43
A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指指指指 : 指指指 指指 指指 : 指指Berny, A.D.; Niknejad, A.M.; Meyer, R. G.; Solid-State Circuits, IEEE Journal of Volume 40, Issue 4, April 2005 Page (s):909 - 917 Digital Object Identifier 10.1109/JSSC. 2004.842851

A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

Embed Size (px)

Citation preview

Page 1: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

A 1.8-GHz LC VCO With 1.3-GHz Tuning Range

and Digital Amplitude Calibration

指導教授 : 林志明 教授學生 : 黃世一

Berny, A.D.; Niknejad, A.M.; Meyer, R.G.;Solid-State Circuits, IEEE Journal of

Volume 40, Issue 4, April 2005 Page(s):909 - 917 Digital Object Identifier 10.1109/JSSC.2004.84285

1

Page 2: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

Outline Abstract Introduction Design Considerations for Wideband LC

VCOS Tuning Range: Analysis and Considerations Circuit Design Experimental Results Conclusion References

Page 3: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

Abstract

A 1.8-GHz LC VCO designed in a 0.18- μm CMOS process

tuning range : 73% phase noise :-123.5 dBc/Hz at a 600-kHz offset

from a 1.8-GHz carrier while drawing 3.2 mA from a 1.5-V supply.

Page 4: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

Abstract (con.)

Discussed : wideband operation on start-up constraints and phase noise

An amplitude calibration technique is used to stabilize performance for wide band of operation

Page 5: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

Abstract (con.) This amplitude control scheme :

1.consumes negligible power 2.area without degrading the phase noise 3.proves the VCO performance in the upper end of the frequency range

Page 6: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

Introduction Voltage-Controlled oscillators (VCOs) are essential for

modern communication systems.

The VCO performance : phase noise and tuning range

LC VCOs have been successfully used in narrowband wireless transceivers

Recently, several wideband CMOS LC VCOs have been demonstrated using a variety of techniques [1]–[4]

Page 7: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

Introduction (con.)

Overall phase noise performance is highly dependent on the tuning sensitivity of the VCO

VCO : high tuning range, practical wideband VCO solutions must also control the tuning sensitivity

Conventional amplitude control schemes use continuous feedback methods and have been successfully demonstrated [9]–[11].

Page 8: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

Introduction (con.)

Discusses : wideband LC VCO design, the frequency dependence of well-known parameters.

Yielding equations that quantify design tradeoffs between tuning range and the overall tank quality factor.

Circuit design details of the VCO core Experimental results

Page 9: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

Design Considerations for Wideband LC VCOS

A. Fundamental Start-Up Constraint

Page 10: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

B. Impact of Oscillation Amplitude Variations

The steady-state oscillation amplitude is an important design characteristic of oscillators, and can also have a significant impact on neighboring system blocks.

The amplitude of any oscillator is determined by some nonlinear limiting mechanism forcing the steady-state loop gain to unity

Page 11: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

The widely used differential cross-coupled LC oscillator shown in Fig. 2

In the current-limited regime, the current from the tail current source is periodically commutated between the left and right sides of the tank .

Page 12: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

(a) Steady-state oscillator amplitude versus IB trend

Fig. 2. Differential cross-coupled LC oscillator.

Page 13: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

To gain insight into the impact of oscillation amplitude variations on phase noise

V o : the tank amplitude △ ω : frequency offset η: excess noise factor (2/3 for long-channel devices).

Page 14: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

In the current limited regime

For narrowband designs

: start-up safety margin

Page 15: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

In the voltage-limited regime

(b) Phase noise versus IB trend, indicating current- and voltage-limited regimes

Page 16: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

For wideband VCOs. We restrict the analysis to the current-limited regime since it is the preferred region of operation

From (3)

Page 17: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

Periodic-steady state simulation of varactor capacitance versus Vtune for two different tank amplitudes.

