CMMa

    2

    2 E1 I1

    =

    LFV W CVH a CVM =

    LFH W CHH a CHMa

    3

    6 E1 I1

    =

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Side Load Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    62/106

    6.3.6-8

    Boundary Conditions

    Horizontal deflection

    Vertical deflection

    Angular rotation

    Because the above equal zero, the following three equations are solved simultaneously

    Chh Chv Chm 0.184 0.344 0.004

    C = Cvh Cvv Cvm = 0.344 1.703 0.011

    Cmh Cmv Cmm 0.004 0.011 0.000129

    Ha

    X = Va

    Ma

    LFhx -8.38

    L = LFvx = -63.1

    LFmx -0.39

    Now calculate the solution as: X = Cinv*L

    where Cinv is the inverse of matrix C, calculated below using Excel function MINVERSE

    21.71051 0 -710.5022

    Cinv = 0 1.1786275 -95.88134

    -710.5022 -95.88134 38799.57

    X is calculated below using Excel function MMULT

    Ha 94 N

    So that X = Va = -37 N

    Ma -3047 Nmm

    Notes Build C matrix Build L matrix

    Inverse C matrix Multiply inverse C matrix by L matrix

    block out matrix size (9x9), block out 3 cells vertically,

    =minvers(C matrix) in top left corner =mmult in top cell

    select the range containing 'C' select the ranges containing 'Cinv' & 'L'

    press cntl+shift+enter press cntrl+shift+enter

    CHH HA CHV VA CHM MA LFH

    CVH HA CVV VA CVM MA LFV

    CMH HA CMV VA CMM MA LFM

    HA 0 m=

    VA 0 m=

    A 0 deg=

    SUBJECT:A400M Fixed Leading EdgeButtstraps

    Author :T Arden

    Date :June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Side Load Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    63/106

    6.3.6-9

    Calculation of HB, VB and MB from equilibrium equations:

    It follows that

    HB = 94 N

    VB = 37 N

    MB = -3047 Nmm

    HA = 94 N HB = 94 N

    VA = -37 N VB = 37 N

    MA = -3047 Nmm MB = -3047 Nmm

    Fx

    HA HB W 0

    Fy VA VB 0

    MB MB VA L3 HA L1 L2 W a L2 L1 MA 0

    HB W HA=

    VB VA=

    MB VA L3 HA L1 L2 W a L2 L1 MA=

    SUBJECT:A400M Fixed Leading EdgeButtstraps Author :

    T ArdenDate :

    June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Side Load Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    64/106

    6.3.6-10

    Portal Frame deflection

    Vertical leg balance

    Mint Ref page 6.3.6-2

    L1 = 64.8 mm

    I1 = 14.7 mm^4

    E1 = 69000 MPa

    64.8

    3047 HA Ref Previous page

    94 MA = -3047 Nmm

    MB = -3047 Nmm

    37

    Mint = HA*L1-MA Mint = 3027 Nmm MD = 3027 Nmm

    MC = 3027 Nmm

    BM Diagram

    3027 3027

    3027

    3027

    -3047 -3047

    Frame Deflection

    Due to direct load = 8.38 mm =P*L^3/(3*E*I)

    Due to Moment = 6.27 mm =M*L^2/(2*E*I)

    tot= 2.12 mm Difference

    FEM Deflection Ref page 6.3-5

    The average displacement form the FEM = 2.03 mm Absolute value shown

    Unit load = 1000 N

    unit load = 10.82 mm

    Then, the applied load = 187.5 N

    CD

    BA

    CD

    BA

    SUBJECT:A400M Fixed Leading EdgeButtstraps Author :

    T ArdenDate :

    June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Side Load Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    65/106

    160429985.xls.ms_office 6.3.6 Frame Side Load Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    66/106

    6.3.6-11

    Frame Vertical Deflection

    Pessimistically assume the frame horizontal member CD is an encastre beam

    a

    162.7

    Bolt 1 Bolt 2 Bolt 3 Bolt 4

    Unit Load Deflection

    Bolt P L3 I3 E3 a b Max of max

    Posn a & b

    N mm mm MPa mm mm mm mm1 1000 162.7 75.8 72000 19.84 142.86 142.86 0.70

    2 1000 162.7 75.8 72000 61.84 100.86 100.86 3.61

    3 1000 162.7 75.8 72000 103.74 58.96 103.74 3.46

    4 1000 162.7 75.8 72000 145.74 16.96 145.74 0.53

    Applied Loads

    The following table gives the applied loads relative to FEM displacements shown page 6.3-5

