17
1 Instituto de Ciência e Tecnologia de Sorocaba Materiais e Reciclagem 7 – Ensaios de Materiais Professor Sandro Donnini Mancini Sorocaba, Abril de 2020. Ensaios – “exames de diagnóstico” O que se ensaia – peças (para controle de qualidade) protótipo (para ajustes) corpos de prova (para pesquisas) Amostras feitos especialmente para ensaios outros Geralmente seguem regras para sua realizar (acondicionamento e número de amostras, procedimentos específicos do ensaio, dimensões dos corpos de prova normas: internas, nacionais (ABNT) e internacionais (ISO, DIN, APHA, ASTM) testes

7 - Ensaios de Materiais [Modo de Compatibilidade] · 2020. 4. 12. · (vshfwurvfrsld qd 5hjlmr gr ,qiudyhuphokr 6kdfnhoirug - ) ,qwurgxfwlrq wr 0dwhuldov 6flhqfh iru (qjlqhhuv±

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • 1

    Instituto de Ciência e Tecnologia de Sorocaba

    Materiais e Reciclagem

    7 – Ensaios de Materiais

    Professor Sandro Donnini Mancini

    Sorocaba, Abril de 2020.

    Ensaios – “exames de diagnóstico”

    O que se ensaia – peças (para controle de qualidade)protótipo (para ajustes)corpos de prova (para pesquisas)

    Amostras

    feitos especialmente para ensaios

    outros

    Geralmente seguem regras para sua realizar (acondicionamento e número de amostras, procedimentos específicos do ensaio, dimensões dos corpos de prova → normas: internas, nacionais (ABNT) e internacionais (ISO, DIN, APHA, ASTM)

    testes

  • 2

    Ensaios – destrutivos (deixam marcas ou inutilizam as amostras)

    Exemplos:Mecânicos (tração, flexão, impacto, dureza, compressão, fluência, fadiga..)Térmicos (DSC, TGA, DMTA, Dilatometria)Espectrometria de Absorção AtômicaCromatografia Gasosa Acoplada à Espectrometria de MassasÍndice de FluidezComposição Gravimétrica e Volumétrica de ResíduosCaracterização GranulométricaTeor de UmidadeTeor de CinzasAnálise ElementarDifração de Raios-XEspectroscopia na Região do InfravermelhoUltrassomMicroscopia (eletrônica, ótica, força atômica)Densidade

    não destrutivos (não deixam nem marcas)

    Exemplos:Mecânicos (tração)Térmicos (TGA)

    Difração de Raios-XEspectroscopia na Região do Infravermelho

    Ensaios abordados nesta aula

    Microscopia Eletrônica de Varredura (com Espectroscopia de Energia Dispersiva acoplada)

  • 3

    Espectroscopia na Região do Infravermelho

    Shackelford, J.F. Introduction to Materials Science for Engineers –3aEd. McMillan Publishing Company. Nova Iorque, 1992. 793p.

    Consiste em passar uma amostra por um feixe de luz de determinada intensidade e com comprimentos de onda de 0,78m a 1.000m.

    Considerada a “impressão digital” de compostos, em especial orgânicos. É poderosa ferramenta utilizada em identificação. Pode ser utilizada também para análises quantitativas.

    A região mais comum é a que vai de 2,5.10-4cm a 15.10-4cm ou de número de onda (1/) de 4.000cm-1 a 670cm-1.

    Radiação pode atravessar a amostra – Transmissãorefletir na amostra - Reflexão

    Se uma molécula receber uma energia que aumente a vibração

    de determinadas ligações e desde que o momento dipolar da

    molécula seja alterado durante a vibração, a radiação deixa a

    amostra com uma intensidade menor que a inicial (pois parte foi

    absorvida) e esta diferença é associada ao comprimento de

    onda que gerou a vibração num gráfico (espectro).

  • 4

    Cada ligação presente em cada molécula pode vibrar num determinado número de onda de determinada forma e essa particularidade associada à varredura de todo o espectro da radiação permite a identificação precisa de um composto orgânico.