Page 18: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

C. Amplitude Control Scheme A conventional method of controlling the amplitude of a VCO is

by means of an automatic amplitude control (AAC) loop [10], [11] : 1. Continuous-time feedback loop provides very accurate

control of the oscillation amplitude

2. At the same time ensures startup condition

3. Additional noise generators in the loop can

degrade the phase noise performance.

Page 19: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

Proposed calibration-based amplitude control scheme

Page 20: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

The VCO amplitude is first peak detected and compared to a programmable reference voltage setting the desired amplitude

The output of the comparator is analyzed by a simple digital state machine that decides whether to update the programmable bias current of the VCO or to end calibration.

This method has the advantage of being active only during calibration.

Page 21: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

The steady-state phase noise performance of the VCO is not affected

the power consumed by calibration circuits is negligible

Page 22: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

Tuning Range: Analysis and Considerations

Main challenges of wideband low-phase-noise LC VCO design consists of expanding an intrinsically narrow tuning range without significantly degrading noise performance or incurring excessive tuning sensitivity.

Band-switching techniques Increase tuning range and/or decrease tuning sensitivit

y [3], [5], [18].

Page 23: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

Generic binary-weighted band-switching LC tank configuration.

CV,min :is the minimum varactor capacitance for the available tuning voltage rangeCa,off : effective capacitance of a unit branch of the array in the off state.Cd : drain-to-bulk junction and drain-to-gate overlap capacitorsCp : the total lumped parasitic capacitanceCtotal : equals the total tank capacitance

Page 24: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

The tuning range extremities are defined as follows:

To guarantee that any two adjacent sub-bands overlap, the following condition must be satisfied:

Page 25: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

Using (8a) and (8b), (10) can be rewritten as

k is a chosen overlap safety margin factor and is greater than unity

Page 26: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

quality factor of the capacitor array is well approximated as

Page 27: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

a(a) Tuning range and capacitor array quality factor versus .(b) Tuning range versus Qa .

Page 28: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

(a) Tuning range versus βa for different number of bits in the capacitor array. (b) Tuning range versus βp.

Page 29: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

Circuit Design

The VCO core : standard LC-tuned cross-coupled NMOS topology The LC tank consists :

1.a single integrated differential spiral inductor

2.accumulation-mode MOS varactors allowing continuous frequency

tuning

3.a switched capacitor array providing coarse tuning steps. 0.18- μm bulk CMOS technology

Page 30: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

Simplified VCO core schematic

Page 31: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

The W/L of the cross-coupled NMOS devices : width = 32μ m length = 0.3μ m.

large frequency range, low tuning sensitivity the LC tank combines a switched capacitor array with a small v

aractor. The targeted frequency range is split into 16 sub-bands by mea

ns of a 4-bit binary-weighted array of switched MIM capacitors.

Page 32: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

accumulation-mode NMOS varactor is sufficient to cover each frequency sub-band.

Each varactor is 115 μm wide with a gate length of 0.92μ m and has a maximum capacitance of 0.87 pF

Cv / Cv,min ratio of about 3.2

Page 33: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

Experimental Results

The tank inductor : a 5.6-nH differential spiral on a 2- μm-thick top metal layer achieving a measured (single-ended) Q ranging from about 7.5 to 9 over the VCO frequency range.

The VCO was measured on a test board built on standard FR4 material.

HP8563E spectrum analyzer

Page 34: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

Phase noise at 1.2, 1.8, and 2.4 GHz for a core power consumption of10, 4.8, and 2.6 mW, respectively.

Page 35: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

Measured frequency tuning range.

1.14–2.46GHz

Page 36: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

shows the measured buffer output voltage waveform during amplitude calibration runs at 1.4, 1.8, and 2.2 GHz for a VCO differential tank amplitude programmed to 1.1 V.

Page 37: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

Measured phase noise at 100-kHz offset and core power consumptionversus frequency for calibrated and uncalibrated cases.

