20
BIULETYN WAT VOL. LVI, NR 2, 2007 Analiza numeryczna drgań własnych samolotu z nieciągłościami struktury usterzenia wysokości JAN BŁASZCZYK Wojskowa Akademia Techniczna, Wydział Mechatroniki, Instytut Techniki Lotniczej, 00-908 Warszawa, ul. S. Kaliskiego 2 Streszczenie. W artykule przedstawiono analizę numeryczną wpływu nieciągłości struktury siłowej połówek usterzenia wysokości na widmo drgań własnych samolotu. Rozpatrzono zmianę częstości i odpowiadające im postacie drgań. Zastosowano dynamiczne modele samolotu z poprzednich prac [5, 8]. Do analizy numerycznej wykorzystano dane współczesnego, szkolno-bojowego samo- lotu z napędem odrzutowym [18], zbudowanego w konwencjonalnym układzie aerodynamicznym. Przedstawiona problematyka jest bezpośrednią kontynuacją prac [15, 16, 17]. Słowa kluczowe: konstrukcje lotnicze, dynamika konstrukcji, drgania własne, analiza numeryczna Symbole UKD: 629.7.023 Wprowadzenie W statku powietrznym, traktowanym jako rozgałęziony, przestrzenny układ mechaniczny, charakteryzującym się określonym rozkładem mas i sztywności jego zespołów, w czasie lotu, mogą wystąpić niekorzystne efekty dynamiczne. Chodzi tu głównie o różnego rodzaju drgania, wymuszone i samowzbudne [1, 2, 4, 7, 10]. W konstrukcji samolotu źródłem pierwszego rodzaju drgań są siły wymuszające, takie jak zespół napędowy (niewłaściwe wyrównoważenie) oraz siły aerodynamiczne (burzliwa atmosfera o podmuchach cyklicznych, oderwanie strumienia na opły- wanych powierzchniach). Zaliczamy do nich drgania cięgien układu sterowania, łoży zespołu napędowego, bafeting (ang. buffeting, określany terminem polskim trzepotanie) usterzenia itp. Drgania samowzbudne, nazywane flatterem, dotyczą powierzchni nośnych (skrzydeł, usterzeń, lotek, sterów) samolotu. Flatter powierzchni nośnych powsta-

Analiza numeryczna drgań własnych samolotu z ...yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BWA...W statku powietrznym, traktowanym jako rozgałęziony, przestrzenny

Embed Size (px)

Citation preview

BIULETYN WAT VOL. LVI, NR 2, 2007

Analiza numeryczna drgań własnych samolotu z nieciągłościami struktury usterzenia wysokości

JAN BŁASZCZYK

Wojskowa Akademia Techniczna, Wydział Mechatroniki, Instytut Techniki Lotniczej, 00-908 Warszawa, ul. S. Kaliskiego 2

Streszczenie. W artykule przedstawiono analizę numeryczną wpływu nieciągłości struktury siłowej połówek usterzenia wysokości na widmo drgań własnych samolotu. Rozpatrzono zmianę częstości i odpowiadające im postacie drgań. Zastosowano dynamiczne modele samolotu z poprzednich prac [5, 8]. Do analizy numerycznej wykorzystano dane współczesnego, szkolno-bojowego samo-lotu z napędem odrzutowym [18], zbudowanego w konwencjonalnym układzie aerodynamicznym. Przedstawiona problematyka jest bezpośrednią kontynuacją prac [15, 16, 17]. Słowa kluczowe: konstrukcje lotnicze, dynamika konstrukcji, drgania własne, analiza numerycznaSymbole UKD: 629.7.023

Wprowadzenie

W statku powietrznym, traktowanym jako rozgałęziony, przestrzenny układ mechaniczny, charakteryzującym się określonym rozkładem mas i sztywności jego zespołów, w czasie lotu, mogą wystąpić niekorzystne efekty dynamiczne. Chodzi tu głównie o różnego rodzaju drgania, wymuszone i samowzbudne [1, 2, 4, 7, 10].

W konstrukcji samolotu źródłem pierwszego rodzaju drgań są siły wymuszające, takie jak zespół napędowy (niewłaściwe wyrównoważenie) oraz siły aerodynamiczne (burzliwa atmosfera o podmuchach cyklicznych, oderwanie strumienia na opły-wanych powierzchniach). Zaliczamy do nich drgania cięgien układu sterowania, łoży zespołu napędowego, bafeting (ang. buffeting, określany terminem polskim trzepotanie) usterzenia itp.

Drgania samowzbudne, nazywane flatterem, dotyczą powierzchni nośnych (skrzydeł, usterzeń, lotek, sterów) samolotu. Flatter powierzchni nośnych powsta-

214 J. Błaszczyk

je, rozwija się i jest podtrzymywany w wyniku działania sił aerodynamicznych powstających w procesie drgań, tj. dzięki energii napływającego strumienia po-wietrza. Drgania tego typu występują przy pewnej, ściśle określonej prędkości lotu samolotu. Chodzi o to, by prędkość ta nie należała do zakresu eksploatacyjnych prędkości samolotu.

Obydwa rodzaje drgań są bardzo niekorzystne dla samolotu. Szczególnie flatter, ma tak gwałtowny przebieg, że szybko (w ciągu kilku sekund) prowadzi dozniszczenia konstrukcji.

