26
Akinori Ito Contents 1. Introduction 2. Biomass burning emissions from 1998 to 2005 3. Historical biomass burning emissions 4. Historical land-use change emissions

Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

Embed Size (px)

Citation preview

Page 1: Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

Akinori Ito

Contents1. Introduction2. Biomass burning emissions from 1998 to 20053. Historical biomass burning emissions4. Historical land-use change emissions

Page 2: Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

Research at Nagoya University1) Ito, A., S. Yamada, T. Higuchi, Y. Ishikawa, Y. Nagata, K. Chiba, H.

Haraguchi (2002), Recent decline of atmospheric concentration and emission of methane in Nagoya metropolitan area, Bulletin of the Chemical Society of Japan, 75 (11), 2385-2391.

2) Higuchi, T., S. Yamada, A. Ito, Y. Nagata, K. Chiba, T. Sakai, H. Haraguchi (2002), Influences of urban heat island phenomena on carbon dioxide and methane concentrations in urban atmosphere (Nagoya city), Environmental Science, 15 (4), 253-262.

3) Matsunani, A., F. Akimoto, I. Kodama, Y. Kamata, K. Kitagawa, N. Arai, T. Higuchi, A. Ito, H. Haraguchi (2001), Continuous monitoring of nitrogen oxide concentration in urban atmosphere and cross correlation with other greenhouse gases, Bunseki Kagaku, 50 (12), 845-853.

4) Ito, A., I. Takahashi, Y. Nagata, K. Chiba, H. Haraguchi (2001), Spatial and temporal characteristics of urban atmospheric methane in Nagoya City, Japan: An assessment of the contribution from regional landfills, Atmospheric Environment, 35 (18), 3137-3144.

5) Ito, A., I. Takahashi, Y. Nagata, K. Chiba, H. Haraguchi (2000), The long-term evolutions and the regional characteristics of atmospheric methane concentrations in Nagoya, 1983-1997, Science of the Total Environment, 263 (1-3), 37-45.

6) Itoh, A., I. Takahashi, Y. Nagata, H. Sawatari, K. Chiba, H. Haraguchi (1999), Relationship between smog layer formation and concentration variation of methane in urban atmosphere of Nagoya, Chikyukagaku (Geochemistry), 33, 55-64.

7) Itoh A., M. Tomida, I. Takahashi, Y. Nagata, M. Aikawa, H. Sawatari, H. Haraguchi (1998). Analysis of kinetic behaviors of the methane concentration in urban atmosphere of Nagoya, Environmental Science, 11 (3), 283-289.

Page 3: Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

1) Ito, A., S. Sillman, and J. E. Penner (2007), Global atmospheric chemistry modeling studies of tropospheric ozone and non-methane volatile organic compounds, J. Geophys. Res., doi:10.1029/2006JD006556, in press.

2) L. Rotstayn, W. Cai, M. Dix, G. Farquhar, Y. Feng, P. Ginoux, M. Herzog, A. Ito, J. Penner, M. Roderick, M. Wang (2007), Have Australian Rainfall and Cloudiness Increased Due to the Remote Effects of Asian Anthropogenic Aerosols?, J. Geophys. Res., doi:10.1029/2006JD007712.

3) F. Dentener, S. Kinne, T. Bond, O. Boucher, J. Cofala, S. Generoso, P. Ginoux, S. Gong, J. J. Hoelzemann, A. Ito, L. Marelli, J. E. Penner, J.-P. Putaud, C. Textor, M. Schulz, G. R. van der Werf, J. Wilson (2006), Emissions of primary aerosol and precursor gases in the years 2000 and 1750, prescribed data-sets for AeroCom, Atmos. Chem. Phys., 6, 4321-4344.

4) T. J. Wallington, M. D. Hurley, J. Xia, D. J. Wuebbles, S. Sillman, A. Ito, J. E. Penner, D. A. Ellis, J. Martin, S. A. Mabury, O. J. Nielsen, M. P. Sulbaek Andersen (2006), Formation of C7F15COOH (PFOA) and other Perfluorocarboxylic acids (PFCAs) during the Atmospheric Oxidation of 8:2 Fluorotelomer Alcohol (n-C8F17CH2CH2OH), Environ. Sci. Technol., 40(3), 924-930.

5) Ito, A., and J. E. Penner (2005), Estimates of CO emissions from open biomass burning in southern Africa for the year 2000, J. Geophys. Res., 110, D19306, doi:10.1029/2004JD005347.

6) Ito, A., and J. E. Penner (2005), Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870–2000, Global Biogeochem. Cycles, 19, GB2028, doi:10.1029/2004GB002374.