    Formas de vibração

    Disponível em www.geocities.com/Vienna/Choir/9201/espectrometria2.htm??20055.Acesso em 15 fev. 2009.

    Essas vibrações se dão pela absorção de radiação podem resultar na liberação de calor.

    Como a Terra emite radiações infravermelhas e existem compostos na atmosfera que absorvem infravermelho (como o CO2, por exemplo), há a liberação de calor (efeito estufa e aquecimento global).

  • 5

    Picos: posição bem definidas.Bandas: regiões mais largas (“somatório de picos”).

    Disponível em www.geocities.com/Vienna/Choir/9201/espectrometria2.htm??20055.Acesso em 15 fev. 2009.

    kcm 12,4)( 1

    21

    2.1

    MM

    MMonde

    Estimativa da Posição:

    K=constante que vale 5, 10 e 15.105 dinas/cm paraligações simples, duplas e triplas.M1 e M2 são as massas molares

    Geralmente em picos e/ou bandas ocorrem vibrações que são características de um grupo químico, de uma ligação, de uma molécula etc.

    Espectros de FTIR - Infravermelho com Transformadas de Fourier

    4000 3000 2000 100050

    60

    70

    80

    90

    100

    T r a

    s m i t â

    n c

    i a

    ( %

    )

    N ú m e r o d e O n d a ( c m -1 )

    PET

    DEHTPC=O

    C=O Anel

    Anel

    C-H

    C-H O-H

    C-O

    C-O

    Anel

    Anel

  • 6

    Parte da energia solar que chega (na faixa do ultra-violeta,visível e infra-vermelho) é transformada, inclusive emalimentos por meio da fotossíntese.

    Outra parte é devolvida como uma radiação de comprimento de onde de 4-100 m, ou seja, uma fração da região do infravermelho (780nm a 400 m).

    INFRAVERMELHO NO DIA-A-DIA

    Espectro de Emissão da Terra

    Disponível em http://dti.stsci.edu/dti_archives/streaming_archive/conferences_archive/May_symposium_2002/ppt/wes_traub_stsci020511.ppt. Acesso em 23 jan. 2004.

  • 7

    Há alguns gases que absorvem parte da radiação infravermelha emitida pela Terra. Essa absorção resulta em vários tipos de vibrações moleculares e essas vibrações causam liberação de energia, ou seja, de calor para o ambiente. Se não houvesse essa absorção, calcula-se que temperatura média na Terra seria de -18oC*.

    Esses cálculos podem ser vistos em: Xavier, M.E.R. e Kerr, A.S. A Análise do Efeito Estufa em Textos Para-didáticos e Periódicos Jornalísticos. Caderno Brasileiro de Ensino de Física, v. v.21, n.3, p,325-349. Disponível em http://www.fsc.ufsc.br/cbef/port/21-3/artpdf/a4.pdf

    Esse fenômeno é o “Efeito Estufa”, causado principalmente por H2O (aproximadamente 60% do total) e pelo CO2 (~20%), mas também por ozônio (~5%), metano (~5%), óxido nitroso, hidrofluorcarbonos, perfluorcarbonos e SF6.

    Se a concentração dos gases de efeito estufa aumentar demais aumentar demais, a absorção também pode aumentar e com ela a temperatura média do planeta. Esse fenômeno é o “Aquecimento Global”.

    Espectros de FTIR da água e do CO2 – efeito estufa

  • 8

    Para o cálculo do quão prejudicial um gás é em termos de aquecimento global (ou o Potencial de Aquecimento Global-PAG ou GWP em inglês), não só a quantidade emitida e a faixa de absorção são levadas em conta. O PAG é

    definido como a razão da integral em relação ao tempo da radiação absorvida após a liberação de 1 kg de um gás traço em relação a mesma

    integral só que do gás de referência (dióxido de carbono).

    Remedio, M.V.P. Avaliação do Ciclo de Vida de Garrafas de PET: Materiais, Energia e Emissões. São Carlos, UFSCar, 2004.