Na obydwa rodzaje drgań mają wpływ różne parametry samolotu, które są dobierane na etapie projektowania jego konstrukcji. Stosuje się wiele przedsięwzięć aerodynamiczno-konstrukcyjnych, by np. flatter powierzchni nośnych samolotuwystąpił dopiero przy prędkości zdecydowanie większej niż Vmax lotu poziomego samolotu.

Wymienione rodzaje drgań, dla konkretnego układu samolotu, jego kompozycji aerodynamiczno-konstrukcyjnej, zależą m.in. od wielkości i rozkładu mas oraz sztyw-ności jego zespołów. Można zatem powiedzieć, że zależą od widma (częstości i postaci) drgań własnych samolotu, inaczej od charakterystyk rezonansowych układu.

W pracy przeprowadzono analizę wpływu lokalnego zmniejszenia sztywności wybranego zespołu płatowca na widmo drgań własnych samolotu. Tego rodzaju nieciągłości mogą występować dowolnie często w czasie eksploatacji samolotów wojskowych, szczególnie podczas ich bojowego użycia. Możemy mieć do czynienia z lokalnym zniszczeniem (lub urwaniem, odstrzeleniem) fragmentu dowolnego zespołu płatowca bądź lokalnym naruszeniem jego struktury nośnej (siłowej).

W niniejszej pracy badano numerycznie wpływ nieciągłości struktury uste-rzenia wysokości na widmo drgań własnych samolotu. W pracach wcześniejszych rozpatrzono analogiczną problematykę, z tym że dotyczyła ona wpływu nieciągłości skrzydeł [17] oraz odkształcalnych części kadłuba [15, 16].

W dostępnej literaturze z reguły brak jest publikacji dotyczących problemów wynikających z awaryjnych stanów konstrukcji statków powietrznych [11]. Do nie-licznych, publikowanych z tego obszaru należy zaliczyć prace [6, 13, 14]. W pierwszej analizowano doświadczalnie wpływ lokalnych nieciągłości struktury powierzchni nośnej (tu skrzydła) na rozkład ciśnienia na tej powierzchni, w drugiej badano numerycznie wybrane problemy: drgań własnych struktury, analizy naprężeń oraz dynamiki konstrukcji współczesnego samolotu bojowego ze zmienną konfiguracjąpłata. W pracy [14] przedstawiono eksperymentalne i numeryczne badania odpor-ności łopaty wirnika nośnego śmigłowca na rażenie pociskami broni strzeleckiej. Drgania własne samolotów o niesymetrycznej budowie, wynikłej z urwania fragmentu płata, bądź mającego miejscowe uszkodzenia struktury, analizowano również we wcześniejszych pracach własnych [9, 12] oraz w [15, 16, 17]. W tych ostatnich ana-lizowano wpływ nieciągłości (ich wielkości i położenia) struktury odkształcalnych części kadłuba oraz skrzydeł na widmo drgań własnych samolotu.

215Analiza numeryczna drgań własnych samolotu z nieciągłościami struktury ...

W tej pracy przedstawiono analizę numeryczną drgań własnych samolotu z nie-ciągłościami połówek usterzenia wysokości. Zbadano wpływ wielkości nieciągłości oraz jej umiejscowienie wzdłuż tego zespołu płatowca na zmianę widma drgań samolotu. Istnienie nieciągłości usterzenia wysokości (położonych symetrycznie) pozwala na rozpatrzenie samolotu jako obiektu symetrycznego, to znaczy mającego pionową, podłużną płaszczyznę symetrii masowej i sprężystej Oxz (rys. 1).

Rys. 1. Przyjęte układy współrzędnych samolotu

2. Model obliczeniowy samolotu; obiekt badań

Do analizy problemu wykorzystano dyskretne, dynamiczne modele samo-lotów zaproponowane w pracach [5, 8], w których stosowano jednowymiarową dyskretyzację odkształcalnych zespołów samolotu przy wykorzystaniu techniki elementów skończonych [3] i dwustopniowej (elementy → elementy wyższego rzędu) syntezy struktury.

Podobnie jak w poprzednich pracach, przyjęto, że odkształcalne zespoły sa-molotu (skrzydła, połówki usterzenia wysokości, usterzenie pionowe) wykonują drgania skrętne i poprzeczne drgania giętne (rys. 1):

φi = φi (yi, t), wi = wi (yi, t), i = 1, ..., 5, (1)

gdzie: i = 1 i 2 dotyczy odpowiednio prawego oraz lewego skrzydła, 3 i 4 — prawej i lewej połówki usterzenia poziomego oraz i = 5 dotyczy usterzenia pionowego.

216 J. Błaszczyk

Należy tu dodać, że zespoły wykonujące ruchy (1) traktuje się jako nieod-kształcalne w swoich płaszczyznach. Natomiast odkształcalne części kadłuba drgają skrętnie wokół podłużnej osi samolotu Ox oraz giętnie w płaszczyznach prostopadłych Oxz i Oxy (rys. 1):

φi = φi (xki, t), wki = wki (xki, t), wkbi = wkbi (xki, t), i = 1, 2, (2)

gdzie: i = 1 dotyczy środkowej części kadłuba, natomiast i = 2 — nosowej części kadłuba.

