41
ADN: porteador de información genética Capítulo 12

ADN: porteador de información genética Capítulo 12

Embed Size (px)

Citation preview

Page 1: ADN: porteador de información genética Capítulo 12

ADN: porteador de información genética

Capítulo 12

Page 2: ADN: porteador de información genética Capítulo 12

Tópicos

• Estructura del ADN y como la misma fue revelada

• El mecanismo de replicación • La organización del cromosoma

Page 3: ADN: porteador de información genética Capítulo 12
Page 4: ADN: porteador de información genética Capítulo 12

• Experimentos para entender como se organizaban los genes en los cromosomas y como eran transmitidos de una generacion a otra

• No se supo de que estaban hechos los genes hasta la mitad del mismo siglo

• Los estudios de herencia de Mendel no describieron esto pero sirvieron de base para hacer predicciones acerca de la naturaleza molecular de los genes y como estos funcionan

1900’s

Page 5: ADN: porteador de información genética Capítulo 12

• ayudaron a correlacionar la las propiedades conocidas de los genes con lo que se sabía de las moléculas biológicas

Los avances en la bioquímica

Page 6: ADN: porteador de información genética Capítulo 12

• La molécula tendría que:

a. Almacenar información que pudiese ser leida por la célula

b. Ser estable pero tener capacidad para cambiar (mutaciones) bajo ciertas condiciones

Los científicos pensaron que ninguna molécula biológicaconocida era suficientemente compleja para llevar a cabo esa función

Muchos pensaron en las proteínas como primeros candidatos

Características que tendría que tener el material genético

Page 7: ADN: porteador de información genética Capítulo 12

• 1930 – 1940 = poca atención al ADN ya que se pensaba que eran las proteínas el material genético

Evidencia de que el ADN es el material genético

• Las proteínas están hechas de 20 amino ácidos = muchas posibles combinaciones = bueno para un código genético

• Se sabía que los genes controlaban la síntesis de proteínas por lo tanto se pensó que los genes también eran proteínas

Page 8: ADN: porteador de información genética Capítulo 12

• Los científicos establecieron que el ADN no podía ser el material genético ya que solamente estaba hecho de 4 diferentes nucleótidos

Page 9: ADN: porteador de información genética Capítulo 12

James D. Watson y Francis Crick

1953

Page 10: ADN: porteador de información genética Capítulo 12

• Propusieron el modelo de la molécula del ADN con una muy buena explicación

• Ya los científicos sabían bastante acerca de las propiedades físicas y químicas del ADN

• Integraron toda la información y propusieron el modelo para esta molécula

Page 11: ADN: porteador de información genética Capítulo 12

• El modelo de Watson y Crick demostraba que la molécula de ADN podía llevar información acerca de la síntesis de proteínas y a la vez podía servir como modelo para su propia replicación

Modelo de Watson y Crick

Page 12: ADN: porteador de información genética Capítulo 12

Deoxiribosa

Una de cuatrobases nitrogenadas 5’

Enlaces covalentes

Page 13: ADN: porteador de información genética Capítulo 12

• La mayor parte de las moléculas de ADN están compuestas de miles de pares de bases

• Las bases nitrogenadas presentes en el ADN son las siguientes:

Las purinas = Adenina (A) y Guanina (G)

Las pirimidinas = Timina (T) y Citosina (C)

Bases nitrogenadas

Page 14: ADN: porteador de información genética Capítulo 12

•El extremo 5’ tiene un carbono unido a un grupo fosfato mientras que el extremo 3’tiene un carbono unido a un grupo hidroxilo

Page 15: ADN: porteador de información genética Capítulo 12

Erwin Chargaff (1949)

• El y sus colegas determinaron la composición de las bases de la molécula de ADN de varios organismos

Determinaron que la razón de purinas y pirimidinas al igual que la razón de timinas a adenina

Las reglas de Chargaff:

A = T

G = C

Page 16: ADN: porteador de información genética Capítulo 12

Rosalind Franklin (1951-1953)

• Utilizo difracción por rayos X para dilucidar la estructura 3-D de las moléculas

• Esta técnica sirve para determinar la distancia entre los átomos de las moléculas de un cristal mediante un análisis matemático de la silueta creada en una película fotográfica

• Sus fotos mostraban que la molécula de ADN tenía una estructura en forma de hélice y tres patrones repetitivos

• Ella y su profesor pensaron que la molécula en cuestión estaba estructurada en forma de escalera