7) Ito, A., and J. E. Penner (2004), Global estimates of biomass burning emissions from satellite imagery for the year 2000, Journal of Geophysical Research, 109, D14S05, doi:10.1029/2003JD004423.

Research at the University of Michigan

Page 4: Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

Seasonal and Interannual Variations in CO and BC Emissions From Open Biomass Burning in Southern Africa

From 1998 to 2005

○Akinori Ito, Akihiko Ito and Hajime Akimoto

Global Biogeochemical Cycles, in press

Page 5: Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

Background

Satellite information of burned areas and fire counts have been applied to global estimates of open biomass burning emissions [e.g., van der Werf et al., 2003; Ito and Penner, 2004], while satellite-based burned area products are currently under development [e.g., Carmona-Moreno et al., 2005; Roy et al., 2005; Plummer et al., 2006].

However, Swap et al. [2003] pointed out the apparent contradictory of the results between the commonly held understanding maximum burning seasons of August and September in the Southern Hemisphere Africa and the satellite measurements of burned areas.

Uncertainty of the burned area estimates is significantly large without a quantitative validation and calibration using high resolution data [e.g., Kasischke et al., 2003; Boschetti et al., 2004].

Seasonal variations in the BC emissions are also controlled by the available biomass for combustion and the fire characteristics.

Page 6: Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

MethodsMODIS burned area for a calibration of fire counts.

Ito and Penner [2005] showed that the estimated ranges from modeling approaches for CO emissions using the MODIS burned area product [Roy et al., 2002] were within the range of the estimates constrained by chemical transport models and the MOPITT measurements for the year 2000 [Arellano et al., 2004;

Pétron et al., 2004].

Simulation model of Carbon cYCle in Land Ecosystems (Sim-CYCLE) [Ito and Oikawa, 2002; Ito et al., 2006] for a seasonal variation of fuel load.van der Werf et al. [2003] used a biogeochemical model to represent the seasonality in the delivery of leaves to the litter pools.

NDVI data for a seasonal variation of combustion and emission factors.Korontzi [2005] used the NDVI data to represent the temporal and spatial variations of the regional fuel moisture condition, and related them to the combustion factor and the emission factor.

Incorporating the seasonal variations of burned areas with fuel load, combustion factor, and emission factor at a fine resolution may improve the mismatch of 1-2 month.

Page 7: Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

0

5

10

15

20

25

30

35

01 02 03 04 05 06 07 08 09 10 11 12

Month

CO

/ T

g m

onth

-1

Comparison of CO emissions for 2000

The peak in CO emissions during open biomass burning season for 2000 is identical to those from top-down estimates using the MOPITT data.

This workvan der Werf et al. [2006]

Arellano et al. [2006]Top-down estimates

Bottom-up estimatesPétron et al. [2006]

Page 8: Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

1 2 3 4 5 6 7 8 9 10 11 12

Month

BC

em

issi

ons

(Tg

mon

th-1

)

Comparison of BC emissions for 2000

The peak in BC emissions during open biomass burning season for 2000 is identical to those from top-down estimates using the TOMS AI data.

Penner et al. [2004]van der Werf et al. [2006]

Top-down estimatesBottom-up estimates

This work

Page 9: Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

Sensitivity of Tropospheric Ozone and its Radiative Forcing to Emissions

from Biomass Burning

○Akinori Ito, Kengo Sudo, Hajime AkimotoSanford Sillman, and Joyce E. Penner

Page 10: Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

Background

Ozone in the tropospherePollutant near the surface and greenhouse gas.

Tropospheric ozone increase due to anthropogenic emissions.

Radiative forcing: 0.36 ± 0.07 W m‑2 [Gauss et al., 2006].

Biomass burning: Significant sources of trace gases on a global scale.

Assumption in modeling studies [Crutzen and Zimmermann, 1991]: Pre-industrial open biomass burning = 10% of present-day estimate.

Three historical emission data sets of van Aardenne et al. [2001], Ito and Penner [2005a], and Mouillot et al. [2006]:Significant pre-industrial open biomass burning emissions.

Lamarque et al. [2005] found the tropospheric ozone burden increase: 88 Tg with the conventional assumption.71 Tg with the van Aardenne et al. [2001] inventory.

Shindell et al. [2006] estimated adjusted radiative forcing: 0.34 W m‑2.

Page 11: Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

Methods

CHASER model [Sudo et al., 2002]. Data sets (global averages of radiative forcing (W m‑2 )).

1. Conventional assumption [Crutzen and Zimmermann, 1991] (0.47): Present: Hao et al. [1990] and Bouwman et al. [1997].

Past:10% of present-day estimate.

2. van Aardenne et al. [2001] (0.40): Present: Hao et al. [1990]. Past: Rural population as a surrogate for emission changes.

