1
0 500 1000 1500 2000 2500 1 2 0 0.5 1 1.5 2 2.5 3 3.5 2 5 10 1 2 0 5 10 15 20 25 2 5 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1.2 1.3 1.4 1.5 0 1 1.1 1.2 1.3 1.4 1.5 0 500 1000 1500 2000 2500 1800 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1.2 1.3 1.4 1.5 400 300 200 100 0 100 200 300 300 200 100 0 100 200 300 400 500 400 300 200 100 0 100 200 300 400 300 200 100 0 100 200 300 400 A mul&scale approach to inves&gate microenvironmental influences on invasion characteris&cs of heterogeneous glial cells Joseph D. Juliano 1 , Andrea HawkinsDaarud 2 , Russ Rockne 2 , Peter Canoll 3 , Kris&n R. Swanson 2 1. College of Liberal Arts and Sciences, Arizona State University 2. Department of Neurological Surgery, Northwestern University 3. Department of Pathology and Cell Biology, Columbia University Medical Center In previous work [5] , the PIR model been used to explore how PDGF recruitment could impact the overall dynamics of GBM. For the the PIR model to be predic&ve, es&ma&on of specific model parameters for both popula&ons is required. Complica&ons arise as cell tracking is prone to bias, and certain cells do not fit a persistent random walk model (see supplementary material). Also PDGF concentra&on is difficult to measure but current work is underway to alleviate both of these concerns. We have shown microenvironmental influences on invasion characteris3cs of heterogeneous glial cells at 2, 5 and 10 days a=er infec3on and a mul3scale approach to take informa3on from individual and popula3on cell tracking data to es3mate PIR diffusion values. I would like to thank Barre[ the Honors college at ASU for the financial support and the Center for Biology and Society. I want to thank Dr. Swanson, Dr. HawkinsDaarud, and the rest of the BONK team for their support and mentorship. Background: Glioblastoma mul&forme (GBM) is the most aggressive primary brain tumor. To study the in vivo behavior of GBM, a rat model was developed by injec&ng a PDGF expressing retrovirus into rat glial progenitor cells [1,2] . Once deposited in the host, the retrovirally infected cells secreted high levels of PDGF which transformed surrounding normal glial progenitors into a malignant, invasive phenotype with similar characteris&cs to human GBM. These studies have lead to the development of the Prolifera&onInvasionRecruitment (PIR) mathema&cal model, which focuses on the consequences of PDGFdriven paracrine recruitment to GBM growth dynamics Current Study: Es&mate cellular diffusion rates from cell tracking data by fiang meansquared distances (MSD) consistent with a persistent random walk to inform PIR model parameters. Determine how cell speed and diffusion varies across days aber infec&on of PDGF expressing retrovirus 1 Assanah et al. Glial Progenitors in Adult White Ma4er Are Driven to Form Malignant Gliomas by PlateletDerived Growth Factor Expressing Retroviruses. Journal of Neuroscience, 2006. 2 Assanah et al. PDGF SGmulates the Massive Expansion of Glial Progenitors in the Neonatal Forebrain. Glia, 2009. 3 Cynthia L. Stokes, Douglas A. Lauffenburger, and Stuart K. Williams. MigraGon of individual microvessel endothelial cells: stochasGc model and parameter measurement. Cell Science, 1991. 4 Meijering et al. Methods for Cell and ParGcle Tracking. Methods in Enzymology, 2012 5 S. C. Massey, M. C. Assanah, K. A. Lopez, P. Canoll, K. R. Swanson. Progenitor cell recruitment drives aggressive glioma growth: mathemaGcal and experimental modeling. J. Roy. Soc. Interface, 2012. Introduc3on Cell Tracking Method Future Work Discussion Acknowledgements and References Results D c,r = S 2 P 2 01 0 2 4 6 8 01 0 5 05 50 5 Applying Cellular Diffusion Coefficients To 2D PIR Model Simula3ons Compare Virtual Simula3ons with Observed Tumors Figure 1. Recruited glial progenitors labeled by GFP virus. Infected glial progenitors labeled by PDGFIRESDSRED virus (leb panel). Green lines indicate cell movement recorded every three minutes (right panel). Recruited Cells Infected Cells 2 DAYS AFTER INFECTION OF PDGF VIRUS 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1.2 1.3 1.4 1.5 5 DAYS AFTER INFECTION OF PDGF VIRUS 10 DAYS AFTER INFECTION OF PDGF VIRUS 0 2 4 6 8 10 12 14 0 0.5 1 1.5 2 2.5 x 10 4 Elapsed Time (hrs) MSD (μ m 2 ) The MSD equa&on [3] , is used to fit individual cells and the popula&on to distances traveled over varying &me intervals. The fiang provides es&mates of diffusion for infected and recruited popula&ons relevant for the PIR model. MSD Model Predic3ons 0 2 4 6 8 10 12 14 0 0.5 1 1.5 2 2.5 x 10 4 Elapsed Time (hrs) MSD (μ m 2 ) 1.1 1.2 1.3 1.4 1.5 05 50 5 25 20 15 10 5 0 01 0 5 25 20 15 10 5 0 20 30 25 15 10 5 0 25 20 15 10 5 0 05 50 5 μ25 20 15 10 5 0 05 510 1015 1520 2025 2530 3035 3540 4045 4550 5055 55+ Mean Cell Speed (μm/hr) Percent of Cells 05 510 1015 1520 2025 2530 3035 3540 4045 4550 5055 55+ 05 510 1015 1520 2025 2530 3035 3540 4045 4550 5055 55+ Percent of Cells Percent of Cells .9.1 0.1 .1.2 .2.3 .3.4 .4.5 .5.6 .6.7 .7.8 .8.9 .9.1 0.1 .1.2 .2.3 .3.4 .4.5 .5.6 .6.7 .7.8 .8.9 Percent of Cells Percent of Cells .9.1 0.1 .1.2 .2.3 .3.4 .4.5 .5.6 .6.7 .7.8 .8.9 Confinement Ra&o 20 18 16 14 12 10 8 6 4 2 0 Percent of Cells Infected Recruited MSD = 2S 2 P[t P(1 e t P )] Black lines represent infected cell tracks, blue lines represent recruited cell tracks. Each box represents 350x350 μm colored by average veloci&es of tracks in each box on a log10 scale. Infected only Recruited Only Confinement ra&o is defined by the distance traveled by cells from the start to end point divided total distance traveled. This is used as a simple measure to characterize direc&onal persistence of cell popula&ons [4] . Infected Recruited Speed (μm/hr) Infected Recruited Persistence (hr) Recruited Infected Diffusion (μm 2 /hr) Infected Recruited Es&ma&on for PIR Model Parameters

