Adv CMOS Jongholee

Embed Size (px)

Citation preview

  • 8/13/2019 Adv CMOS Jongholee

    1/45

    Semiconductor Materialsand Device Laboratory

    Jong-Ho Lee

    [email protected]

    School of EECS and ISRC, Seoul National University

    Bulk FinFETs: Fundamentals,

    Modeling, and Application

  • 8/13/2019 Adv CMOS Jongholee

    2/45

    1

    Introduction

    Fundamentals of Bulk FinFETs

    Modeling

    Applications

    Conclusions

    Outline

  • 8/13/2019 Adv CMOS Jongholee

    3/45

    The scaling of conventional planar MOSFETs has been facing

    problems such as subthreshold swing degradation, significant

    DIBL, fluctuation of device characteristics, and leakage.

    To solve the problems, 3-D device structures could be a solution

    and have been studied.

    FinFETs (built on bulk silicon or SOI wafers) among 3-D devices

    are very promising candidate for future nano-scale CMOS

    technology and high-density memory application.

    For the bulk FinFETs which is going to be applied to mass

    production, we discuss about fundamental properties, modeling,

    and application of the bulk FinFETs.

    Introduction

    2

  • 8/13/2019 Adv CMOS Jongholee

    4/45

    Whats bulk FinFET?

    FinFET

    SOI FinFET Bulk FinFET

    3-D view ofbulk FinFET

    Si Sub

    SiO2

    G fin

    Si Sub

    SiO2

    G fin

    Low wafer cost

    Low defect density

    No floating body effect

    High heat transfer rate

    to substrate

    Good process compatibility

    S/D

    S/D

    Hin xj

    WinTOX

    Heat

    Korea/USA patent

    Bulk FinFETs (Double- or Tri-gate MOSFETs)

    ID-VGS Characteristics of 40 nm bulk N FinFET

    3

  • 8/13/2019 Adv CMOS Jongholee

    5/45

    S/D

    S/D

    H in xj

    W inT OX

    Heat

    Comparison between Our Structure and Intels

    Our Structure Intels StructureConventionalPlanar Structure

    4

  • 8/13/2019 Adv CMOS Jongholee

    6/45

    5

    As+, 20 keV 3x1015/cm2, 2 Fin

    25 nm

    50 nm

    40 nm

    -0.5 0.0 0.5 1.0 1.510-10

    10-9

    10-8

    10-7 VDS = 0.1 V

    Vbs = 0 V

    Vbs = -1 V

    Vbs = -2 V

    DrainC

    urrent(A)

    Gate Voltage (V)

    ID-VGS Characteristics of 40 nm bulk N FinFETOxide

    Si

    CMP and

    partial etch-back

    Poly-Si

    40 nm

    Gate Poly-Si Etching

    T. Park et al., SNU/KNU, Physica E19, p.6, 2003T. Park et al., SNU/KNU, Nanomes03 2003

    Top Si Width 25 nm

    Bottom Si Width 100 nm

    Si Fin Height 230 nm

    First Bulk FinFET in the World

  • 8/13/2019 Adv CMOS Jongholee

    7/45

    T. Park et al., SNU/Samsung/KNU, p.135, Symp. on VLSI Tech. 2003

    -0 .5 0.0 0.5 1.0 1.5 2.010

    -14

    10-13

    10 -12

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    Conv. DRA M C el l Tr .DIBL = 108 m V/V

    Vds = 0.1 V

    Vds = 0.6 V

    Vds = 1.1 V

    Vds = 1.6 V

    Dra

    inCurrent(A

    )

    G ate Vol tage (V)