Równania dynamicznej równowagi odkształcalnych zespołów samolotu uzu-pełniono odpowiednimi warunkami dynamicznymi, tj. równaniami ruchu brył sztywnych (część tylna stanowiąca obszar kadłuba w rejonie mocowania usterzeń, część przednia kadłuba w rejonie mocowania skrzydeł) oraz warunkami kinema-tycznymi i brzegowymi, łącznie tworzącymi globalny układ równań, który można przedstawić w macierzowej postaci:

C p = 0, (3)

gdzie C jest macierzą charakterystyczną rozpatrywanego układu i reprezentuje masowe oraz geometryczne parametry samolotu. Wektor p ma składowe, którymi są odpowiednio dobrane przemieszczenia w przekrojach skrajnych odkształcalnych zespołów samolotu. Formalizm matematyczny, którego wynikiem jest otrzymanie układu (3) przedstawiono w [8].

Poszukiwane równanie częstości drgań własnych samolotu otrzymuje się, przyrównując wyznacznik charakterystyczny układu (3) do zera

∆ = det C = 0. (4)

W dalszej części artykułu przedstawiono wyniki analizy numerycznej wid-ma drgań układu bez uszkodzeń struktury (widmo nominalne) i widma drgań samolotu z nieciągłościami struktury usterzenia wysokości. Otrzymane wyniki poddano analizie porównawczej. Układ równań dynamicznej równowagi struktury (3) wykorzystano do wyznaczenia częstości i postaci drgań badanego samolotu. Opracowano algorytm, zredagowano program i wykonano obliczenia na kompu-terze klasy PC. Wyznaczenie wartości częstości drgań własnych i odpowiadające im wektory własne reprezentujące postacie tych drgań, przeprowadzono podobnie jak we wcześniejszych pracach.

Obiektem analizy numerycznej jest współczesny samolot szkolno-bojowy z turbinowym napędem odrzutowym, zbudowany w klasycznym układzie aerody-namicznym. Skrzydła wolnonośne w układzie górnopłata, o obrysie trapezowym,

217Analiza numeryczna drgań własnych samolotu z nieciągłościami struktury ...

wydłużeniu λ ≈ 4,6, konstrukcji dźwigarowej. Usterzenie poziome i pionowe konwencjonalne (statecznik + ster). Obydwa o obrysie trapezowym i wydłużeniu λH ≈ 5 — dla usterzenia poziomego i λV ≈ 1,3 — dla usterzenia pionowego. Kon-strukcja usterzeń dźwigarowa. Kadłub konstrukcji półskorupowej.

Obliczenia widma drgań wykonano dla masy startowej samolotu wynoszącej 5700 kg, w konfiguracji gładkiej (bez podwieszeń zewnętrznych).

Niezbędne do analiz numerycznych rozkłady mas i sztywności odkształcalnych zespołów samolotu zaczerpnięto z opracowań [18]. Wybrane z nich, dotyczące usterzenia wysokości samolotu, zamieszczono na rysunku 2. Przedstawiono tu rozkład geometrycznych momentów bezwładności (osiowego — Ix, biegunowego — Io) wzdłuż długości połówki usterzenia wysokości.

Rys. 2. Rozkład geometrycznych momentów bezwładności wzdłuż połówki usterzenia wysokości samolotu szkolno-bojowego

3. Analiza numeryczna drgań samolotu

Do obliczeń strukturę samolotu, podobnie jak w pracach [15-17], podzielono na elementy o krawędziach prostopadłych do osi sprężystych odkształcalnych zespołów. Długości tych elementów dobrano zależnie od charakteru rozkładów parametrów masowych i sztywnościowych (por. rys. 2). Zespoły o zbliżonych długościach dzielono na taką samą liczbę elementów. Dlatego skrzydła (prawe i lewe) oraz nosową część kadłuba podzielono na n1 elementów, a połówki usterzenia wysokości, usterzenie kie-runku oraz środkową część kadłuba na n2 = 0,5 n1 elementów. Obliczenia wykonano przy podziale na n1 = 20 elementów i n2 = 10 elementów. Podział taki zadowalająco

218 J. Błaszczyk

aproksymuje rzeczywiste rozkłady parametrów masowych i sprężystych odkształcal-nych zespołów samolotu. Przy tak przyjętym podziale struktury, samolot zawiera 100 elementów skończonych, co odpowiada użyciu około 400 stopni swobody.

Przedstawiono wyniki obliczeń widma częstości drgań własnych samolotu szkolno-bojowego bez uszkodzeń oraz z nieciągłościami połówek usterzenia wy-sokości. Pierwsze widmo drgań, dotyczące samolotu bez uszkodzeń usterzenia, w dalszej części opracowania będziemy nazywać widmem nominalnym. Analizie numerycznej poddano pięć pierwszych częstości widma. Obliczone częstości widma samolotu nieuszkodzonego przyporządkowano zespołom samolotu. W tym celu wykorzystano metodykę zaproponowaną we wcześniejszych pracach. W wyniku tak przeprowadzonych badań można stwierdzić, że dla ω1 dominujące znaczenie ma zginanie kadłuba w płaszczyźnie bocznej, ω2 — symetryczne zginanie skrzydeł, ω3 — skręcanie kadłuba, ω4 — symetryczne zginanie kadłuba i dla ω5 — niesyme-tryczne zginanie skrzydeł.