Amul&’scaleapproachtoinves ... · PDF file1 2 0 500 1000 1500 2000 2500 0 3.5 2 5 10 1 2 0 0.5 1 1.5 2 2.5 3 25 2 5 10 1 2 5 10 15 20 2 5 10 0 500 1000 1500 2000 2500 −1800 −1600

Embed Size (px)

Citation preview

Page 1: Amul&’scaleapproachtoinves ... · PDF file1 2 0 500 1000 1500 2000 2500 0 3.5 2 5 10 1 2 0 0.5 1 1.5 2 2.5 3 25 2 5 10 1 2 5 10 15 20 2 5 10 0 500 1000 1500 2000 2500 −1800 −1600

1 20

500

1000

1500

2000

2500

2510

1 20

0.5

1

1.5

2

2.5

3

3.5

2510

1 20

5

10

15

20

25

2510

0 500 1000 1500 2000 2500−1800

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

1 1.1 1.2 1.3 1.4 1.5

0 500 1000 1500 2000 2500−1800

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

1 1.1 1.2 1.3 1.4 1.5

0 500 1000 1500 2000 2500−1800

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

1 1.1 1.2 1.3 1.4 1.5

0 500 1000 1500 2000 2500−1800

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

1 1.1 1.2 1.3 1.4 1.5

0 500 1000 1500 2000 2500−1800

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

1 1.1 1.2 1.3 1.4 1.5

0 500 1000 1500 2000 2500−1800

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

1 1.1 1.2 1.3 1.4 1.5

−400 −300 −200 −100 0 100 200 300−300

−200

−100

0

100

200

300

400

−500 −400 −300 −200 −100 0 100 200 300 400−300

−200

−100

0

100

200

300

400

A  mul&-­‐scale  approach  to  inves&gate  microenvironmental  influences  on  invasion  characteris&cs  of  heterogeneous  glial  cells  

     

Joseph  D.  Juliano1,  Andrea  Hawkins-­‐Daarud2,  Russ  Rockne2,  Peter  Canoll3,  Kris&n  R.  Swanson2  1.  College  of  Liberal  Arts  and  Sciences,  Arizona  State  University  2.  Department  of  Neurological  Surgery,  Northwestern  University  3.  Department  of  Pathology  and  Cell  Biology,  Columbia  University  Medical  Center    

In  previous  work[5],  the  PIR  model  been  used  to  explore  how  PDGF  recruitment  could  impact   the   overall   dynamics   of   GBM.   For   the   the   PIR   model   to   be   predic&ve,  es&ma&on   of   specific   model   parameters   for   both   popula&ons   is   required.  Complica&ons   arise   as   cell   tracking   is   prone   to   bias,   and   certain   cells   do   not   fit   a  persistent  random  walk  model  (see  supplementary  material).  Also  PDGF  concentra&on  is   difficult   to   measure   but   current   work   is   underway   to   alleviate   both   of   these  concerns.  We  have  shown  microenvironmental  influences  on  invasion  characteris3cs  of   heterogeneous   glial   cells   at   2,   5   and   10   days   a=er   infec3on   and   a   mul3-­‐scale  approach   to   take   informa3on   from   individual   and  popula3on   cell   tracking  data   to  es3mate  PIR  diffusion  values.    