    Vbs = 0 V

    FinFET

    DIBL = 24 mV /V

    Fin Top W idth = 30 nm

    Fin Bottom Width = 61 nm

    Fin Height = 99 nm

    LD R A W N

    = 120 nm

    W = 120 nm

    L = 120 nm

    181 nm

    99 nm

    61 nm

    30 nm

    82

    Si Substrate

    SiO2

    Poly-Sifin body

    SEM cross-section

    Gate

    Electr

    ode

    SiO2

    SiN

    SiSubs

    trate

    Fin

    SiO2

    6

    First Bulk FinFET at Industry

  • 8/13/2019 Adv CMOS Jongholee

    8/45

    7

    Introduction

    Fundamentals of Bulk FinFETs

    Modeling

    Applications

    Conclusions

    Outline

  • 8/13/2019 Adv CMOS Jongholee

    9/45

    Gate

    Oxide

    Fin

    Gate

    Fin

    Gate

    Fin

    (a) (b) (c)

    DG Structure TG Structure

    90o Corner Half-circle Corner

    8

    Body Shape of FinFET

  • 8/13/2019 Adv CMOS Jongholee

    10/45

    10 20 30 40 500.1

    0.2

    0.3

    0.4

    0.5

    Nb=1x10

    19cm

    -3

    Tox

    =1.5 nm

    xj,S/D

    =66 nm

    Hfin

    =70 nm

    Bulk

    SOI

    Fin Width (nm)

    V

    th

    (V)

    Lg

    =25 nm

    0

    30

    60

    90

    120

    150

    180

    DIBL(mV/0.9V)

    10 20 30 40 50

    70

    75

    80

    85

    90

    95

    100

    xj,S/D

    =66 nm

    Hfin

    =70 nm

    Nb=1x10

    19cm

    -3

    Tox

    =1.5 nmLg=25 nm

    VDS

    =0.9 V

    Subthreshold

    Swing(mV/dec)

    Fin Width (nm)

    BulkSOIVDS

    =0.05 V

    The bulk FinFETs (solid circles) have nearly the same Vth, DIBL, and SS

    characteristics as those of SOI FinFETs (open circles).

    Vth & DIBL SS

    9

    Equivalent FinFET on Bulk and SOI Wafers

  • 8/13/2019 Adv CMOS Jongholee

    11/45

    Equivalent FinFET on Bulk and SOI Wafers

    Tri-gate on bulk-silicon and SOI substrates have similar short channel

    performance

    Source: Intel

  • 8/13/2019 Adv CMOS Jongholee

    12/45

  • 8/13/2019 Adv CMOS Jongholee

    13/45

    Heat transfer rate : Bulk SOI

    Bulk FinFET has a device temperature less by 130 oC than SOI FinFET at a

    fixed VGS of 0.9 V.

    -0.2 0.0 0.2 0.4 0.6 0.8 1.0

    300

    325

    350

    375

    400

    425

    450

    475

    130oC

    Bulk

    SOI

    VDS=0.9 V

    Tox

    =1.5 nm

    DeviceTemperature

    (K)

    Gate Voltage (V)

    Lg=30 nm

    12

    Device Temperature Characteristics

    Si Nanoelectronics, 102-103, 2003

  • 8/13/2019 Adv CMOS Jongholee

    14/45

    -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    WFin

    : 10, 15, 20, 30, 50 nm

    WFin: 10, 15, 20, 30, 50 nm

    Body Bias (V)

    VT

    (V)

    70

    80

    90

    100

    110

    120

    Subthresh

    oldSwing(m

    V/dec)

    LG=25 nm

    No VT increase ata given back bias

    S B

    G G

    Silicon Nanoelectronics workshop, p.102, 2003

    Back-bias Effect

    Properties of Bulk FinFETs13

  • 8/13/2019 Adv CMOS Jongholee

    15/45

  • 8/13/2019 Adv CMOS Jongholee

    16/45

    80 82 84 86 88 90 9280

    90

    100

    110

    120

    LG=30 nm

    HFin=70 nm WFin =20 nm

    Angle () (deg)

    DIBL(mV/V)

    Na=1x10

    19cm

    -3

    n+

    poly gate

    70

    80

    90

    100

    110

    120

    SS(mV)