Następnie przedstawiono wyniki analizy numerycznej wpływu nieciągłości struktury w połówkach usterzenia wysokości (rys. 1). Należy dodać, że nieciągłość struktury (jej zniszczenie, rozerwanie) może nastąpić w wyniku rażenia pociskiem (artyleryjskim, rakietowym). Lokalne zniszczenie struktury prowadzi do określo-nego zmniejszenia sztywności w tym obszarze, której wielkość zależy głównie od energii pocisku i energii zawartego w nim ładunku kruszącego. W obliczeniach, rażenie pociskiem modelowano poprzez ubytek sztywności na długości odpo-wiedniego elementu skończonego usterzenia. Zmieniano wielkość tego ubytku w granicach od 30 do 90% sztywności nominalnej (pierwotnej) z jednoczesnym przemieszczaniem tej nieciągłości wzdłuż długości połówek usterzenia. To znaczy, że przestrzelina „przemieszczała się” od swobodnego końca (konsola usterzenia) usterzenia do przekroju mocowania połówki usterzenia do kadłuba (tylna sztywna bryła kadłuba).

Uzyskane częstości widma z nieciągłościami usterzenia porównano z widmem nominalnym. Określono różnicę względną ∆ϖ (względny spadek), którą obliczano zgodnie ze wzorem

∆ϖ = 100 (ωniec — ωnom) / ωnom [%], (5)

gdzie: ωniec i ωnom — odpowiednie częstości widma dla układu z nieciągłościami oraz bez uszkodzeń.

W dalszym ciągu przedstawiono wyniki analizy numerycznej widma drgań samolotu z uszkodzeniami struktury połówek usterzenia wysokości. Przyjmowa-no, że nieciągłości są rozmieszczone symetrycznie względem podłużnej, pionowej płaszczyzny symetrii samolotu Oxz (rys. 1). Analizie poddano zmiany częstości widma oraz odpowiadające im postacie drgań.

219Analiza numeryczna drgań własnych samolotu z nieciągłościami struktury ...

Uzyskane rezultaty obliczeń zmiany częstości drgań przedstawiono graficznie narysunku 3-11. Wpływ położenia nieciągłości, o stałym ubytku sztywności, wzdłuż połówek usterzenia wysokości na widmo drgań samolotu ω1-ω5 przedstawiono na rysunkach 3-6. Natomiast zmiany wartości kolejnych częstości analizowanego widma, od różnych ubytków sztywności w obszarze nieciągłości, pokazano na rysunkach 7-11. Każdorazowo dla „przemieszczającej się” nieciągłości wzdłuż połówek usterzenia wysokości przyjmowano stały ubytek sztywności (zginania i skręcania) w obszarze nieciągłości. W taki sposób przeprowadzono analizę widma drgań samolotu z nieciągłościami o ubytkach sztywności wynoszących: 30, 50, 70 i 90% w stosunku do struktury usterzenia bez uszkodzeń.

Z wykresów przedstawionych na rysunkach 3-6 wynika, że symetrycznemu „przemieszczaniu się” nieciągłości, od swobodnych końców połówek usterzenia do kadłuba, towarzyszy spadek wszystkich częstości analizowanego widma drgań samolotu. Im bliżej kadłuba jest położona nieciągłość, tym większe są spadki wszystkich częstości analizowanego widma. Przy czym spadki te, dla kolejnych częstości widma, charakteryzują się różną intensywnością. Największe z nich dotyczą

Tabela 1

Zestawienie zmian widma częstości samolotu w zależności od położenia przestrzeliny (ubytek sztywności 70%) wzdłuż połówek usterzenia wysokości

Widmo nominalne

ω1 = 13,776 Hz ω2 = 13,962 Hz ω3 = 17,367 Hz ω4 = 21,632 Hz ω5 = 22,193 Hz

Kd, Ig, nies. Sk, Ig, sym. Kd, Is, nies. Kd, Ig, sym. Sk, Ig, nies.

Częstości drgań samolotu z uszkodzeniami

ω1iΔϖ1i [%] ω2i

Δϖ2i [%] ω3i

Δϖ3i [%] ω4i

Δϖ4i [%] ω5i

Δϖ5i [%]

e1 13,776 0,00 13,962 0,00 17,365 –0,01 21,628 –0,02 22,191 –0,01e2 13,776 0,00 13,961 –0,01 17,317 –0,29 21,525 –0,49 22,154 –0,18e3 13,775 –0,01 13,955 –0,05 17,121 –1,42 21,080 –2,55 21,993 –0,90e4 13,775 –0,01 13,942 –0,14 16,709 –3,79 20,132 –6,93 21,646 –2,46e5 13,774 –0,02 13,914 –0,34 16,114 –7,21 18,923 –12,52 21,208 –4,44

Oznaczenia: e1, ..., e5 — kolejne skończone elementy połówek usterzenia wysokości (symetryczne względem płaszczyzny Oxz — rys. 1) z ubytkami sztywności wynoszącymi 70%, ωij — i-ta (i = 1, 2, ..., 5) częstość widma samolotu z przestrzeliną w j-tym elemencie, ∆ϖij — względne zmniejszenie i-tej częstości widma przy nieciągłości struktury w j-tym elemencie połówki usterzenia wysokości (i = 1, 2, ..., 5, j = 1, 2, ..., 5), Kd — kadłub, Sk — skrzydło, I — pierwsza postać, g — zginanie, s — skręcanie, nies. — postać niesymetryczna, sym. — postać symetryczna (np. Sk, Ig, nies. — oznacza pierwszą niesymetryczną postać giętnych drgań skrzydła).

220 J. Błaszczyk

symetrycznego zginania kadłuba (częstość ω4) i skręcania tego zespołu (ω3). Nieco mniejsze spadki obserwujemy dla częstości niesymetrycznego zginania skrzydeł (ω5). Bardzo małe spadki odnoszą się do częstości bocznego zginania kadłuba (ω1) i symetrycznego zginania skrzydeł (ω2).

