An Improved Deflection Energy Method to Normalise energy versus deflection for the thorax are of constant slope. The deflection energy is the ... using a deflection energy method and

  • View
    215

  • Download
    2

Embed Size (px)

Text of An Improved Deflection Energy Method to Normalise energy versus deflection for the thorax are of...

  • AbstractNormalisationistheprocessofmodifyingasetofpostmortemhumansubject(PMHS)responsedatatobetterrepresentthatofastandardsizedhuman.Thisimprovedmethodisbasedonthefactthatallplotsofdeflectionenergyversusdeflectionforthethoraxareofconstantslope.Thedeflectionenergyistheintegraloftheappliedimpactforceoverthedeflectionmeasuredbyachestbanduptothepointofmaximumdeflection.Standardsizedhumanthoraxdeflectionenergiesandslopesarefoundfrommultivariateanalysesrelatingenergyandslope,separately,totheanthropometricdataforallsubjects.Forceisthespatialderivativeofthelineardeflectionenergycurveandisaconstant.Theresultingrectangularforceversusdeflectioncurveleadstoscalefactorsforforce,deflection,elasticstiffness,theviscousconstant,andtime,assumingatwoelementsolidviscoelasticmodel.Subjecteffectivemassandpostimpactvelocitywerecalculatedfromconservationofenergyandimpulseequalsmomentum,solvedsimultaneously,providingscalefactorsforeffectivemassandsubjectvelocityatmaximumdeflection.Thetimehistoriesandforceversusdeflectionhavebeenplotted,thestandarddeviationtargetsoverplotted,andcoefficientsofvariationcalculated.Resultshavebeenqualitativelyandquantitativelycomparedtopreviousmethods. Keywords biofidelity,datanormalisation,postmortemhumansubject(PMHS),scaling

    I. INTRODUCTIONTheprocessofnormalisingpostmortemhumansubject(PMHS)responsedatafromimpacttestingtoobtain

    a representationof the typical,or average,human responsehasbeen an importantpartof anthropometriccrash dummy design and development for many years. Normalisation is the process of mathematicallymodifyingtheresponsedatafromasetofPMHSsubjectstoastandardhumansize.Thisnormalisedresponse isusedasastandardagainstwhichtheresponseofananthropometricdummy is

    comparedtoassessthedummybiofidelity.Aquantifiedmeasureofbiofidelityisdesirabletoprovidethebasisforanobjectivedecisionastotheabilityofadummytoassessvehiclecrashprotectionforahumanofsimilarsize.In1984amethodfornormalisingPMHSdatabasedontheratioofthewholebodymassofasubjecttothe

    standard totalbodymass (e.g.50thpercentilemale)wasdeveloped [1]. Thismethodologyassumed thatallsubject responseswill be related directly to thewhole bodymass. Clearly force, deflection and kinematicresponses fromwidelyvarying sizesand shapesofhumansarenot likely tobe related solelybywholebodymass. An impulsemomentum and stiffnessbased normalisationmethod [2]was presented in 1984. Scalefactorsweredevelopedfrombothanthropometrymeasuresandratiosofthesolutionforthesingledegreeoffreedom(DOF)differentialequationforalinearelasticsystemwhichrepresentedalargeimpactingmasssuchasasled typeof impact. In1989an improvement to thismethodologywaspresented [3]byexpanding thederivationofscalefactorstothetwoDOFlinearelasticsystemwhichbetterrepresentspendulumtypeimpactswherethestrikingandstruckmassesaremorenearlyequal.Againthescalefactorsweredevelopedfromratiosofthesolutiontothesystemofdifferentialequations.Animprovement[4]wasmadetothetwoDOFmethodusing the integralof the forceversusdeflection curve, thedeflectionenergy, todevelopanelasticeffectivestiffness directly from the force versus deflection response data rather than from characteristic subjectdimensions.Thislatterstudy[4]alsocomparedtheeffectivenessofthevariousnormalisationmethodsinforceversusdeflectionspaceusingthestandarddeviationellipse[5]andamodifiedcoefficientofvariationmeasuretakingonehalfoftheareaoftheellipsedividedbytheproductofforceanddeflectionateachdatapoint.Thisquantitativecomparison indicated thateffectivestiffnesscollapsed the forceversusdeflectioncurves toward BRDonnellyisaPhDatBiomechanicsResearchAssociatesLtd.,USA,(+17406020531/brucedonnellyphd@columbus.rr.com).HHRhuleisaBSandKMMoorhouseandJAStammenarePhDsattheNationalHighwayTrafficSafetyAdministrationVehicleResearchandTestCenter,USA.YSKangisaPhDattheOhioStateUniversityInjuryBiomechanicsResearchCenter,USA.

    AnImprovedDeflectionEnergyMethodtoNormalisePMHSThoracicResponseData

    BruceR.Donnelly,HeatherH.Rhule,KevinM.Moorhouse,YunSeokKang,JasonA.Stammen

    IRC-17-72 IRCOBI Conference 2017

    -577-

  • eachothermoreeffectivelythantheothermethods.MorerecentlytheauthorsofthiscurrentstudypresentedamethodfornormalisingPMHSthoracicimpactdatabasedonthedeflectionenergyandatwoDOFviscoelasticmodel [6]. Thisapproachwasmathematically cumbersomebutdid improve thequantitative results slightlyover the effective stiffness approach [4] asmeasured using a time based average coefficient of variationmeasureandtheellipsecoefficientofvariationmeasureforforceversusdeflection.Thisstudybuildsuponallof thispriorwork todevelopan improved,andsimpler,mechanisticmethod for