    20 nm

    Fin

    -0.2 0.0 0.2 0.4 0.6 0.8 1.00.6

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2

    VDS

    =0.9 V

    VDS=0.05 V

    WFin

    =20nm

    HFin

    =70nm

    LG

    =30nm

    90o

    83.3o

    81.6o

    Gate Bias (V)

    N

    ormalizedDrain

    Current

    Device Characteristics with Body Angle

    Tapered fin widens degradedSCEs

    Closer to 90o of body angle, better

    DIBL and drain current

  • 8/13/2019 Adv CMOS Jongholee

    17/45

    Impact of Fin Profile

    Rectangular Fin profile improves SCEs for LG scaling:

    Lowers SSATLowers DIBL

    Symp. on VLSI Tech, Intel, 2006

  • 8/13/2019 Adv CMOS Jongholee

    18/45

    Gate

    Fin

    Si Substrate

    Gate

    Fin

    BOX

    (a) (b) (c) (d)

    Bulk SOI

    Gate

    Fin

    BOX

    Gate

    Fin

    BOX

    Process variation

    17

    Bottom Corner Effect

    Invited talk at ECS, ECSTransactions, 19 (4) 101-112 (2009)

  • 8/13/2019 Adv CMOS Jongholee

    19/45

    Ioff : (a) < (b) < (c) < (d)

    -0.2 0.0 0.2 0.4 0.6 0.8 1.010

    -11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    Hfin

    =70 nm

    VDS

    =0.05 V

    VDS

    =0.9 V

    n+poly gate T

    ox=1.5 nm

    Wfin

    =20 nm

    Lg=100 nm

    Bulk FinFET (a)

    SOI FinFET (b)

    SOI FinFET (d)

    ID(A)

    VGS

    (V)

    Nb=2x10

    18cm

    -3

    (a) (b) (c) (d)0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    SOI

    Thresho

    ldVoltage(V)

    Bulk

    Vth : (a) > (b) > (c) > (d)

    ID vs VGS Vth vs Structure

    18

    Bottom Corner Effect

  • 8/13/2019 Adv CMOS Jongholee

    20/45

    Wfin DIBL & Vth

    Low doped bulk or SOI FinFETs narrow Wfin for good characteristics

    5 10 15 200.30

    0.32

    0.34

    0.36

    0.38

    0.40

    Simulation

    Model

    Fin Width (nm)

    Vth

    (V)

    Hfin=70 nm

    Lg=30 nm

    Nb=5X1016cm-3

    m=4.71 V

    0

    50

    100

    150

    200

    250

    300

    350

    body

    Si substrate

    WFin

    GateTOX

    oxide

    Local doping @ xP=80 nm

    DIBL(mV/V

    )

    Rounded corner

    corner effect

    Low doped channel

    Nb=5x1016 cm-3

    Local doping

    xp=80 nm

    NLocal=3x1018 cm-3

    19

    Fin Body Width Effect of Bulk FinFET with Low Nb

  • 8/13/2019 Adv CMOS Jongholee

    21/45

    Planar MOSFET : Delay Time (due to Vth) with negatively increasing VBS

    SOI or Bulk FinFETs : nearly constant Delay Time with VBS more

    effective devices for the full-down circuits

    -0.50 -0.25 0.00 0.25

    0.8

    1.0

    1.2

    1.4

    1.6

    Planar MOSFETBulk FinFET

    SOI FinFET

    Norma

    lizedDelayTim

    e

    VBS(V)

    Nb=2x10

    18cm

    -3C=20 fF

    Tox

    =1.5 nm Lg=50 nm

    -0.50 -0.25 0.00 0.25

    0.8

    1.0

    1.2

    1.4

    1.6

    V1

    CVb

    Vcc

    Vin

    Full-down delay time vs VBS Inverter circuit

    Speed Characteristics

    ECS meeting (invited talk), May, 2008

    20

  • 8/13/2019 Adv CMOS Jongholee

    22/45

    (a) Small signal equivalent circuit for RF device modeling.