I   would   like   to   thank   Barre[   the   Honors   college   at   ASU   for   the   financial   support   and   the   Center   for  Biology  and  Society.  I  want  to  thank  Dr.  Swanson,  Dr.  Hawkins-­‐Daarud,  and  the  rest  of  the  BONK  team  for  their  support  and  mentorship.      

Background:    Glioblastoma  mul&forme   (GBM)   is   the  most   aggressive   primary   brain   tumor.   To  study  the  in  vivo  behavior  of  GBM,  a  rat  model  was  developed  by  injec&ng  a  PDGF  expressing  retrovirus  into  rat  glial  progenitor  cells[1,2].  Once  deposited  in  the  host,  the   retrovirally   infected   cells   secreted   high   levels   of   PDGF   which   transformed  surrounding   normal   glial   progenitors   into   a  malignant,   invasive   phenotype  with  similar   characteris&cs   to   human   GBM.   These   studies   have   lead   to   the  development  of  the  Prolifera&on-­‐Invasion-­‐Recruitment  (PIR)  mathema&cal  model,  which  focuses  on  the  consequences  of  PDGF-­‐driven  paracrine  recruitment  to  GBM  growth  dynamics  Current  Study:  •  Es&mate  cellular  diffusion  rates  from  cell  tracking  data  by  fiang  mean-­‐squared-­‐

distances  (MSD)  consistent  with  a  persistent  random  walk  to  inform  PIR  model  parameters.    

•  Determine   how   cell   speed   and   diffusion   varies   across   days   aber   infec&on   of  PDGF  expressing  retrovirus  

1Assanah  et  al.  Glial  Progenitors  in  Adult  White  Ma4er  Are  Driven  to  Form  Malignant  Gliomas  by  Platelet-­‐Derived  Growth  Factor-­‐  Expressing  Retroviruses.  Journal  of  Neuroscience,  2006.  2Assanah  et  al.  PDGF  SGmulates  the  Massive  Expansion  of  Glial  Progenitors  in  the  Neonatal  Forebrain.  Glia,  2009.  3Cynthia  L.  Stokes,  Douglas  A.  Lauffenburger,  and  Stuart  K.  Williams.    MigraGon  of  individual  microvessel  endothelial  cells:  stochasGc  model  and  parameter  measurement.  Cell  Science,  1991.    4Meijering  et  al.  Methods  for  Cell  and  ParGcle  Tracking.  Methods  in  Enzymology,  2012  5S.  C.  Massey,  M.  C.  Assanah,  K.  A.  Lopez,  P.  Canoll,  K.  R.  Swanson.  Progenitor  cell  recruitment  drives  aggressive  glioma  growth:  mathemaGcal  and  experimental  modeling.  J.  Roy.  Soc.  Interface,  2012.  

Introduc3on  

Cell  Tracking  Method  

Future  Work  

Discussion  

Acknowledgements  and  References  

Results  

Dc,r =S2P2

0−.1 .1−.2 .2−.3 .3−.4 .4−.5 .5−.6 .6−.7 .7−.8 .8−.9 .9−10

2

4

6

8

10

12

14

16

18

20

Confinement Ratio

Perc

ent o

f cel

ls

dsRedGFP

0−.1 .1−.2 .2−.3 .3−.4 .4−.5 .5−.6 .6−.7 .7−.8 .8−.9 .9−10

5

10

15

20

25

Confinement Ratio

Perc

ent o

f cel

ls

dsRedGFP

0−5 5−10 10−15 15−20 20−25 25−30 30−35 35−40 40−45 45−50 50−55 55+0

5

10

15

20

25

30

Mean Cell Speed (µ m/ hr)

Perc

ent o

f cel

ls

dsRedGFP

Applying  Cellular    Diffusion  Coefficients    To  2D  PIR  Model  Simula3ons  

Compare  Virtual  Simula3ons  with  Observed  Tumors  

Figure  1.  Recruited  glial  progenitors  labeled  by  GFP  virus.  Infected  glial  progenitors  labeled  by  PDGF-­‐IRES-­‐DSRED  virus  (leb  panel).  Green  lines   indicate  cell  movement  recorded  every  three  minutes  (right  panel).  