    Unit Calculated Applied Applied

    Load Load

    N mm mm N

    1000 0.7 0.100 143.5

    1000 3.61 0.062 17.1

    1000 3.46 0.010 2.8

    1000 0.53 -0.026 -49.4

    Sum 114.0

    For the loads applied in the plane of the portal frame - see next page

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket Author :

    T ArdenDate :

    June 09

    Page

    b

    C D

    Inbd

    C D

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Applied Vert Loads Printed 7 /27/2013

  • 7/27/2019 6.3 Snowplough

    67/106

    6.3.6-12

    Loads resolved into the Portal Frame Plane

    Py'

    a = 17.65

    Pz'

    Pappl a Py' Pz'

    N deg N N

    143.5 17.65 136.70 43.50

    17.1 17.65 16.30 5.18

    2.8 17.65 2.71 0.86

    -49.4 17.65 -47.08 -14.98

    Ref. p. 6.3.2-4

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket Author :

    T ArdenDate :

    June 09

    Page

    arm

    A & B

    C & D

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Applied Vert Loads Printed 7 /27/2013

  • 7/27/2019 6.3 Snowplough

    68/106

    6.3.6-13

    Portal Frame Analysis

    Ref Roarks 6th Ed Table 4

    Vertical Load Ref Roarks 6th Ed Table 4 Case 5a

    Geometry parameters Ref pages 6.3.6-2 & -3

    L1 = 64.80 mm Ref. p. 6.3.2-3 I1 = 14.7 mm^4 Ref. p. 6.3.2-5

    L2 = 64.80 mm Ref. p. 6.3.2-3 I2 = 14.7 mm^4 Ref. p. 6.3.2-5

    L3 = 162.7 mm Ref. p. 3.3-1 I3 = 1742.5 mm^4 Ref. p. 6.3.2-5

    E1 = 72000 MPa Ref. p. 4.7-1

    E2 = 72000 MPa Ref. p. 4.7-2

    E3 = 72000 MPa Ref. p. 4.8-1

    LoadingWx = 43.5 N ref page 6.3.6-12

    x Bolt 1 Bolt 2 Bolt 3 Bolt 4

    Initial Initial Bolt Pitch X

    Posn Posn mm mm

    25.16 45 1 0 19.84

    25.16 45 2 42 61.84

    25.16 45 3 83.9 103.74

    25.16 45 4 125.9 145.74

    Distance from edge to load a = 19.84 mm

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :T Arden

    Date :June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Load 1 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    69/106

    6.3.6-14

    Roark 6th Table 4 Cases 5a & 5f

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :T Arden

    Date :June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Load 1 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    70/106

    6.3.6-15

    Constants

    These constants are used in the formulas to calculate the reaction moment, horizontal

    and vertical end reactions, horizontal and vertical deflections and angular rotation at A:

    CHH 0.177 mm/N

    CVH 0.330 mm/N

    CHV

    0.330 mm/N

    CMH 0.004 /N

    CHM 0.004 /N

    CVV 1.632 mm/N

    CMV 0.010 /N

    CVM 0.010 /N

    CMM 0.000124 /Nmm

    Loading Terms

    LFH 12.56 mm

    LFV 62.3 mm

    LFM 0.38

    CHH

    L13

    3 E1 I1

    L13

    L1 L2 3

    3 E2 I2

    L12

    L3

    E3 I3=

    CVH

    L2 L3

    2 E2 I22 L1 L2

    L1 L32

    2 E3 I3=

    CHV

    CVH

    =

    CMH

    L12

    2 E1 I1

    L2

    2 E2 I22 L1 L2

    L1 L3

    E3 I3=

    CHM CMH=

    CVV

    L2 L32

    E2 I2

    L33

    3 E3 I3=

    CMVL2 L3E2 I2

    L32

    2 E3 I3=

    CVM CM=

    CMML1

    E1 I1

    L2

    E2 I2

    L3

    E3 I3=

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :T Arden

    Date :June 09

    Page

    LFH W

    L2

    2 E2 I2 2 L1

    L2

    L3 a

    L1

    2 E3 I3 L3 a

    2

    =

    LFV W CVV a CVMa

    3

    6 E3 I3

    =

    LFM WL2

    E2 I2L3 a

    1

    2 E3 I3L3 a

    2

    =

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Load 1 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    71/106