    (b) Comparison of RF parameters extracted from bulk and SOI DG FinFETs.

    CgdRg

    vgs

    Gate

    Drain

    Substrate

    gmvgsCm dt

    dVgsCgs

    gmbvbs

    gds Csd

    vbs

    CjdCjs

    Rsub

    Source

    P

    O

    R

    T

    1

    P

    O

    R

    T

    2

    Intrinsic Body

    CgdRg

    vgs

    Gate

    Drain

    Substrate

    gmvgsCm dt

    dVgsCm dt

    dVgsCgs

    gmbvbs

    gds Csd

    vbs

    CjdCjs

    Rsub

    Source

    P

    O

    R

    T

    1

    P

    O

    R

    T

    2

    Intrinsic Body

    177 GHz170 GHzfT

    -0.0033 fF-0.0037 fFCsd

    -fF0.0151 fFCjs

    -8200 Rsub

    -fF0.014 fFCjd

    472 461 Rg

    0.038 fF0.037 fFCgd

    0.073 fF0.0713 fFCdg

    0.113 fF0.116 fFCgs

    0.414 S0.427 Sgds

    166 S160 Sgm

    0.286 V0.31 VVth

    SOI DG

    FinFET

    Bulk DG

    FinFET

    177 GHz170 GHzfT

    -0.0033 fF-0.0037 fFCsd

    -fF0.0151 fFCjs

    -8200 Rsub

    -fF0.014 fFCjd

    472 461 Rg

    0.038 fF0.037 fFCgd

    0.073 fF0.0713 fFCdg

    0.113 fF0.116 fFCgs

    0.414 S0.427 Sgds

    166 S160 Sgm

    0.286 V0.31 VVth

    SOI DG

    FinFET

    Bulk DG

    FinFET

    (a) (b)

    21

    Speed Characteristics

  • 8/13/2019 Adv CMOS Jongholee

    23/45

    20 30 40 50 60 700.1

    0.2

    0.3

    0.4

    0.5L

    g=100 nm

    Tox

    =1.5 nm

    VGS

    =1.0 V, VDS

    =1.5 V

    Na=3x10

    18cm

    -3

    c=1x10

    -7cm

    2

    n+poly gate

    Solid : d=100 nm

    Open : d=5 nm

    Fin Width (nm)

    Vdrop

    (V)

    2000

    2200

    2400

    2600

    2800

    3000

    3200 PeakElectronTempe

    rature(K)

    Effect of S/D Resistance with Fin Body Width

    Wfin electron temp.

    : Ohmic drop across Rsd (Wfin less than 50 nm)

    Rsd=Ras+Rsh+Rc

    22

  • 8/13/2019 Adv CMOS Jongholee

    24/45

  • 8/13/2019 Adv CMOS Jongholee

    25/45

  • 8/13/2019 Adv CMOS Jongholee

    26/45

    25

    Introduction

    Fundamentals of Bulk FinFETs

    Modeling

    Applications

    Conclusions

    Outline

  • 8/13/2019 Adv CMOS Jongholee

    27/45

    2-D schematic view of symmetric

    double-gate MOSFET.

    Gate

    Gate

    Source

    (n+)

    Drain

    (n+)Fin

    Body

    Lov

    Tox

    Wfin

    L

    Lg

    VGS

    VGS

    VDS

    Oxide

    y

    x

    0

    Bulk FinFET or SOIFinFET (not shown)

    Side-channel

    S/D

    S/D

    TFOX

    A

    A

    Side-channel of bulk or SOI FinFETs :