Rys. 3. Wpływ położenia nieciągłości struktury wzdłuż długości połówek usterzenia wysokości na widmo drgań samolotu. Ubytek sztywności — 30%

Rys. 4. Wpływ położenia nieciągłości struktury wzdłuż długości połówek usterzenia wysokości na widmo drgań samolotu. Ubytek sztywności — 50%

221Analiza numeryczna drgań własnych samolotu z nieciągłościami struktury ...

Rys. 6. Wpływ położenia nieciągłości struktury wzdłuż połówek usterzenia wysokości na widmo drgań samolotu. Ubytek sztywności — 90%

Z wykresów zamieszczonych na rysunkach 7-11 wynika, że znaczący wpływ na zmianę częstości ma również wielkość występujących nieciągłości (tu przyjęte ubytki sztywności zginania i skręcania w obszarze danego elementu usterzenia). Na przykład, dla nieciągłości w połówkach usterzenia charakteryzujących się spadkiem sztywności

Rys. 5. Wpływ położenia nieciągłości struktury wzdłuż długości połówek usterzenia wysokości na widmo drgań samolotu. Ubytek sztywności — 70%

222 J. Błaszczyk

rzędu 70% (w stosunku do samolotu bez uszkodzeń) i położonych w rejonie moco-wania do kadłuba, wymienione wcześniej częstości kadłubowe maleją (tab. 1, por. rysunki 5 i 10): ω4 o około 13% (rys. 10), natomiast ω3 (rys. 9) o ponad 7%. Spadek

Rys. 7. Zmiana częstości 1 (boczne zginanie kadłuba) od położenia nieciągłości wzdłuż połówek usterzenia wysokości. Ubytek sztywności: 30-90%

Rys. 8. Zmiana częstości 2 (symetryczne zginanie skrzydeł) od położenia nieciągłości wzdłuż po-łówek usterzenia wysokości. Ubytek sztywności: 30-90%

223Analiza numeryczna drgań własnych samolotu z nieciągłościami struktury ...

Rys. 9. Zmiana częstości 3 (skręcanie kadłuba) od położenia nieciągłości wzdłuż połówek usterzenia wysokości. Ubytek sztywności: 30-90%

Rys. 10. Zmiana częstości 4 (symetryczne zginanie kadłuba) od położenia nieciągłości wzdłuż połówek usterzenia wysokości. Ubytek sztywności: 30-90%

224 J. Błaszczyk

częstości niesymetrycznego zginania skrzydeł (ω5) jest mniejszy, nie przekracza 5%. Należy dodać, że dla większej nieciągłości (tu ubytek sztywności 90%), zmniejszenie wymienionych tu częstości jest zdecydowanie większe: dla ω4 wynosi ponad 33% (rys. 10), ω3 — przekracza 20% (rys. 9) i dla ω5 wynosi około 12% (rys. 11).

Z przedstawionych obliczeń wynika, że pozostałe częstości analizowanego widma samolotu, dotyczące niesymetrycznego zginania kadłuba (ω1) i symetrycz-nego zginania skrzydeł (ω2), są mało wrażliwe na umiejscowienie oraz wielkość nieciągłości w połówkach usterzenia wysokości. Nawet przy nieciągłości charak-teryzującej się ubytkiem sztywności 90%, znajdującej się w rejonie mocowania do kadłuba, spadki częstości nie przekraczają 4% dla ω2 (rys. 8), a dla częstości ω1 są jeszcze mniejsze, bowiem nie przekraczają 0,5%.

Reasumując, istnienie nieciągłości w połówkach usterzenia wysokości (poło-żonych symetrycznie względem płaszczyzny samolotu Oxz — rys. 1), prowadzi do spadku wszystkich częstości analizowanego widma. Spadki te są zależne wprost od wielkości przestrzeliny oraz jej położenia wzdłuż długości połówek usterzenia. Najbardziej wrażliwe w kolejności są częstości: kadłubowe dotyczące symetrycznego zginania — ω4 (z maksymalnym spadkiem ponad 33%) i skręca-nia kadłuba — ω2 (spadek przekraczający 20%) oraz częstość niesymetrycznego zginania skrzydeł — ω5 ze spadkiem około 12%. Pozostałe częstości badanego widma, dotyczące niesymetrycznego zginania kadłuba (ω1) i symetrycznego zginania skrzydeł (ω2), wykazują małą wrażliwość na istnienie nieciągłości w usterzeniu poziomym.

Rys. 11. Zmiana częstości 5 (niesymetryczne zginanie skrzydeł) od położenia nieciągłości wzdłuż połówek usterzenia wysokości. Ubytek sztywności: 30-90%

225Analiza numeryczna drgań własnych samolotu z nieciągłościami struktury ...

W pracy przeprowadzono również analizę wpływu nieciągłości w strukturze usterzenia wysokości na postacie drgań badanego widma. Wybrane wyniki tych analiz przedstawiono na rysunkach 12-19. Ograniczono się tu do pokazania zmiany postaci wybranych zespołów samolotu, z reguły tych, dla których postać jest do-minująca. Na przykład dla częstości ω1 dominujące jest niesymetryczne zginanie

Rys. 12. Zmiana bocznego ugięcia kadłuba dla częstości 1 (niesymetryczne zginanie kadłuba) od położenia nieciągłości w połówkach usterzenia wysokości. Ubytek sztywności — 70%

Rys. 13. Zmiana kąta skręcenia kadłuba dla częstości widma 1 (niesymetryczne zginanie kadłuba) od położenia nieciągłości w połówkach usterzenia wysokości. Ubytek sztywności — 70%

226 J. Błaszczyk

kadłuba, dlatego pokazano zmianę postaci bocznego ugięcia (rys. 12) oraz kąta skręcenia (rys. 13) tego zespołu samolotu. Dla częstości ω2 dominuje symetryczne zginanie skrzydeł, na wykresach (rys. 14 i 15) przedstawiono postacie ugięcia oraz skręcenia skrzydła itd.