    6.3.6-16

    Boundary Conditions

    Horizontal deflection

    Vertical deflection

    Angular rotation

    Because the above equal zero, the following three equations are solved simultaneously

    Chh Chv Chm 0.177 0.330 0.004

    C = Cvh Cvv Cvm = 0.330 1.632 0.010

    Cmh Cmv Cmm 0.004 0.010 0.000124

    Ha

    X = Va

    Ma

    LFhx 12.56

    L = LFvx = 62.3

    LFmx 0.38

    Now calculate the solution as: X = Cinv*L

    where Cinv is the inverse of matrix C, calculated below using Excel function MINVERSE

    22.627273 -6.74E-16 -740.8067

    Cinv = -2.03E-15 1.2297002 -100.0361

    -740.8067 -100.0361 40472.7

    X is calculated below using Excel function MMULT

    Ha 0 N

    So that X = Va = 38 N

    Ma 7 Nmm

    Notes Build C matrix Build L matrix

    Inverse C matrix Multiply inverse C matrix by L matrix

    block out matrix size (9x9), block out 3 cells vertically,

    =minvers(C matrix) in top left corner =mmult in top cell

    select the range containing 'C' select the ranges containing 'Cinv' & 'L'

    press cntl+shift+enter press cntrl+shift+enter

    CHH HA CHV VA CHM MA LFH

    CVH HA CVV VA CVM MA LFV

    CMH HA CMV VA CMM MA LFM

    HA 0 m=

    VA 0 m=

    A 0 deg=

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket Author :

    T ArdenDate :

    June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Load 1 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    72/106

    6.3.6-17

    Calculation of HB, VB and MB from equilibrium equations:

    It follows that

    HB = 0 N

    VB = 5 N

    MB = -9 Nmm

    HA = -0.36 N HB = 0.36 N

    VA=

    38.20 N VB = 5.29 NMA = 6.69 Nmm MB = -8.71 Nmm

    HB H=

    VB W VA=

    MB VA L3 HA L1 L2 W L3 a MA=

    Fx HA HB 0

    Fy VA VB W 0

    MB MB VA L3 HA L1 L2 W L3 a MA 0

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket Author :

    T ArdenDate :

    June 09

    Page

    DCInbd

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Load 1 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    73/106

    6.3.6-18

    Internal Moment

    P = 43.5 N

    L1 = 64.8 mm L2 = 64.8 mm

    Mint = HA*L1+MA = -16.4 Nmm Mint = HB*L2+MB= 14.4 Nmm

    MC = -16.4 Nmm MD = 14.4 Nmm

    BM Under Vertical Load

    43.5

    19.84 142.86

    -0.36 -16.4 14.4 0.36

    38.20 5.29

    162.7

    Check

    BM at Load position MP = 741.6 Nmm 741.6 Nmm

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :T Arden

    Date :June 09

    Page

    C D

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Load 1 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    74/106

    6.3.6-19

    Portal Frame Analysis

    Ref Roarks 6th Ed Table 4

    Vertical Load Ref Roarks 6th Ed Table 4 Case 5a

    Geometry parameters Ref pages 6.3.6-2 & -3

    L1 = 64.80 mm Ref. p. 6.3.2-3 I1 = 14.7 mm^4 Ref. p. 6.3.2-5

    L2 = 64.80 mm Ref. p. 6.3.2-3 I2 = 14.7 mm^4 Ref. p. 6.3.2-5

    L3 = 162.7 mm Ref. p. 3.3-1 I3 = 1739.0 mm^4 Ref. p. 6.3.2-5

    E1 = 69000 MPa Ref. p. 4.7-1

    E2 = 69000 MPa Ref. p. 4.7-2

    E3 = 72000 MPa Ref. p. 4.8-1

    LoadingWx = 5.2 N ref page 6.3.6-12

    x Bolt 1 Bolt 2 Bolt 3 Bolt 4

    Initial Initial Bolt Pitch X

    Posn Posn mm mm

    25.16 45 1 0 19.84

    25.16 45 2 42 61.84

    25.16 45 3 83.9 103.74

    25.16 45 4 125.9 145.74

    Distance from edge to load a = 61.84 mm

    SUBJECT:

    A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :T Arden

    Date :

    June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Load 2 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    75/106

    6.3.6-20

    Roark 6th Table 4 Cases 5a & 5f

    SUBJECT:

    A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :

    T ArdenDate :

    June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Load 2 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    76/106

    6.3.6-21

    Constants

    These constants are used in the formulas to calculate the reaction moment, horizontal

    and vertical end reactions, horizontal and vertical deflections and angular rotation at A:

    CHH 0.184 mm/N

    CVH 0.344 mm/N

    CHV 0.344 mm/N

    CMH 0.004 /N

    CHM 0.004 /N

    CVV 1.703 mm/N

    CMV 0.011 /N

    CVM 0.011 /N

    CMM 0.000129 /Nmm

    Loading Terms

    LFH 1.10 mm

    LFV 5.5 mm

    LFM 0.03

    CHH

    L13

    3 E1 I1

    L13

    L1 L2 3

    3 E2 I2

    L12

    L3

    E3 I3=

    CVH

    L2 L3

    2 E2 I22 L1 L2

    L1 L32

    2 E3 I3=

    CHV CVH=

    CMH

    L12

    2 E1 I1

    L2

    2 E2 I22 L1 L2

    L1 L3

    E3 I3=

    CHM CMH=

    CVV

    L2 L32

    E2 I2

    L33

    3 E3 I3=

    CMV

    L2 L3

    E2 I2

    L32

    2 E3 I3

    =

    CVM CMV=

    CMML1

    E1 I1

    L2

    E2 I2

    L3

    E3 I3=

    SUBJECT:

    A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :T Arden

    Date :

    June 09

    Page

    LFH WL2

    2 E2 I22 L1 L2 L3 a

    L1

    2 E3 I3L3 a

    2

    =

    LFV W CVV a CVMa

    3

    6 E3 I3

    =

    LFM WL2

    E2 I2L3 a

    1

    2 E3 I3L3 a

    2

    =

    e o - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Load 2 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    77/106

    6.3.6-22

    Boundary Conditions

    Horizontal deflection

    Vertical deflection

    Angular rotation

    Because the above equal zero, the following three equations are solved simultaneously

    Chh Chv Chm 0.184 0.344 0.004

    C = Cvh Cvv Cvm = 0.344 1.703 0.011

    Cmh Cmv Cmm 0.004 0.011 0.000129

    Ha

    X = Va

    Ma

    LFhx 1.10

    L = LFvx = 5.5

    LFmx 0.03

    Now calculate the solution as: X = Cinv*L

    where Cinv is the inverse of matrix C, calculated below using Excel function MINVERSE

    21.71051 0 -710.5022

    Cinv = 0 1.1786275 -95.88134

    -710.5022 -95.88134 38799.57

    X is calculated below using Excel function MMULT

    Ha 0 N

    So that X = Va = 3 N

    Ma 2 Nmm

    Notes Build C matrix Build L matrix

    Inverse C matrix Multiply inverse C matrix by L matrix

    block out matrix size (9x9), block out 3 cells vertically,

    =minvers(C matrix) in top left corner =mmult in top cell

    select the range containing 'C' select the ranges containing 'Cinv' & 'L'

    press cntl+shift+enter press cntrl+shift+enter

    CHH HA CHV VA CHM MA LFH

    CVH HA CVV VA CVM MA LFV

    CMH HA CMV VA CMM MA LFM

    HA 0 m=

    VA 0 m=

    A 0 deg=

    SUBJECT:

    A400M Fixed Leading EdgeAAR Snowplough Bracket Author :

    T ArdenDate :

    June 09

    Page

    e o - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Load 2 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    78/106

    6.3.6-23

    Calculation of HB, VB and MB from equilibrium equations:

    It follows that

    HB = 0 N

    VB = 2 N

    MB = -2 Nmm

    HA = -0.09 N HB = 0.09 N

    VA = 3.22 N VB = 1.97 N

    MA = 1.86 Nmm MB = -2.02 Nmm

    HB HA=

    VB W VA=

    MB VA L3 HA L1 L2 W L3 a MA=

    Fx HA HB 0

    Fy VA VB W 0

    MB MB VA L3 HA L1 L2 W L3 a MA 0

    SUBJECT:A400M Fixed Leading Edge

    AAR Snowplough Bracket Author :T Arden

    Date :June 09

    Page

    DCInbd

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Load 2 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    79/106