Recruited  Cells     Infected  Cells    

2  DAYS  AFTER  INFECTION  OF  PDGF  VIRUS  

0 500 1000 1500 2000 2500−1800

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

1 1.1 1.2 1.3 1.4 1.5

0 500 1000 1500 2000 2500−1800

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

1 1.1 1.2 1.3 1.4 1.5

5  DAYS  AFTER  INFECTION  OF  PDGF  VIRUS  

10  DAYS  AFTER  INFECTION  OF  PDGF  VIRUS  

0 2 4 6 8 10 12 140

0.5

1

1.5

2

2.5x 104

Elapsed Time (hrs)

MS

D (µ

m2)

The   MSD   equa&on[3],   is   used   to   fit  individual   cells   and   the   popula&on   to  distances   traveled   over   varying   &me  intervals.  The  fiang  provides  es&mates  of   diffusion   for   infected   and   recruited  popula&ons  relevant  for  the  PIR  model.    

MSD  Model  Predic3ons  

0 2 4 6 8 10 12 140

0.5

1

1.5

2

2.5x 104

Elapsed Time (hrs)

MSD

(µ m

2 )

0 500 1000 1500 2000 2500−1800

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

1 1.1 1.2 1.3 1.4 1.5

0−5 5−10 10−15 15−20 20−25 25−30 30−35 35−40 40−45 45−50 50−55 55+0

5

10

15

20

25

Mean Cell Speed (µ m/ hr)

Perc

ent o

f cel

ls

dsRedGFP

25    20  

15  

10  

5  

0  

0−.1 .1−.2 .2−.3 .3−.4 .4−.5 .5−.6 .6−.7 .7−.8 .8−.9 .9−10

5

10

15

20

25

Confinement Ratio

Perc

ent o

f cel

ls

dsRedGFP

25    20  

15  

10  

5  

0  

20  

30  

25  

15  

10  

5  

0  

25  

20  

15  

10  

5  

0  

0−5 5−10 10−15 15−20 20−25 25−30 30−35 35−40 40−45 45−50 50−55 55+0

5

10

15

20

25

Mean Cell Speed (µ m/ hr)

Perc

ent o

f cel

ls

dsRedGFP25  

 20  

15  

10  

5  

0   0-­‐5  5-­‐10  10-­‐15  15-­‐20  20-­‐25  25-­‐30  30-­‐35  35-­‐40  40-­‐45  45-­‐50  50-­‐55  55+  

Mean  Cell  Speed  (μm/hr)    

Percen

t  of  C

ells  

0-­‐5  5-­‐10  10-­‐15  15-­‐20  20-­‐25  25-­‐30  30-­‐35  35-­‐40  40-­‐45  45-­‐50  50-­‐55  55+  

0-­‐5  5-­‐10  10-­‐15  15-­‐20  20-­‐25  25-­‐30  30-­‐35  35-­‐40  40-­‐45  45-­‐50  50-­‐55  55+  

Percen

t  of  C

ells  

Percen

t  of  C

ells  

.9-­‐.1  

0-­‐.1  

.1-­‐.2  .2-­‐.3  .3-­‐.4  .4-­‐.5  .5-­‐.6  .6-­‐.7  .7-­‐.8  

.8-­‐.9  

.9-­‐.1  

0-­‐.1  .1-­‐.2  .2-­‐.3  .3-­‐.4  .4-­‐.5  .5-­‐.6  .6-­‐.7  .7-­‐.8  

.8-­‐.9  

Percen

t  of  C

ells  

Percen

t  of  C

ells  

.9-­‐.1  

0-­‐.1  .1-­‐.2  .2-­‐.3  .3-­‐.4  .4-­‐.5  .5-­‐.6  .6-­‐.7  .7-­‐.8  

.8-­‐.9  

Confinement  Ra&o    

20  18  16  14  12  10  8  6  4  2  0  

Percen

t  of  C

ells  

Infected  Recruited  

MSD = 2S2P[t −P(1− e−tP )]

Black   lines   represent   infected   cell   tracks,  blue   lines   represent   recruited   cell   tracks.  Each  box  represents  350x350  μm    colored  by  average  veloci&es  of  tracks  in  each  box  on  a  log10  scale.    

Infected

 only  

Recruited  Only  

Confinement   ra&o   is   defined   by   the   distance  traveled   by   cells   from   the   start   to   end   point  divided  total  distance  traveled.  This  is  used  as  a  simple   measure   to   characterize   direc&onal  persistence  of  cell  popula&ons[4].  

Infected  Recruited  

Speed  (μm/hr)  

Infected   Recruited  

Persisten

ce  (h

r)  

Recruited  Infected  

Diffu

sion  (μm

2 /hr)  

Infected   Recruited  

Es&ma&on  for  PIR  Model  Parameters