    Onde:T = é o horizonte de tempo no qual os cálculos são considerados (100 anos,

    para efeitos do Protocolo de Kyoto)ai , aCO2 = aumento na absorção devido ao aumento na abundância do gás na

    atmosfera (Wm-2 kg-1 ppb-1);[ci(t)], [cCO2 (t)] é o decaimento em função do tempo na abundância de um

    gás traço

    Gás Fórmula PAG ou GWPMetano CH4 21

    Óxido Nitroso N2O 310HFC-23 CHF3 11700HFC-32 CH2F2 650HFC-125 CF3CHF2 2800

    Hexafluoreto de Enxofre SF6 23900Tetrafluoreto de Carbono CF4 6500

    Perfluoretano C2F6 9200Perfluoropropano C3F8 7000Perfluorobutano C4F10 7000

    Perfluoro-cyclobutane c-C4F8 8700

    www.eia.doe.gov/oiaf/1605/gwp.html

  • 9

    DIFRAÇÃO DE RAIOS X

    O comprimento de onda () do raio-x é semelhante à “d” (distância interplanar, entre planos de átomos). Como esse “d” é característico de cada arranjo cristalino e cada material, a incidência de raios-x em um cristal causam uma interferência característica (difração).

    Os raios-x são ondas eletromagnéticas com grande aplicação na medicina, odontologia e em materiais. Graças ao comprimento de onda, cerca de 0,0000000001m, atravessa tecidos moles (músculos, órgãos) e é refletido por tecidos mais duros (ossos, dentes).

    Assim, de forma semelhante, uma importante aplicação do Raio-X na área de materiais é verificar a presença de trincas e vazios em peças, bem como falhas de solda, por exemplo.

    Logo, a difração de o raios-x é uma poderosa ferramenta de identificação de materiais e, mais intimamente, de fases cristalinas.

  • 10

    Planos CristalinosShackelford, J.F. Introduction to Materials Science for Engineers – 3aEd. McMillan Publishing Company. Nova Iorque, 1992. 793p.

    Distâncias interplanares –distância (d) a partir daqual um plano pode serrepetido na estrutura.

    d a

    h k lhkl

    2 2 2

    Um cristal contém planos de átomos, designados por índices de Miller (hkl). Tais índices são dados pelo inverso das distâncias das intersecções com os eixos xyz, respectivamente.

    Para redes cúbicas:

    h = 1 = 0; k= 1 = 1; l = 1 = 0 Plano (010) ∞ 1 ∞

    (hkl): h = 1 ; k= 1; l = 1x y z

    h = 1 = 1; k= 1 = 1; l = 1 = 0 Plano (110) 1 1 ∞

    d a

    h k lhkl

    2 2 2

    Para redes cúbicas:a

    Cúbica Simples

    Ou seja: “d” se relaciona com “a”“a” se relaciona com “r”r = raio atômico

    A difração de raios X é uma poderosa ferramenta de identificação de materiais cristalinos e fases cristalográficas.

    CFCa = 2 r √2

  • 11

    Esquema simplificado da difração de raios-X - um filamento (p.ex. de W), é aquecido e emite elétrons, como numa lâmpada. Esses elétrons são acelerados e focalizados indo de encontra a um alvo (de Mo, Cu, Fe, Co e Cr, p.ex.). Após a colisão, são produzidas radiações de comprimentos de onda , típicos de raios-x. Esses raios escapam por uma janela e atingem uma amostra e seu plano de átomos. A cada choque com um átomo o raio é refletido num ângulo num anteparo (um negativo de filme fotográfico, p.ex.).

    Através da Lei de Bragg, pode-se determinar a distância entre os planos de átomos "d".

    n = 2 . d . sen

    http://www.seara.ufc.br/especiais/fisica/raiosx/raiosx-6.htm

    d a

    h k lhkl

    2 2 2

    Para redes cúbicas:

    CFCAlumínio

  • 12

    níveis apreciáveis de ruído → provável presença de fases amorfas (vítreas);Identificadas as fases de quartzo (SiO2 – hexagonal), sillimanita(Al2SiO5/Al2O3.SiO2 – ortorrômbica) e mulita (ortorrômbica);Curvas são semelhantes: não houve alterações com o uso;Sem diferenças coloração marrom e cinza: separação não é necessária.