    6.3.6-24

    Internal Moment

    P = 5.2 N

    L1 = 64.8 mm L2 = 64.8 mm

    Mint = HA*L1+MA = -4.0 Nmm Mint = HB*L2+MB= 3.8 Nmm

    MC = -4.0 Nmm MD = 3.8 Nmm

    BM Under Vertical Load

    5.2

    61.84 100.86

    -0.09 -3.97 3.80 0.09

    3.22 1.97

    162.7

    Check

    BM at Load position MP = 194.9 Nmm 194.9 Nmm

    SUBJECT:

    A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :

    T ArdenDate :

    June 09

    Page

    C D

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Load 2 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    80/106

  • 7/27/2019 6.3 Snowplough

    81/106

    6.3.6-26

    Roark 6th Table 4 Cases 5a & 5f

    SUBJECT:

    A400M Fixed Leading EdgeAAR Snowplough Bracket Author :

    T ArdenDate :

    June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Load 3 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    82/106

    6.3.6-27

    Constants

    These constants are used in the formulas to calculate the reaction moment, horizontal

    and vertical end reactions, horizontal and vertical deflections and angular rotation at A:

    CHH 0.184 mm/N

    CVH 0.344 mm/N

    CHV 0.344 mm/N

    CMH 0.004 /N

    CHM 0.004 /N

    CVV 1.703 mm/N

    CMV 0.011 /N

    CVM 0.011 /N

    CMM 0.000129 /Nmm

    Loading Terms

    LFH 0.11 mm

    LFV 0.5 mm

    LFM 0.00

    CHH

    L13

    3 E1 I1

    L13

    L1 L2 3

    3 E2 I2

    L12

    L3

    E3 I3=

    CVH

    L2 L3

    2 E2 I22 L1 L2

    L1 L32

    2 E3 I3=

    CHV CVH=

    CMH

    L12

    2 E1 I1

    L2

    2 E2 I22 L1 L2

    L1 L3

    E3 I3=

    CHM CMH=

    CVV

    L2 L32

    E2 I2

    L33

    3 E3 I3=

    CMV

    L2 L3

    E2 I2

    L32

    2 E3 I3=

    CVM CMV=

    CMML1

    E1 I1

    L2

    E2 I2

    L3

    E3 I3=

    SUBJECT:A400M Fixed Leading Edge

    AAR Snowplough BracketAuthor :

    T ArdenDate :

    June 09

    Page

    LFH WL2

    2 E2 I22 L1 L2 L3 a

    L1

    2 E3 I3L3 a

    2

    =

    LFV W CVV a CVMa

    3

    6 E3 I3

    =

    LFM WL2

    E2 I2L3 a

    1

    2 E3 I3L3 a

    2

    =

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Load 3 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    83/106

    6.3.6-28

    Boundary Conditions

    Horizontal deflection

    Vertical deflection

    Angular rotation

    Because the above equal zero, the following three equations are solved simultaneously

    Chh Chv Chm 0.184 0.344 0.004C = Cvh Cvv Cvm = 0.344 1.703 0.011

    Cmh Cmv Cmm 0.004 0.011 0.000129

    Ha

    X = Va

    Ma

    LFhx 0.11

    L = LFvx = 0.5

    LFmx 0.00

    Now calculate the solution as: X = Cinv*L

    where Cinv is the inverse of matrix C, calculated below using Excel function MINVERSE

    21.71051 0 -710.5022

    Cinv = 0 1.1786275 -95.88134

    -710.5022 -95.88134 38799.57

    X is calculated below using Excel function MMULT

    Ha 0 N

    So that X = Va = 0 N

    Ma 0 Nmm

    Notes Build C matrix Build L matrix

    Inverse C matrix Multiply inverse C matrix by L matrix

    block out matrix size (9x9), block out 3 cells vertically,

    =minvers(C matrix) in top left corner =mmult in top cell

    select the range containing 'C' select the ranges containing 'Cinv' & 'L'

    press cntl+shift+enter press cntrl+shift+enter

    CHH HA CHV VA CHM MA LFH

    CVH HA CVV VA CVM MA LFV

    CMH HA CMV VA CMM MA LFM

    HA

    0 m=

    VA 0 m=

    A 0 deg=

    SUBJECT:A400M Fixed Leading Edge

    AAR Snowplough Bracket Author :