Page 38: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State
Page 39: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State
Page 40: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

Conclusion

Page 41: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

References [1] J.Kucera, “Wideband BiCMOSVCOfor GSM/UMTS direct conversion receivers,” in IEEE ISSCC Dig. Tech. Papers, 2001, pp. 374–375. [2] D. Ham and A. Hajimiri, “Concepts and methods of optimization of integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 896–909, Jun. 2001. [3] N. H. W. Fong, J.-O. Plouchart, N. Zamdmer, D. Liu, L. Wagner, C. Plett, and N. G. Tarr, “Design of wide-band CMOS VCO for multiband wireless LAN applications,” IEEE J. Solid-State Circuits, vol. 38, no. 8, pp. 1333–1342, Aug. 2003. [4] B. De Muer, N. Itoh, M. Borremans, and M. Steyaert, “A 1.8 GHz highly-tunable low-phase-noise CMOS VCO,” in Proc. IEEE Custom Integrated Circuits Conf., 2000, pp. 585–588. [5] A. D. Berny, A. M. Niknejad, and R. G. Meyer, “A wideband low-phasenoise CMOS VCO,” in Proc. IEEE Custom Integrated Circuits Conf., 2003, pp. 555–558. [6] R. Aparicio and A. Hajimiri, “A noise-shifting differential colpitts VCO,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1728–1736, Dec. 2002. [7] F. Svelto and R. Castello, “A bond-wire inductor-MOS varactor VCO tunable from 1.8 to 2.4 GHz,” IEEE Trans. Microwave Theory Tech., vol. 50, no. 1, pp. 403–410, Jan. 2002. [8] J.-K. Cho, H.-I. Lee, K.-S. Nah, and B.-H. Park, “A 2-GHz wide band low phase noise voltage-controlled oscillator with on-chip LC tank,” in Proc. IEEE Custom Integrated Circuits Conf., 2003, pp. 559–562.

Page 42: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

[9] J.W. M. Rogers, D. Rahn, and C. Plett, “Astudy of digital and analog automatic- amplitude control circuitry for voltage-controlled oscillators,” IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 352–356, Feb. 2003. [10] M. A. Margarit, J. L. Tham, R. G. Meyer, and M. J. Deen, “A lownoise, low-power VCO with automatic amplitude control for wireless applications,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 761–771, Jun. 1999. [11] A. Zanchi, C. Samori, S. Levantino, and A. Lacaita, “A 2 V 2.5-GHz–104 dBc/Hz at 100 kHz fully-integrated VCO with wide-band low noise automatic amplitude control loop,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 611–619, Apr. 2001. [12] A. Hajimiri and T. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1999. [13] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998. [14] C. Samori, A. L. Lacaita, E. Villa, and E. Zappa, “Spectrum folding and phase noise in LC tuned oscillators,” IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process., vol. 45, no. 7, pp. 781–790, Jul. 1998. [15] J. Craninckx and M. Steyaert, “Low-noise voltage-controlled oscillators using enhanced LC-tanks,” IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process., vol. 42, no. 12, pp. 794–804, Dec. 1995. [16] J. Rael and A. Abidi, “Physical processes of phase noise in differential LC oscillators,” in Proc. IEEE Custom Integrated Circuits Conf., 2000, pp. 569–572.

Page 43: A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration 指導教授 : 林志明 教授 學生 : 黃世一 Berny, A.D.; Niknejad, A.M.; Meyer, R.G.; Solid-State

[17] K. Kouznetsov and R. Meyer, “Phase noise in LC oscillators,” IEEE J. Solid-State Circuits, vol. 35, no. 8, pp. 1244–1248, Aug. 2000. [18] A. Kral, F. Behbahani, and A. Abidi, “RF-CMOS oscillators with switched tuning,” in Proc. IEEE Custom Integrated Circuits Conf., 1998, pp. 555–558.