    DG structure key point

    26

    Schematic View of DG MOSFETs

  • 8/13/2019 Adv CMOS Jongholee

    28/45

    27

    Short-channel effect

    xm xm

    S D

    xls xld

    Lc=L-2xm

    xrs=xcs xrd=xcd

    S

    (a) (b)

    xcs

    xhs

    G

    G

    Tox

    Wfin

    SiO2

    SiO2

    b dep hs hd th ,SC E

    ox c

    qN x x x / 2V

    C L

    b dep

    th ,SCE FB B

    ox

    h

    c

    qN xV V 2 1

    C

    x

    L

    Charge-sharing length

    hs hd

    h

    x xx

    2

    : Vth model of the conventional

    planar MOSFETs

    :DG M OSFETsfin

    0.5W

    Vth Modeling of Side-Channel (1)

  • 8/13/2019 Adv CMOS Jongholee

    29/45

    28

    Narrow-width effect

    S DG

    xhs xhdLg

    Hg

    Lc

    xdf

    (a) SiO2 SiO2Fin

    Body

    xdf

    Hg G G

    TgateTox

    Wfin

    (b)

    b d e p d f

    t h , N W E o x g

    q N x x

    V C 4 H

    gateox

    th ,s 2

    dep b

    d

    ox

    f

    T8V ln 1

    x qNx

    T

    : an effective widthdepleted by gate fringingfield

    Vth Modeling of Side-Channel (2)

  • 8/13/2019 Adv CMOS Jongholee

    30/45

    Vth Modeling of Bulk FinFETs

    g

    M S B

    E

    2 e

    b d e p d f t h , N W E

    o x g

    q N x xVC 4 H

    gateox

    of

    ox

    T2C ln 1

    T

    gateox

    df th ,w oc 2

    dep b ox

    T8x V ln 1

    x qN T

    b dep df h

    th ,w oc FB B w

    ox m g

    qN x xxV V 2 1

    C L 2 x 4 H

    b dep hs hd

    th ,SCE

    ox m

    qN x x xV

    C 2 L 2 x

    Vth equations of bulk FinFETs based on 3-D charge sharing

    SCE

    NWE

    : in NMOSFET with n+ poly gate

    Thexdf and the

    Vth,woc are

    obtained by

    solving theseequations

    b dep h

    th ,SC E FB B

    ox m

    qN x xV V 2 1

    C L 2 x

    IEEE Trans on Electron Devices, p. 537, 2007

    29

    30

  • 8/13/2019 Adv CMOS Jongholee

    31/45

    0.0 0.2 0.4 0.6 0.8 1.0

    0.08

    0.12

    0.16

    0.20

    WB=15 nm

    L=60 nm

    gm,max

    Method

    Proposed Model

    CC Method

    L=30 nm

    L=190 nm

    Vth

    (V)

    VDS

    (V)

    Tox

    =1.5 nm

    Nb

    =5x1018

    cm-3

    n+poly gate

    Vth0

    0.0 0.2 0.4 0.6 0.8

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    Simulation

    Proposed Model

    CC Method

    ID(mA/m)

    VDS

    (V)

    n=200 cm2

    /V-sec n+

    poly gateW

    B=15 nm

    Tox

    =1.5 nm

    VGS

    =0.4 V

    L=30 nm

    Nb=2x10

    18cm

    -3

    VDS,sat

    =0.426 V

    Nb=5x10

    18cm

    -3

    VDS,sat

    =0.271 V

    Vth Model Considering Drain Bias

    Jpn. Journal of Applied Physics

    Verification in Double-Gate MOSFETs

    30

  • 8/13/2019 Adv CMOS Jongholee

    32/45

    32

  • 8/13/2019 Adv CMOS Jongholee

    33/45

    0.0 0.2 0.4 0.6 0.8 1.010

    -10

    10-9

    10

    -8

    10-7

    10-6

    10-5

    10-4

    10-3

    VGS

    (V)

    ID(A/m)

    Nb=5x10

    18cm

    -3

    Wfin

    =15 nm

    Tox

    =1.5 nm

    VDS

    =0.05 V

    n=200 cm

    2/V-sec

    n+poly gate

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0Simulation

    Model

    ID(mA/m)