Rys. 14. Zmiana ugięcia skrzydła dla częstości 2 (symetryczne zginanie skrzydeł) w zależności od położenia nieciągłości w połówkach usterzenia wysokości. Ubytek sztywności — 70%

Rys. 15. Zmiana kąta skręcenia skrzydła dla częstości 2 (symetryczne zginanie skrzydeł) od położenia nieciągłości w połówkach usterzenia wysokości. Ubytek sztywności — 70%

227Analiza numeryczna drgań własnych samolotu z nieciągłościami struktury ...

Do obliczeń połówkę usterzenia dzielono na 5 elementów, czyli rozpatrzono pięć kolejnych położeń nieciągłości wzdłuż połówek usterzenia wysokości. Każdo-razowo były to nieciągłości o stałych ubytkach sztywności (30, 50, 70 i 90%). W celu zapewnienia czytelności wykresów przedstawiono postacie dla dwóch wybranych

Rys. 16. Zmiana kąta skręcenia kadłuba dla częstości 3 (skręcanie kadłuba) od położenia nieciągłości w połówkach usterzenia wysokości. Ubytek sztywności — 70%

Rys. 17. Zmiana symetrycznego ugięcia kadłuba dla częstości 4 (symetryczne zginanie kadłuba) od położenia nieciągłości w połówkach usterzenia wysokości. Ubytek sztywności — 70%

228 J. Błaszczyk

nieciągłości: w elemencie e3, tj. dla nieciągłości znajdującej się w połowie długości połówki usterzenia oraz w elemencie e5 (rejon mocowania do kadłuba.) Dodatkowo, w celach porównawczych, naniesiono postać dotyczącą samolotu bez uszkodzeń struktury. Na wszystkich wykresach postaci przedstawiono wyniki obliczeń dla nieciągłości charakteryzujących się ubytkiem sztywności 70%.

Rys. 18. Zmiana ugięcia skrzydła dla częstości 5 (niesymetryczne zginanie skrzydeł) od położenia nieciągłości w połówkach usterzenia wysokości. Ubytek sztywności — 70%

Rys. 19. Zmiana kąta skręcenia skrzydła dla częstości 5 (niesymetryczne zginanie skrzydeł) od położenia nieciągłości w połówkach usterzenia wysokości. Ubytek sztywności — 70%

229Analiza numeryczna drgań własnych samolotu z nieciągłościami struktury ...

Jak wspomniano wcześniej, postacie kadłubowe dla częstości ω1 (boczne zginanie kadłuba) pokazano na rysunkach 12 i 13. Z rysunku pierwszego, przedstawiającego ugięcie tego zespołu w płaszczyźnie bocznej Oxz (rys. 1) wynika, że jego kształt nie ulega zmianie. Podobnie jest z węzłami dla obydwu odkształcalnych części kadłuba. Dla środkowej części kadłuba węzeł giętny leży na 35% jej długości, dla części przedniej kadłuba — na około 16% jej długości. Położenie węzłów jest praktycznie stałe, nie są one wrażliwe na wielkość i umiejscowienie nieciągłości wzdłuż usterzenia wysokości, dla tej częstości widma. Postać dotycząca skręcania (rys. 13) ma podobny kształt i taki sam znak jak dla samolotu bez uszkodzeń. Niewielkie różnice dotyczą obszaru środ-kowej części kadłuba w rejonie mocowania usterzeń. Największe skręcenie kadłuba występuje w rejonie mocowania skrzydeł i jest takie same co do modułu, niezależnie od położenia nieciągłości wzdłuż usterzenia wysokości. Należy dodać, że skręcenie obydwu części kadłuba jest tego samego znaku.

Postacie odpowiadające częstości ω2 (symetryczne zginanie skrzydeł) i doty-czące ugięcia oraz skręcenia skrzydeł odpowiednio przedstawiono na rysunkach 14 i 15. Wynika z nich, że wpływ istnienia nieciągłości w usterzeniu poziomym na symetryczne ugięcie oraz skręcenie skrzydeł jest mało znaczący. Charakter ugięcia jest zachowany, a zmiana znaku ma miejsce na 20% długości skrzydeł mierzonej od okuć „skrzydło-kadłub”. Węzła skrętnego brak.

Dla częstości ω3, dotyczącej skręcania kadłuba, analizowany obraz postaci sprowadza się do zmiany kąta skręcenia (rys. 16) wzdłuż długości tego zespołu. Nie pokazano ugięć kadłuba, bowiem ugięcie boczne jest małe, a podłużne (syme-tryczne) jest zerowe. Z postaci skręcania kadłuba, przedstawionego na rysunku 16 wynika, że zmiany kątów skręcenia są tego samego znaku i podobnego kształtu. Istnienie nieciągłości w usterzeniu poziomym prowadzi do wzrostu kąta skręcenia nosowej części kadłuba oraz jego zmniejszenia w środkowej części kadłuba, szcze-gólnie w pobliżu mocowania zespołu usterzeń. Wymienione wzrosty i spadki kąta skręcenia zależą wprost od wielkości nieciągłości i ich odległości od swobodnych końców połówek usterzenia wysokości.