    T ArdenDate :

    June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Load 3 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    84/106

    6.3.6-29

    Calculation of HB, VB and MB from equilibrium equations:

    It follows that

    HB = 0 N

    VB = 1 N

    MB = 0 Nmm

    HA = -0.01 N HB = 0.01 N

    VA = 0.31 N VB = 0.55 N

    MA = 0.33 Nmm MB = -0.30 Nmm

    HB HA=

    VB W VA=

    MB VA L3 HA L1 L2 W L3 a MA=

    Fx HA HB 0

    Fy VA VB W 0

    MB MB VA L3 HA L1 L2 W L3 a MA 0

    SUBJECT:A400M Fixed Leading Edge

    AAR Snowplough Bracket Author :

    T ArdenDate :

    June 09

    Page

    InbdDC

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Load 3 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    85/106

    6.3.6-30

    Internal Moment

    P = 0.9 N

    L1 = 64.8 mm L2 = 64.8 mm

    Mint = HA*L1+MA = -0.6 Nmm Mint = HB*L2+MB= 0.6 Nmm

    MC = -0.6 Nmm MD = 0.6 Nmm

    BM Under Vertical Load

    0.9

    103.74 58.96

    -0.01 -0.62 0.65 0.01

    0.31 0.55

    162.7

    Check

    BM at Load position MP = 31.8 Nmm 31.8 Nmm

    SUBJECT:A400M Fixed Leading Edge

    AAR Snowplough Bracket Author :T Arden

    Date :June 09

    Page

    C D

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Load 3 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    86/106

    6.3.6-31

    Portal Frame Analysis

    Ref Roarks 6th Ed Table 4

    Vertical Load Ref Roarks 6th Ed Table 4 Case 5a

    Geometry parameters Ref pages 6.3.6-2 & -3

    L1 = 64.80 mm Ref. p. 6.3.2-3 I1 = 14.7 mm^4 Ref. p. 6.3.2-5

    L2 = 64.80 mm Ref. p. 6.3.2-3 I2 = 14.7 mm^4 Ref. p. 6.3.2-5

    L3 = 162.7 mm Ref. p. 3.3-1 I3 = 1739.0 mm^4 Ref. p. 6.3.2-5

    E1 = 69000 MPa Ref. p. 4.7-1

    E2 = 69000 MPa Ref. p. 4.7-2

    E3 = 72000 MPa Ref. p. 4.8-1

    LoadingWx = -14.98 N ref page 6.3.6-12

    x Bolt 1 Bolt 2 Bolt 3 Bolt 4

    Initial Initial Bolt Pitch X

    Posn Posn mm mm

    25.16 45 1 0 19.84

    25.16 45 2 42 61.84

    25.16 45 3 83.9 103.74

    25.16 45 4 125.9 145.74

    Distance from edge to load a = 145.74 mm

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :T Arden

    Date :June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Load 4 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    87/106

    6.3.6-32

    Roark 6th Table 4 Cases 5a & 5f

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :T Arden

    Date :June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Load 4 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    88/106

    6.3.6-33

    Constants

    These constants are used in the formulas to calculate the reaction moment, horizontal

    and vertical end reactions, horizontal and vertical deflections and angular rotation at A:

    CHH 0.184 mm/N

    CVH 0.344 mm/N

    CHV

    0.344 mm/N

    CMH 0.004 /N

    CHM 0.004 /N

    CVV 1.703 mm/N

    CMV 0.011 /N

    CVM 0.011 /N

    CMM 0.000129 /Nmm

    Loading Terms

    LFH -0.53 mm

    LFV -2.6 mm

    LFM -0.02

    CHH

    L13

    3 E1 I1

    L13

    L1 L2 3

    3 E2 I2

    L12

    L3

    E3 I3=

    CVH

    L2 L3

    2 E2 I22 L1 L2

    L1 L32

    2 E3 I3=

    CHV

    CVH

    =

    CMH

    L12

    2 E1 I1

    L2

    2 E2 I22 L1 L2

    L1 L3

    E3 I3=

    CHM CMH=

    CVV

    L2 L32

    E2 I2

    L33

    3 E3 I3=

    CMVL2 L3E2 I2

    L32

    2 E3 I3=

    CVM CM=

    CMML1

    E1 I1

    L2

    E2 I2

    L3

    E3 I3=

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :T Arden

    Date :June 09

    Page

    LFH W

    L2

    2 E2 I2 2 L1

    L2

    L3 a

    L1

    2 E3 I3 L3 a

    2

    =

    LFV W CVV a CVMa

    3

    6 E3 I3

    =

    LFM WL2

    E2 I2L3 a

    1

    2 E3 I3L3 a

    2

    =

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Load 4 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    89/106