    Vth=0.1297 V

    L=30 nm

    L=190 nmV

    th=0.1899 V

    0.0 0.2 0.4 0.6 0.8

    0

    2

    4

    6

    Simulation

    Model

    I

    D,drift(mA/m)

    VDS

    (V)

    Nb=5x10

    18cm

    -3

    n+poly gateW

    fin=15 nm

    VGS

    =0.4 V

    Tox=1.5 nm

    n=200 cm

    2/V-sec

    L=30 nm

    VDS,sat

    =0.274 V

    VDS,sat

    =0.679 V

    VGS

    =0.8 V

    Nb=5x1018 cm-3, Wfin=15 nm, Tox=1.5 nm, n=200 cm

    2V-1s-1

    ID vs VGS ID vs VDS

    Models show a good agreement with simulation data.

    32

    DC Models of Doped DG MOSFETs (3)

    33

  • 8/13/2019 Adv CMOS Jongholee

    34/45

    33

    oxide

    Si substrate

    Gate

    Body

    Wsc

    Ws

    WtcWtc

    channel

    Wsc

    Ws

    Hg

    xh

    bodyWfin

    Gate

    Tox

    r

    xdep

    Wc

    (a) (b) (c)(a) Schematic 3-D view for considering the

    corner effect

    (b) Cross-sectional view of the fin body

    with 90 o corner

    (c) Cross-sectional view of the fin body

    with half-circle corner

    Schematic Views for Considering Top Corner

    Effect

    33

    34

  • 8/13/2019 Adv CMOS Jongholee

    35/45

    h2 x

    13 L

    ,

    ' 0.5 2

    2 13

    c b fin hFB B

    ox

    th c

    q N WV

    CV

    L

    Vth,s model for side-channel with a fully depleted fin body

    Vth,c model for corner-channel with a fully depleted fin body

    : SCE term in the corner region regardless of the corner shape

    : Corner Vth model

    Corner factor(=0.4)

    : Fitting parameterCorner-channel

    b fin dfhF B B

    ox g

    th ,s

    qN 0.5W xV 2 1

    C L 4 H V

    SCE & NWE

    Side-channel

    SCE NWE

    bulk FinFET only

    34

    Vth Model of FinFET with Top Corner (1)

    35

  • 8/13/2019 Adv CMOS Jongholee

    36/45

    20 30 40 50 60 70 80 90 100-0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    c=0.4

    VDS=0.05 V

    n+poly gate

    Nb=5x10

    18cm

    -3

    MS

    =-1.0683 V

    W fin=20 nmH

    fin=70 nm

    Tox

    =1.5 nm

    Nb=10

    19cm

    -3

    MS

    =-1.0862 V

    oxide

    Si substrate

    body

    WFin

    GateTOX

    Si substrate

    oxide

    Simuation

    Model

    Vth

    (V)

    Gate Length (nm)

    5 10 15 20

    -0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7Gate

    Tox

    body

    Si substrate

    oxide

    Wfin Hg

    c=0.4

    Nb=5x10

    18cm

    -3

    MS

    =-1.0683 V

    Nb=10

    19cm

    -3

    MS

    =-1.0862 V

    Lg=100 nm

    Simuation

    Model

    Vth

    (V)

    Wfin

    (nm)

    n+poly gate

    Tox

    =1.5 nm

    VDS

    =0.05 V

    Hfin

    =70 nm

    Vth vs Lg Vth vs Wfin

    Models show a good agreement with simulation data.

    Hfin=70 nm, VDS=0.05 nm, Tox=1.5 nm, n+ poly gate

    35

    Vth Model of FinFET with Top Corner (3)

    36

  • 8/13/2019 Adv CMOS Jongholee

    37/45

    Vth Modeling of Bulk FinFETs

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0Mod.

    c=0.25

    Lg=100 nm

    m=4.71 V

    m=4.17 V

    10.60.3

    Radius Ratio [=r/0.5Wfin]

    r

    0.5Wfin

    Body

    Nb=1x1019cm-3, H

    g=70 nm

    Nb=5x10

    18cm

    -3, H

    g=70 nm

    Nb=5x10

    18cm

    -3, H

    g=40 nm

    Nb=2x10

    18cm

    -3, H

    g=70 nm

    Vth

    (V)

    0

    VDS

    =0.05 VW

    fin=20 nm

    Sim.