Obraz postaci dotyczącej częstości ω4, z dominującym symetrycznym zgina-niem kadłuba, ograniczono do przedstawienia symetrycznego ugięcia tego zespołu (rys. 17). Charakter postaci, dla różnego umiejscowienia nieciągłości w usterzeniu wysokości, jest podobny co do kształtu i znaku. Istnieją dwa węzły giętne, po jed-nym w każdej części kadłuba. W nosowej części węzeł znajduje się na 25% tej części kadłuba, niezależnie od położenia nieciągłości w usterzeniu poziomym. Węzeł położony w środkowej części kadłuba, przy istnieniu nieciągłości, „przemieszcza się” w kierunku usterzeń i dla nieciągłości położonej tuż przy kadłubie (element e5) leży na 10% długości tej części kadłuba. W stosunku do samolotu bez uszkodzeń, „wędrówka” tego węzła wynosi około 15% długości środkowej części kadłuba.

Dla częstości ω5, z dominującym niesymetrycznym zginaniem skrzydeł, wy-kresy postaci przedstawiono na rysunkach 18 i 19. Pokazano tutaj ugięcie i skrę-

230 J. Błaszczyk

cenie jednego skrzydła, postacie drugiego będą symetryczne, lecz z przeciwnym znakiem. Pierwszy z rysunków dotyczy postaci niesymetrycznego ugięcia skrzydła, drugi — skręcenia tego zespołu. Obydwie postacie nie wykazują istotnych zmian w stosunku do samolotu bez uszkodzeń.

Na zakończenie należy zaznaczyć, że dotąd badaniom numerycznym poddano widmo drgań samolotu składające się z pięciu częstości. Wszystkie jako pierwsze harmoniczne przyporządkowano dwóm zespołom samolotu — skrzydłom (płat nośny) i kadłubowi. W widmie tym brak jest częstości, które można by „przypisać” usterzeniu wysokości, a więc zespołowi z nieciągłościami. Częstości takie istnieją i znajdują się w zakresie wyższych harmonicznych widma samolotu.

4. Zakończenie, wnioski

Niniejszy artykuł jest bezpośrednią kontynuacją prac [15, 16, 17] dotyczących drgań własnych samolotu będącego w awaryjnym stanie konstrukcji. W artykule przedstawiono wyniki analizy numerycznej drgań własnych współczesnego samo-lotu szkolno-bojowego z napędem odrzutowym. Analizie poddano pięć pierwszych częstości widma samolotu z nieciągłościami (przestrzelinami) struktury siłowej połówek usterzenia wysokości. Rozpatrzono istnienie przestrzelin usytuowanych symetrycznie względem płaszczyzny symetrii samolotu. Otrzymane wyniki po-równano z widmem samolotu bez uszkodzeń. W analizie drgań wykorzystano dyskretne, dynamiczne modele samolotu z wcześniejszych prac.

Z przedstawionych obliczeń drgań pierwszych pięciu częstości widma ω1÷ω5, które dotyczą pierwszych postaci kadłuba (zginanie symetryczne, skręcanie, zgi-nanie boczne) i skrzydeł (zginanie symetryczne, zginanie niesymetryczne), można sformułować następujące wnioski:

• Nieciągłości w połówkach usterzenia wysokości (tu rozłożone symetrycz-nie) prowadzą do zmniejszenia wszystkich częstości analizowanego widma samolotu. Zmniejszenie to zawiera się w zakresie od kilku do kilkudziesięciu procent w stosunku do widma nominalnego i jest zróżnicowane dla kolej-nych zespołów samolotu traktowanych jako struktury odkształcalne.

• Wielkość spadku częstości zależy wprost od wielkości nieciągłości i jej umiejscowienia wzdłuż długości połówek usterzenia wysokości. Nie-ciągłości charakteryzujące się większymi spadkami sztywności (większe przestrzeliny) prowadzą do większych spadków częstości. Podobny efekt uzyskuje się w przypadku „przemieszczania się” nieciągłości w kierunku obszaru mocowania usterzenia do kadłuba.

• Najbardziej wrażliwe na istnienie nieciągłości w usterzeniu poziomym są częstości kadłubowe dotyczące symetrycznego zginania (ω4) z maksy-malnym spadkiem ponad 33% i skręcania kadłuba (ω3) — ze spadkiem

231Analiza numeryczna drgań własnych samolotu z nieciągłościami struktury ...

ponad 20%. Nieco mniejszą wrażliwość wykazuje częstość skrzydłowa (ω5 — niesymetryczne zginanie) ze spadkiem około 12%. Podane tu pro-centowe wartości spadków dotyczą nieciągłości z ubytkiem sztywności 90% i leżących w pobliżu okuć „usterzenie-kadłub”. Pozostałe dwie czę-stości widma (ω1 — niesymetryczne zginanie kadłuba i ω3 — symetryczne zginanie skrzydeł) wykazują małą wrażliwość na istnienie nieciągłości w usterzeniu poziomym.