    Difração de Raios-X - Isoladores de Porcelana Novos e Usados

    TERMOGRAVIMETRIA

    Verifica o comportamento de uma amostra mediante aquecimento e/ou resfriamento em taxas controladas. Útil para o estudo de degradação de materiais, uma vez que pode-se variar a atmosfera onde o aquecimento é realizado (N2, O2). O sistema de aquecimento determina o comportamento térmico em faixas amplas de temperatura (Tamb até acima da fusão) mediante determinação da variação de peso.

  • 13

    ANÁLISE TERMOGRAVIMÉTRICA (TGA) Verifica a estabilidade térmica de materiais por eventual perda de peso conforme se dá o aquecimento controlado.

    Freitas, J.C.C. Técnicas de Análises Térm

    icas: Princípios e A

    plicações. Departam

    ento de Física, UFES

    .

    CaC2O4.H2O - Oxalato de cálcio monohidratado é usado para padronizar equipamentos de TGA É o componente principal das pedras nos rins

    CaCO3

    0 100 200 300 400 500 600 700 80040

    50

    60

    70

    80

    90

    100

    Temperatura (oC)

    Composto de Resíduos de Jardim (Flextronics) Composto de Resíduos de Jardim (Aterro de Indaiatuba)

    Composto de Restos de Comida (Flextronics) Composto de Restos de Comida (Aterro de Indaiatuba)

  • 14

    MICROSCOPIA ELETRÔNICA DE VARREDURA

    Diferença de potencial (500 – 30.000V) gera feixe de elétrons emitido do filamento e são direcionados à amostra. Este feixe (elétrons primários) irá interagir com os elétrons da superfície do material estudado, e o resultado essa interação resultará na “relfexão” de elétrons (agora chamados secundários, pois as colisões com os da amostra diminuíram sua energia) e estes serão captados pelo detetor e transcodificados na forma de imagem, com ampliações que podem chegar a 300.000 vezes.

    MICROSCOPIA ELETRÔNICA DE VARREDURA Quando um feixe de elétrons incide sobre um material, os elétrons mais externos dos átomos e os íons constituintes são excitados, mudando de níveis energéticos. Ao retornarem para sua posição inicial, liberam a energia adquirida a qual é emitida em comprimento de onda semelhante aos de raios-x, devidamente detectado e transformado em espectro. Isso torna possível, no ponto de incidência do feixe, identificar que elemento(s) está(ão) sendo observado.

  • 15

    PETÓLEO Após Lavagem só com Água

    PETÓLEO Após Lavagem com Água e Hidróxido de Sódio

    Abraçadeira de Aço Galvanizado Usada – ponto B

    Abraçadeira de Aço Galvanizado Usada– ponto A

    Abraçadeira de Aço Galvanizado Usada – ponto C

  • 16

    ENSAIO MECÂNICO DE TRAÇÃO

    Curva geral da resposta mecânica (deslocamento) de um material sofrendo um esforço.

    força

    deslocamento

    Formato típico de corpo de prova de tração para polímeros.

    Tensão de tração (σ) = Força / Área inicialDeformação (ε )= ΔL / Lo

    deformação

    21

    ) θ

    Lo Lf

    ΔL

    Puxando (tracionando) um corpo de prova

    Área inicial = Largura x espessura medida antes do ensaio

    tensão

    1 = limite de elasticidade2 = ponto de tensão e deformação máximos

    nesse caso: ruptura

    tg θ = Módulo de Elasticidade = E

    Na região elástica (reta) →σ = E.ε

    N

  • 17

    Amostra rup (MPa) rup (%) E (MPa)

    VirgemMédia 46,9 36,0 1321

    D.P. 2,5 30,4 98

    RecicladoMédia 43,4 29,6 1340

    D.P. 4,2 15,0 16

    PVC – VIRGEM E RECICLADO DE TUBOS

    Valor p 0,0551 0,7833 0,5593

    Considerando 95% de intervalo de confiança: se p > 0,05, não há diferenças estatísticas significativas entre os resultados.

    Ou seja, a reciclagem não alterou os materiais em relação aos parâmetros analisados.