    30 40 50 60 70 80 90 100-0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    c=0.25

    VDS

    =0.05 Vn

    +

    poly gate

    Nb=5x10

    18cm

    -3

    MS

    =-1.0683 V

    Wfin

    =20 nm

    Hg=70 nm

    Tox

    =1.5 nm

    Nb=10

    19cm

    -3

    MS=-1.0862 V

    oxide

    Si substrate

    body

    WFin

    GateTOX

    Si substrate

    oxide

    SimuationModel

    Vth

    (V)

    Gate Length (nm)

    Verification of the Model

    IEEE Trans on Electron Devices, p. 537, 2007

    36

    37

  • 8/13/2019 Adv CMOS Jongholee

    38/45

    3-D schematic view 2-D schematic view

    Bulk FinFET

    as an example

    S/D

    S/D

    Hg

    XjSDE

    0

    WfinTFOX

    A

    A

    body

    Gate

    Si substrate

    oxide

    Top-channelregion

    Field

    penetrationregion

    from top-gate

    Electricfield

    The electric field penetration region

    (hatched triangle) from the top-gate into

    the side-channel region.

    Current Model of FinFET (1)

    38

  • 8/13/2019 Adv CMOS Jongholee

    39/45

    ID vs VGS

    With Vth,s & Vth,c

    Before considering field penetration

    effect

    With Vth0,s & Vth0,t

    After considering field penetration

    effect

    -0.2 0.0 0.2 0.4 0.6 0.8 1.010

    -14

    10-13

    10-12

    10-1110

    -10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    Hg=70 nm

    VDS

    =0.05 V

    Wfin

    =20 nm

    Lg=100 nm

    Simulation

    Side-channel (model)

    Top-channel (model)

    Total (model)

    ID(A)

    VGS(V)

    Nb=5x10

    18cm

    -3

    -0.2 0.0 0.2 0.4 0.6 0.8 1.0

    0.0

    1.0x10-5

    2.0x10-5

    3.0x10-5

    Simulation

    Side-channel (model)

    Top-channel (model) Total (model)

    ID(A)

    Nb=5x10

    18cm

    -3

    Lg=100 nm

    Wfin

    =20 nm

    VDS

    =0.05 V

    Hg=70 nm

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    ID(A)

    VGS

    (V)

    Current Model of FinFET (5): An Example

    39

  • 8/13/2019 Adv CMOS Jongholee

    40/45

    ID vs VGS

    Continuous Current Model of DG MOSFET

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

    1.0x10-5

    2.0x10-5

    3.0x10-5

    4.0x10-5

    5.0x10-5

    6.0x10-5

    7.0x10-5

    8.0x10-5

    9.0x10-5

    1.0x10-4

    0.0 0.2 0.4 0.6 0.8 1.010

    -14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    Simulation

    Nb= 2x10

    18cm

    -3

    Nb= 10

    18cm

    -3

    Nb= 10

    17cm

    -3

    Nb= 0 cm

    -3

    ModelId(A)

    Vgs

    (V)