Page 17: ADN: porteador de información genética Capítulo 12

Utilizaron toda esa información para crear su modelo de la doble hélice

Page 18: ADN: porteador de información genética Capítulo 12

Incorporaron información acerca de la composición química con la data de difracción de rayos X

1953

Page 19: ADN: porteador de información genética Capítulo 12

La Double Hélice

• Hay 10 pares de bases en cada vuelta de la cadena

• Tiene un ancho constante y preciso

• Las secuencias de bases en una hilera de la cadena son complementarias

Si una cadena tiene la siguientesecuencia:

3’-AGCTAC-5’

Entonces la otra cadena tieneesta secuencia:

5’-TCGATG-3’

hidroxilofosfato

Page 20: ADN: porteador de información genética Capítulo 12

Estructura del ADN

Hydrogen bonds

Page 21: ADN: porteador de información genética Capítulo 12

1. Sugiere que la secuencia de bases en el ADN hace posible el almacenamiento de información genética y que esta secuencia se relaciona a las secuencias de amino ácidos en las proteinas

2. El número de combinaciones y posibles secuencias es ilimitado (millones de nucleotidos)= puede almacenar mucha información = muchos genes (¡¡ cientos !!)

El modelo de la doble hélice:

Page 22: ADN: porteador de información genética Capítulo 12

Replicación del ADN

El modelo de Watson y Crick sugiere:

1. La secuencia de bases puede llevar información genética

2. La secuencia de nucleótidos puede ser replicada precisamente mediante la Replicación del ADN

3. El modelo también sugería que debido a que los nucleótidos se aparean complementariamente cada cadena resultante (si las dos cadenas de la molécula se separaran) podría servir de molde para la formación de dos nuevas cadenas = Replicación semiconservativa

Page 23: ADN: porteador de información genética Capítulo 12

Fig. 11. 07abc

(a) Hypothesis 1: Semiconservative replication

Parental DNAFirst

generation Second generation

(b) Hypothesis 2: Conservative replication

Parental DNAFirst

generation Second generation

(c) Hypothesis 3: Dispersive replication

Parental DNAFirst

generation Second generation

Modelos de replicación y elmodelo de Messelsony Stahl

Page 24: ADN: porteador de información genética Capítulo 12

Matthew Meselson y Franklin Stahl (1958)

Page 25: ADN: porteador de información genética Capítulo 12

Las mutaciones son estabilizadas por replicación

semiconservativa• La estabilidad inherente y

reproducibilidad de los mecanismos semiconservativos estabiliza cualquier mutación que ocurra

• Cada cadena actua como un

molde para la otra de tal forma que una mutación se va a propagar en generaciones sucesivas

(error en replicacióndel ADN o medianteotros eventos conocidos)

Page 26: ADN: porteador de información genética Capítulo 12

El ciclo celular

G1S

G2Mitosis

telofaseanafasemetafaseprofase

interfase

Page 27: ADN: porteador de información genética Capítulo 12

Replicación del ADN

• Proceso altamente regulado

• Efectuado por una maquinaria de replicación que envuelve varias proteínas y enzimas

• Las bacterias tienen todo su ADN organizado en forma de una sola molécula doble y circular

• La célula eucariótica contiene cromosomas lineales y dobles asociados a una cantidad de proteínas casi equivalente a la masa del ADN

• Varios aspectos del proceso todavía no se han dilucidado

Page 28: ADN: porteador de información genética Capítulo 12

La cadena del ADN debe desenrollarse durante la replicación de la misma

Proteínas que juegan papeles bien

importantes en la replicación

• ADN helicasas – enzimas que separan las dos cadenas de ADN al al viajar por la cadena. Las mismas abren la cadena doble como si fuese un “zipper”

• Single strand binding proteins (SSB’s) – también conocidas como “enzimas desestabilizadoras de la doble hélice”

a. se pegan a las dos cadenas estabilizándola para así evitar que se vuelva a formar la doble hélice hasta que termine la replicación

Page 29: ADN: porteador de información genética Capítulo 12

• Topoisomerasas – enzimas que rompen la cadena de ADN, para aliviar la tensión mecánica que causa el desenrroscamiento en otras areas de la cadena, y luego reparan los rompimientos

• ADN polimerasas – enzimas que catalizan la unión de los nucleotidos (reacción de polimerización) solamente a el extremo 3’ de la cadena creciente de nucleótidos.