    6.3.6-34

    Boundary Conditions

    Horizontal deflection

    Vertical deflection

    Angular rotation

    Because the above equal zero, the following three equations are solved simultaneously

    Chh Chv Chm 0.184 0.344 0.004

    C = Cvh Cvv Cvm = 0.344 1.703 0.011

    Cmh Cmv Cmm 0.004 0.011 0.000129

    Ha

    X = Va

    Ma

    LFhx -0.53

    L = LFvx = -2.6

    LFmx -0.02

    Now calculate the solution as: X = Cinv*L

    where Cinv is the inverse of matrix C, calculated below using Excel function MINVERSE

    21.71051 0 -710.5022

    Cinv = 0 1.1786275 -95.88134

    -710.5022 -95.88134 38799.57

    X is calculated below using Excel function MMULT

    Ha 0 N

    So that X = Va = -2 N

    Ma -3 Nmm

    Notes Build C matrix Build L matrix

    Inverse C matrix Multiply inverse C matrix by L matrix

    block out matrix size (9x9), block out 3 cells vertically,

    =minvers(C matrix) in top left corner =mmult in top cell

    select the range containing 'C' select the ranges containing 'Cinv' & 'L'

    press cntl+shift+enter press cntrl+shift+enter

    CHH HA CHV VA CHM MA LFH

    CVH HA CVV VA CVM MA LFV

    CMH HA CMV VA CMM MA LFM

    HA 0 m=

    VA 0 m=

    A 0 deg=

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :T Arden

    Date :June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Load 4 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    90/106

    6.3.6-35

    Calculation of HB, VB and MB from equilibrium equations:

    It follows that

    HB = 0 N

    VB = -13 N

    MB = 2 Nmm

    HA = 0.10 N HB = -0.10 N

    VA = -1.56 N VB = -13.42 N

    MA = -2.53 Nmm MB = 1.92 Nmm

    HB H=

    VB W VA=

    MB VA L3 HA L1 L2 W L3 a MA=

    Fx HA HB 0

    Fy VA VB W 0

    MB MB VA L3 HA L1 L2 W L3 a MA 0

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket Author :

    T ArdenDate :

    June 09

    Page

    InbdD

    C

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Load 4 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    91/106

    6.3.6-36

    Internal Moment

    P = -15.0 N

    L1 = 64.8 mm L2 = 64.8 mm

    Mint = HA*L1+MA = 4.1 Nmm Mint = HB*L2+MB= -4.8 Nmm

    MC = 4.1 Nmm MD = -4.8 Nmm

    BM Under Vertical Load

    -15.0

    145.74 16.96

    0.10 4.14 -4.75 -0.10

    -1.56 -13.42

    162.7

    Check

    BM at Load position MP = -222.9 Nmm -222.9 Nmm

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :T Arden

    Date :June 09

    Page

    C D

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Load 4 Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    92/106

    6.3.6-37

    Portal Frame Analysis

    Ref Roarks 6th Ed Table 4

    Vertical Load Ref Roarks 6th Ed Table 4 Case 5a

    Geometry parameters Ref pages 6.3.6-2 & -3

    L1 = 64.80 mm Ref. p. 6.3.2-3 I1 = 14.7 mm^4 Ref. p. 6.3.2-5

    L2 = 64.80 mm Ref. p. 6.3.2-3 I2 = 14.7 mm^4 Ref. p. 6.3.2-5

    L3 = 162.7 mm Ref. p. 3.3-1 I3 = 1742.5 mm^4 Ref. p. 6.3.2-5

    E1 = 72000 MPa Ref. p. 4.7-1

    E2 = 72000 MPa Ref. p. 4.7-2E3 = 72000 MPa Ref. p. 4.8-1

    Loading Applied Aero Loading:-

    Reference:- File:-

    Pressure for all 176 cases-new case files-LE Fix for Sonaca.xls

    From Report:-

    M57RP0404691_v2 Target Wingbox & FLE Air Pressures.doc

    For point 661, the nearest location to the centre of the access panel 4 held by the snowplough,

    for case CMR#27500F-TLL2-L, the Largest Pressure value from either Left or Right Hand Wing