3. Ito and Penner [2005] (0.42): Present: Ito and Penner [2004] constrained by Arellano et al. [2004]. Past: Satellite data from the TOMS AI data and land-use change.

4. Mouillot et al. [2006] (0.41): Global fire map [Mouillot and Field, 2005] and CASA carbon cycle model [Potter et al., 1993].

Page 12: Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

Surface O3 concentrations (ppbv) in August, 1890

Crutzen and Zimmermann [1991]

van Aardenne et al. [2001]

Ito and Penner [2005]

Mouillot et al. [2006] 20 – 30 ppbv. 40 – 75 ppbv.

Page 13: Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

Annual carbon losses due to land-use change in U.S.

Houghton et al. [1999]

Total

0.0

0.5

1900

Vegetation burnedDecay of slash

Decay of wood products

Page 14: Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

van Aardenne et al. [2001]

Ito and Penner [2005]

Mouillot et al. [2006] 70 ppbv 90 ppbv

Observation: 71 ppbv [Kirchhoff and Rasmussen, 1990].

Surface O3 concentrations (ppbv) in August, 1990

Page 15: Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

Mode of clearing and fate of cleared carbon

Open fires

Biofuel burning

Lumber

Page 16: Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

Analysing countries’ contribution to climate change (MATCH).

Need to increase range of uncertainty considered in RF to T calculation! (not yet included)

Page 17: Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

Uncertainties in estimating historical emissions from land use change

○Akinori Ito, Richard Houghton, Omar Masera Cerruti, Navin Ramankutty, Christinano Pires de Campos, Audrey Wang, Olga Krankina, Woldgang Cramer, Theima Krug, Joyce Penner, Michael Prather, Atul Jain, Ruth DeFries,

Luiz Pinguell Rosa, Wolfgang Knorr, Silva Muylaert, Michio Kawamiya, Prabir Patra, Tomomichi Kato, George

Hurtt, Steve Frolking, and Martina Jung.

Page 18: Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

Background

Ramankutty et al. [2006]

Global estimates of carbon emissions from land-cover change.

H2003: Houghton [2003].CCMLP: Carbon Cycle Model Linkage Project (HRBM, IBIS, LPJ, and TEM)

[McGuire et al., 2001].AVHRR: DeFries et al. [2002].TREES: Achard et al. [2004].F2000: Fearnside [2000].

Page 19: Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

Background

Jain and Yang [2005]

Land-use emissions of different land cover data sets.

Ramankutty et al. [2006]

Page 20: Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

Net CO2 emissions in each country1. Statistical report

United Nations Framework Convention on Climate Change (UNFCC)

2. Inverse model

3. Forward modelBook-keeping model, Ecosystem model.

Comparison analysis of land use change emissions

Page 21: Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

0.0

0.5

1.0

1.5

2.0

2.5

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

Land-use emissions of different land cover data sets

Houghton

IVIG [de Campos et al]HYDE 2.0, FAO rate of change, ISAM carbon content calibration

EDGAR-HYDE1.4 (forest burningbased on decadal FAO assessments )

Page 22: Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

Land-use emissions of different land cover data sets.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1920 1930 1940 1950 1960 1970 1980 1990 2000

Houghton

IVIG [de Campos et al]

EDGAR-HYDE1.4 (forest burning)

Ramankutty et al. [2006]

Page 23: Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990

Land-use emissions of different land cover data sets.

Houghton

IVIG [de Campos et al]

EDGAR-HYDE1.4 (forest burning)

Jain and Yang [2005]

Page 24: Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

Carbon pools (Plant Functional Types) in each country

1. Vegetation carbonGround vegetation, Non-woody tree parts, Woody tree parts

2. LitterDecomposable plant material, resistant material

3. SoilMicrobial biomass, Humus organic matter, Inert organic matter

Land cover (Plant Functional Types) in each country

Comparison analysis of land use change emissions

Page 25: Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

1. Emissions due to land-use change1. Conversion flux (burning of plant material)2. Product pools 1 yr (agriculture products) 10 yr (paper products) 100 yr (Long-lived products)3. Decay of organic matter

2. Sinks due to land-use change1. Regrowth of forests

3. Net terrestrial carbon emissions, including effect of climate change and CO2 increase(woody invasion into grasslands, woody thickening)

Comparison analysis of land use change emissions

Jain and Yang [2005]

Page 26: Akinori Ito Contents 1.Introduction 2.Biomass burning emissions from 1998 to 2005 3.Historical biomass burning emissions 4.Historical land-use change emissions

Carbon dynamics following deforestation.

Comparison analysis of land use change emissions

Ramankutty et al. [2006]

Permanent agriculture

Shifting cultivation

Agriculture abandonment

Logging

Clearing forests for pastures (no cultivation)WildfiresWoody invasion into grasslandsWoody thickening