    normalisingthoracicPMHSdataagainusingatwoDOFviscoelasticmodel. PMHSdatafrom19subjectsfromthreestudies[5][7][8]ofthoracicpendulumtestswereanalysedtoillustratethemethodology.Thedeflectionenergyand theslopeof thedeflectionenergyversusdeflectioncurvewereused todevelopscale factors forenergy,slope,force,deflection,elasticstiffness,theviscousconstant,andtime.Scalefactorsforeffectivemassandsubjectvelocitywerederivedfromconservationofenergyandconservationofmomentum.Of thepreviousnormalisationstudies themassbasedmethodusedsubjectanthropometryand theknown

    anthropometryvaluesofstandardsizedhumanstodevelopscalefactorsfornormalisation. Theotherearliermethodsusedchestanthropometryratiosandaveragesoftheresponsesofthesubjectpoolbeinganalysedtoestimate thestandardsizedhumanresponsesused todevelopscale factors. Thecurrentstudymodifies thisapproachbyusing the responsemeasuresofdeflectionenergyand slope fromall19 subjectsasdependentvariablesandthesubjectanthropometrymeasuresasindependentvariablestodevelopstatisticalmultivariaterelationships for energy and slope. The resulting equations can then be used with any standard humananthropometry values to estimate standard human deflection energy and slope values and to calculate thecorrespondingscalefactorsforthestandardforce,deflection,elasticstiffness,viscousconstant,andtime.Results fromnormalisingall19subjectstothe50thpercentilemalearepresented,alongwithmeancurves

    andstandarddeviationbiofidelitytargets, inbothtimehistoryplotsand forceversusdeflectionplots. Theseplots have been compared with results from previous methods both qualitatively and quantitatively todemonstrate the improved grouping and smaller standard deviation targets of the deflection energynormalisationresults.

    II. METHODSResponsedataandanthropometrydatafrom19PMHStested in lateralandobliquependulumtype impact

    tests in three studieswereanalysedusingadeflectionenergymethodanda twoDOFviscoelasticmodel todevelopscalefactorsfornormalisationtothe50thpercentilesizemalehuman. Standardvaluesfordeflectionenergy and the slope of the deflection energy versus deflection curve were estimated using multivariaterelationshipsbetweenanthropometrymeasuresand impactvelocityas independentvariablesanddeflectionenergyandslopeofdeflectionenergyasdependentvariables.Mechanicalvaluesforenergy,force,deflection,stiffness, theviscousconstant,and timewerecalculated from thedatausing the twoDOFmodel. Effectivemassandsubjectvelocityvalueswere foundusing theequations forconservationofenergyandmomentumsolvedsimultaneously.Normalisationscalefactorstaketheform

    1 andareappliedtotherelevantparameterateachpointinthetimehistory.Adescriptionof the subjects and the data analysed, thederivationof the subjectmechanical values, the

    developmentofthemultivariaterelationshipforthestandardhumanmechanicalvalues,andthedevelopmentofscalefactorsispresentedbelow.

    SubjectDataNineteenPMHSfromthreethoracic impactstudieswereanalysed inthisstudy. Reference[6]testedseven

    PMHS innominal2.5m/s lateralandobliquethoracic impactsatthefourth intercostalspaceusinga23.86kgimpactorwitha15.24cmdiametercircularface.Reference[7]tested12PMHSin4.5m/sand5.5m/slateralandoblique thoracic impact testsat thexyphoidusinga23.99kg impactorwitha15.24cmhighx30.48cmwiderectangularface.Reference[8]alsotestedfiveadditionalPMHSin2.5and4.5m/sinlateralandobliquethoracic impact tests at either the fourth intercostal space or the xyphoid using either the circular face or

    IRC-17-72 IRCOBI Conference 2017

    -578-

  • rectangularfaceimpactors.Ofthese24PMHS,19wereselectedforanalysisinthisstudy.Thefivethatwerenotusedwereeliminated forvarious reasons suchas the impulseandmomentumcalculatedat the timeofmaximum thoracic deflection beingmore than 30% different [5][9]. Many of these subjects were testedmultipletimesbutonlythefirsttestwasusedinthisstudy.The19subjectsincludedwerejudgedtohaveverygoodqualitydataforanalysisandwouldlendconfidencetoademonstrationoftheprocedure.Theappliedforceversustimeandthechestbanddeflectionversustimewerecrossplottedandintegratedup

    tothepointofmaximumdeflectiontoobtainthedeflectionenergy.Forreasonsofconsistencytimezerowassetatthepointoffirstcontinuouspositivechestbanddeflectionforeverysubject. Generallytherewassomeappliedforcebeforethechestbandregistereddeflectionduetocontactwiththethoraxskinandsubcutaneousfat. Asaresult, attimezerothereusuallywasan initialpositiveforce. Thealternativewouldbetosettimezeroattheinitialpositiveforcebutinthatcasetherewouldbenomeasureddeflectionatthattime.Thedataused in thisanalysis included lateralandoblique testsaswellas circularand rectangular impact

    faces.Reference[8]testedameasureofelasticstiffnessandindicatednosignificantdifferenceinlateralversusoblique responseamong thevarious testsexcept for testswith thecircular impact face. Thestandard ttestprobabilityof=0.05wasused inthatanalysistoprotectagainsttype Ierrorandappropriatelyrejectedthenullhypothesisthatthedifferenceinthemeansofthestiffnesswaszero.Inthisstudyitwasdesirabletohavealargesetofsubjectstodemonstratethemethod.Thestandardforassumingthesubjectsarefromthesamepopulationwaslessstringentthaninastudydevelopingbiomechanicalresponsetargets.Thedatawastestedcomparingthedeflectionenergycurveslopesofthelateraltestst