    Max Pressure = 89196 Pa

    Max Pressure = 0.089 MPa

    Total load on Snowplough side = 438.22 N Ref AAR_Pod_Snowplough_Calcs_v5.xmcd

    Frame width = 162.7 mm

    Running Load, wa = 2.69 N/mm

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :T Arden

    Date :June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Distr Load Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    93/106

    6.3.6-38

    Applied load in Portal Frame plane

    a =

    Pz'

    Distr a

    Distr Load

    Resolving Load into Protal frame plane

    Running Load, wa = 2.69 N/mm

    Resolved Running Load, wa = 2.69 N/mm = wa/cos a

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :T Arden

    Date :June 09

    Page

    A & B

    C & D

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Distr Load Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    94/106

    6.3.6-39

    Roark 6th Table 4 Cases 5a & 5f

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket Author :

    T ArdenDate :

    June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Distr Load Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    95/106

    6.3.6-40

    Constants

    These constants are used in the formulas to calculate the reaction moment, horizontal

    and vertical end reactions, horizontal and vertical deflections and angular rotation at A:

    CHH 0.177 mm/N

    CVH 0.330 mm/N

    CHV

    0.330 mm/N

    CMH 0.004 /N

    CHM 0.004 /N

    CVV 1.632 mm/N

    CMV 0.010 /N

    CVM 0.010 /N

    CMM 0.000124 /Nmm

    Loading Terms Note Wa = Wb, then Wa-Wb = 0

    LFH 71.71 mm

    LFV 357.0 mm^2

    LFM 2.20 mm

    CHH

    L13

    3 E1 I1

    L13

    L1 L2 3

    3 E2 I2

    L12

    L3

    E3 I3=

    CVH

    L2 L3

    2 E2 I22 L1 L2

    L1 L32

    2 E3 I3=

    CHV

    CVH

    =

    CMH

    L12

    2 E1 I1

    L2

    2 E2 I22 L1 L2

    L1 L3

    E3 I3=

    CHM CMH=

    CVV

    L2 L32

    E2 I2

    L33

    3 E3 I3=

    CMVL2 L3E2 I2

    L32

    2 E3 I3=

    CVM CM=

    CMML1

    E1 I1

    L2

    E2 I2

    L3

    E3 I3=

    SUBJECT:A400M Fixed Leading EdgeAAR Snowplough Bracket

    Author :T Arden

    Date :June 09

    Page

    File No - A400M/TWEOM1E3/D/57-45-046

    160429985.xls.ms_office 6.3.6 Frame Vert Distr Load Printed 7/27/2013

  • 7/27/2019 6.3 Snowplough

    96/106

    6.3.6-41

    Boundary Conditions

    Horizontal deflection

    Vertical deflection

    Angular rotation

    Because the above equal zero, the following three equations are solved simultaneously

    Chh Chv Chm 0.177 0.330 0.004

    C = Cvh Cvv Cvm = 0.330 1.632 0.010

    Cmh Cmv Cmm 0.004 0.010 0.000124

    Ha

    X = Va

    Ma

    LFhx 71.71

    L = LFvx = 357.0

    LFmx 2.20

    Now calculate the solution as: X = Cinv*L

    where Cinv is the inverse of matrix C, calculated below using Excel function MINVERSE

    22.627273 -6.74E-16 -740.8067

    Cinv = -2.03E-15 1.2297002 -100.0361

    -740.8067 -100.0361 40472.7

    X is calculated below using Excel function MMULT

    Ha -6 N

    So that X = Va = 219 N

    Ma 121 Nmm

    Notes Build C matrix Build L matrix

    Inverse C matrix Multiply inverse C matrix by L matrix

    block out matrix size (9x9), block out 3 cells vertically,

    =minvers(C matrix) in top left corner =mmult in top cell

    select the range containing 'C' select the ranges containing 'Cinv' & 'L'

    pre