Esta cadena que va creciendo debe ser pareada con la cadena que esta siendo copiada

Función de las topoisomerasas y polimerasas

Page 30: ADN: porteador de información genética Capítulo 12

Reacción de polimerización

• Los nucleótidos con tres grupos fosfato (como en el ATP y GTP) son los substratos para las reacciones de polimerización

• A medida que se van añadiendo los nucleótidos, dos grupos fosfato son removidos = reacciones exergónicas que no requieren energía externa

• La cadena del polinucleótido se alarga uniendo el fosfato 5’ del nucleotido, que esta siendo añadido a la cadena, con el grupo hidroxilo 3’ de la azúcar en el extremo de la cadena pre-existente

La cadena crece en la dirección de 5’ ------ 3’

Page 31: ADN: porteador de información genética Capítulo 12

¿Cómo se alarga una molécula de ADN?

• Los nucleotidos son añadidos al extremo 3’ solamente• La cadena resultante se aparea con la cadena madre

Page 32: ADN: porteador de información genética Capítulo 12

• Las cadenas complementarias son antiparalelas

• La síntesis de ADN ocurre solamente en la dirección de 5’ 3’ que quiere decir que la cadena que está siendo copiada en la dirección 3’ 5’

¿Cómo se van a replicar las dos cadenas entonces?

Page 33: ADN: porteador de información genética Capítulo 12

La síntesis de ADN requiere un “primer”

• La polimerasa de ADN (DNA polymerase) añade nucleótidos solamente al extremo 3’

• Primero un segmento corto de ARN (de 5 a 14 nucleótidos) llamado “RNA primer” es sintetizado en el punto donde comienza la replicación

• El “RNA primer” es sintetizado por la “DNA primase” que es una enzima que comienza la síntesis de una nueva cadena de ARN opuesta a la cadena de ADN

Page 34: ADN: porteador de información genética Capítulo 12

• Una vez se han añadido unos cuantos nucleotidos al “primer”, la “DNA polimerase” desplaza a la “primase” y comienza a añadir nucleótidos al extremo 3’ del “primer”.

Page 35: ADN: porteador de información genética Capítulo 12

Replicación de ADN en los virus

Los virus añaden una nueva cadena a cada unade las cadenas de la molécula original de ADN

Este mecanismo no funciona en los cromosomas largos de la célula eucariótica

Page 36: ADN: porteador de información genética Capítulo 12

Origin of replication

Las dos cadenas sereplican a la misma vezpartiendo del “replication fork”

El “replication fork” se mueve a medida que se va replicandola molécula de ADN

Dos polimerasasidénticas catalizanla replicación

Lagging strand

¿Como replican su ADN las células eucariotas?

La polimerasa de ADN no se puede mover lejos del “replication fork”

Page 37: ADN: porteador de información genética Capítulo 12

Uniendo el “lagging strand”• Cuando la “DNA polimerase” llega al “primer” la misma lo

degrada y lo remplaza con ADN

• Los “gaps” que quedan entre los fragmentos son unidos con “DNA ligase”

Page 38: ADN: porteador de información genética Capítulo 12

DNA ligase = la enzima que une el extremo 3’ hidroxilode un fragmento Okazaki al extremo 5’ fosfato del ADNque está justamente al lado, formando un enlace fosfodiester

Ligasa del ADN

Page 39: ADN: porteador de información genética Capítulo 12

Prokaryotic

Eukaryotic

Replicación bidireccional

las moléculas de AND se forman en dos direcciones a

partir del origen de

replicación

Only one origin of replication

Multiple origins of replication

Page 40: ADN: porteador de información genética Capítulo 12

Los cromosomas eucarióticos tienenextremos libres

El “lagging strand” siempreva a perder un pedazito en la puntita de la cadenacuando es removido el“primer”

Telomeres = pedazo de la moléculaQue no contiene información que codifique para ningún gene

La telomerasa = una enzima de replicación que alarga el ADN telomérico

Replicación de los extremos del cromosoma

Page 41: ADN: porteador de información genética Capítulo 12

La telomerasa se encuentra presente en células que se dividen muchas veces y en células cancerosas

La telomerasa es muy comunmente encontrada en las células germinales pero no en las somaticas normales

El acortamiento de los telómeros se cree que esta relacionadocon el envejecimiento celular y la apoptosis

Desarrollo de drogas anti-cancer (destruyen células con telomerasa, Inactivan la telomerasa)

Función de la telomerasa