    Vds

    =1V

    tox

    = 1.5nm

    tb= 10nm

    Lg= 1m

    W = 1m

    Lines: Model

    Symbols: Simulation

    g=bg= midgap when Nb=0

    No source/drain resistances

    Good agreement

    From intrinsic to ~1017 cm-3:

    nearly the same

    bsi

    bb

    t

    x

    q

    kTtxqNx

    2coslncosln

    2

    8

    )4()(

    22

    .tan4

    2

    oxb

    oxsi

    ox

    oxbbfbgs

    qt

    kTtttqNVV

    .22/

    0

    )(

    d

    s

    b

    ft

    kT

    q

    i

    f

    g

    nd eqndL

    WI

    40

  • 8/13/2019 Adv CMOS Jongholee

    41/45

    Introduction

    Fundamentals of Bulk FinFETs

    Modeling

    Applications

    Conclusions

    Outline

    S f41

  • 8/13/2019 Adv CMOS Jongholee

    42/45

    First SRAM Application of Bulk FinFET

    Bulk FinFETControl planar FET Nano width planar FET

    Inverter

    schematic

    SNM Comparison

    IEDM, p.27, 2003

    SEM

    Top

    view

    IEEE Trans on Electron Devices, p.481, 2006

    B lk Fi FET i SRAM C ll42

  • 8/13/2019 Adv CMOS Jongholee

    43/45

    Si

    SiO2

    SiN

    GatePoly

    -Si

    SiFin

    -1.00 -0.75 -0.50 -0.25 0.00 0.25

    10-10

    10-9

    10-8

    10-7

    10-6

    10

    -5

    10-4

    10-3

    10-2

    10-1

    DrainCurre

    nt(A)

    Gate Voltage (V)

    Triple Gate PMOSFET, Vds = -0.1 V

    Triple Gate PMOSFET, Vds = -1.1 V

    Planar PMOSFET, Vds = -0.1 V

    Planar PMOSFET, Vds = -1.1 V

    VBS

    = 0 V

    -2.5 -2.0 -1.5 -1.0 -0.5 0.0

    0.0

    -1.0x10-5

    -2.0x10-5

    -3.0x10-5

    -4.0x10-5

    -5.0x10-5

    -6.0x10-5

    -7.0x10-5

    DrainCurre

    nt(A)

    Drain Voltage (V)

    VBS

    = 0 V

    Solid : Triple Gate PMOSFET

    Dashed : Planar PMOSFET

    IEEE Electron Device Letters, p. 798, 2004

    Bulk pFinFET in a SRAM Cell

    SEM View and I-V Curves of pMOSFET

    SEM view

    ID-VGS curves

    ID-VDS curves

    43

  • 8/13/2019 Adv CMOS Jongholee

    44/45

    World 1stSaddle MOSFET for DRAM Cells

    Si sub.

    S/D

    SiO2

    Fin body

    Gate A`

    A

    BB`

    IEEE Electron Device Letters, p. 690, 2005

    A A`

    B B`

    xjS /D

    Gateinsulator

    G

    ate

    S /D

    L g

    Gateinsulator

    Gate

    S iO 2

    Si sub.

    W fin

    L ov_side

    Localdoping

    -0.3 0.0 0.3 0.6 0.9 1.2 1.510

    -16

    10-14

    10-12

    10-10

    10-8

    10-6

    10-4

    Saddle m 4.71 V

    Recess m 4.17 V

    VDS

    =

    0.05 V 1.5 V

    Saddle

    Recess

    Drain

    Current(A)

    Gate Voltage (V)

    Lg=12 nm W

    fin=20 nm T

    ox=3.5 nm

    Recess depth=50 nm

    xjS/D,LDD

    =21 nm

    xjS/D,HDD

    =33 nm

    Schematic View and Comparison of I-V Curves

    Saddle Recess

    SS 69.5 132

    DIBL 21 170

    Schematic view

    Korea/USA patents

    44

  • 8/13/2019 Adv CMOS Jongholee

    45/45

    Summary

    Brief introduction

    Fundamentals of Bulk FinFET

    - Nearly the same scalability and performance as those of SOI

    FinFET, and has several advantages

    - Body shape, temperature, back-bias, S/D resistance, and speed- Design guideline on body doping and width

    Model explains very well the behavior of Vth, internal physics, and

    I-V of double/tri-gate bulk FinFETs

    Bulk FinFETs could be applied to SRAM, low-power logics, and be

    modified to DRAM cell