• Zmianom częstości widma towarzyszą niewielkie zmiany postaci. Zależą one wprost od wielkości nieciągłości i jej odległości od okuć „usterzenie wysokości-kadłub”. Im przestrzelina jest większa i leży bliżej kadłuba, tym zmiany postaci są większe. Generalnie, w badanym widmie postacie (ugię-cia, skręcenia) zachowują kształt z niewielkimi zmianami, co do modułu, zauważalnymi dla nieciągłości leżących w rejonie mocowania usterzeń. Podobnie jest z położeniem węzłów giętnych i skrętnych. Najbardziej wraż-liwym zespołem jest kadłub, szczególnie w przypadku skręcania (częstość ω3) i symetrycznego zginania (częstość ω4). Występujące zmiany dotyczą wartości ugięcia środkowej części kadłuba (zwłaszcza w pobliżu moco-wania usterzeń) oraz położenia węzła skrętnego wykazującego wędrówkę w zakresie 10% długości tej części kadłuba.

Problematyka drgań własnych statków powietrznych, będących w awaryjnych stanach konstrukcji, wynikających z istnienia nieciągłości struktury siłowej pła-towca, jest zagadnieniem istotnym — zarówno z punktu widzenia bezpieczeństwa latania, jak i walorów poznawczych. Należy dodać, że samoloty w odróżnieniu od statków bezzałogowych, pomimo rażenia, mogą wykonać zadanie i powrócić do bazy. Dlatego ważnym problemem jest ustalenie osobliwości lotu i dynamiki konstrukcji samolotów [1, 2, 7, 10] będących w takich stanach.

Artykuł wpłynął do redakcji 3.04.2007 r. Zweryfikowaną wersję po recenzji otrzymano w maju 2007 r.

LITERATURA

[1] R. L. Bisplinghoff, H. Ashley, R.L. Halfman, Aeroelasticity, Addison_Wesley Publishing Company, Cambridge, 1956.

[2] R. L. Bisplinghoff, H. Ashley, Principles of Aeroelasticity, New York, London, 1962. [3] O. C. Zienkiewicz, Metoda elementów skończonych, Arkady, 1972. [4] M. Nowak, W. Potkański, Metoda analizy flatteru samolotów lekkich, Prace Instytutu Lotnictwa,

nr 65, 1976. [5] J. Błaszczyk, Z. Dżygadło, Dynamiczny model odkształcalnego samolotu do badania drgań

własnych metodą elementów skończonych, Biul. WAT, vol. XXVI, nr 4, 1977. [6] Ф. Е. Ганиев, В. Е. Карташов, М. П. Подоляк, Исследование влияния повреждений на

распределение давления по поверхности прямоугольного крыла, Научно-методические

232 J. Błaszczyk

матеpиалы по конструкции, прочности и эффективности летательных аппаратов, ВВИА им. Н. Е. Жуковского, Москва, 1980.

[7] A. Olejnik, Analiza drgań własnych samolotów oraz zagadnień aerosprężystości układów po-wierzchniowych, WAT, 1988.

[8] J. Błaszczyk, Dyskretny uogólniony dynamiczny model współczesnego samolotu myśliwskiego do badania drgań własnych metodą elementów skończonych, Biul. WAT, vol. XLII, nr 10, 1993.

[9] J. Błaszczyk, Analiza drgań własnych samolotu o niesymetrycznej budowie, Biul. WAT, vol. XLII, nr 10, 1993.

[10] A. Olejnik, Aerosprężystość układów powierzchniowych, X-Serwis, Warszawa, 1996.[11] Z. Zagdański, Stany awaryjne statków powietrznych, Wydawnictwa ITWL, 1996.[12] J. Błaszczyk, Analiza numeryczna drgań własnych samolotu w awaryjnych stanach konstrukcji,

Informator ITWL, wew. 334/96, 1996.[13] A. Olejnik, L. Jarzębiński, S. Kachel, Numeryczna analiza wytrzymałościowa konstrukcji

nośnej płatowca samolotu Su-22 metodą elementów skończonych. Komputerowe wspomaganie remontu i procesów technologii i napraw samolotów i śmigłowców eksploatowanych w Siłach Powietrznych RP (materiały seminarium), WAT, 1998.

[14] A. Leski, Analiza wytrzymałościowa łopaty śmigłowca uszkodzonej w wyniku przestrzelenia, praca doktorska, ITWL, zeszyt 21, 2000.

[15] J. Błaszczyk, Analiza numeryczna drgań własnych samolotu z nieciągłościami struktury środ-kowej części kadłuba, Biul. WAT, vol. LVI, nr 1, 2007.

[16] J. Błaszczyk, Analiza numeryczna drgań własnych samolotu z nieciągłościami struktury nosowej części kadłuba, Prace Naukowe ITWL, zeszyt 21, 2007.

[17] J. Błaszczyk, Analiza numeryczna drgań własnych samolotu z nieciągłościami struktury skrzydeł, Prace Naukowe Instytutu Lotnictwa, 2007 (w druku).

[18] Sprawozdania: OLO-4/128/88 i OLO-4/132/88, Ośrodek Badawczo-Rozwojowy Sprzętu Komu-nikacyjnego, Mielec, 1988.

J. BŁASZCZYK

Numerical analysis of free vibrations of an aircraft with discontinuous horizontal tail unit structure

Abstract. In the report, a numerical analysis of the impact of the discontinuous tail strength structure on the aircraft free vibration is presented. Variation of the frequency and its modes were considered.The dynamical models of the aircraft from the previous works were used [5, 8]. For the analysis, thedata related to contemporary military trainer jet with conventional aerodynamic lay-out were taken. Evaluated problem is a direct continuation of the works [15, 16, 17].Keywords: aviation structures, structure dynamics, self vibrations, numerical investigationsUniversal Decimal Classification: 629.7.023