40
Tema 1: Introducción: Flujo en Conductos Cerrados 1 HIDRAULICA APLICADA Código 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL Área Mecánica de Fluidos. Dpto. Tecnología HIDRAULICA APLICADA Código 325 3º Curso, INGENIERÍA INDUSTRIAL Curso 2005/06 ANEXO : Válvulas

ANEXO : Válvulas - sistemamid.com · Tema 1: Introducción: Flujo en Conductos Cerrados 9 HIDRAULICA APLICADA Código 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL Área Mecánica

  • Upload
    others

  • View
    40

  • Download
    2

Embed Size (px)

Citation preview

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

1 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

HIDRAULICA APLICADACódigo 325

3º Curso, INGENIERÍA INDUSTRIAL

Curso 2005/06

ANEXO :

Válvulas

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

2 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

Principales tipos de Válvulas según su función:

Válvula control de variables fluidas:

Se trata de válvulas cuya misión es controlar una variable determinada como presión, nivel, caudal, etc. Suelen ser autónomas, y lo usual es que empleen la energía propia del fluido para su funcionamiento.

Válvulas de Regulación:

Son válvulas que controlan una variable concreta, y no suelen funcionan de forma autónoma sino que lo hacen mediante un sistema de control externo. Suelen ir motorizadas.

Válvulas de protección:

Son válvulas que solo actúan de forma ocasional ante determinados eventos como un aumento de la presión, de caudal, etc.

Válvulas de operación

Son la válvulas que permiten la operación de una red. Suelen ser del tipo todo o nada, y suelen ser las más comunes en una instalación.

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

3 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

Principales tipos de Válvulas :

1.- Válvulas de Compuerta ( Gate Valves )

Son válvulas en la que existe una compuerta que se desliza verticalmente obstruyendo el paso del fluido. El movimiento de la compuerta se produce mediante un volante, una llave o un motor eléctrico.

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

4 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

5 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

• Las válvulas de compuerta se suelen utilizar como llaves de todo o nada, ya que completamente abiertas introducen perdidas muy pequeñas, y cerradas suelen estar bien selladas.

• En posiciones intermedias, cuando se intenta que trabaje como válvula de regulación es poco efectiva ( sólo empieza a trabajar como tal a partir del 50 % de su recorrido )

• SI el esfuerzo sobre la compuerta es excesivo debido a la velocidad del fluido, sobre la compuerta se pueden generar pares resistentes que dificultarían la operación de la compuerta, por lo que se ha dimensionar de forma adecuada el motor o el volante de la misma u optar por un pequeño bypass en la propia compuerta.

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

6 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

7 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

8 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

2.- Válvulas de Mariposa ( Butterfly Valves )

Se trata de una válvula que posee un disco ( generalmente circular aunque existen modelos elípticos ), el cual gira sobre un eje obturando el paso del fluido. Generalmente el giro es de 90º y la posición el eje es vertical, siendo este simétrico o asimétrico con respecto a la lenteja o disco de la compuerta.

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

9 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

Cuando el disco está completamente abierto suele introducir pocas pérdida, sólo un poco superiores a la de compuerta, pero cu capacidad de regulación en posiciones intermedias de giro es muy superior a la de compuerta. También se suele utilizar como válvula de todo o nada.

El para de giro es menor que en el caso de la compuerta ya que se equilibran ambas parte del disco. Los fabricantes suelen dar el valor del par , el caudal varía en función del ángulo de apertura, caudal, etc…

Gpm, psim3/h, bar

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

10 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

En discos circulares el paso es

0º (Totalmente cerrado )

90º ( totalmente cerrado ).

En los discos elípticos el paso es 10/15º - 90º.

Área de paso de la válvula de mariposa suponiendo disco circular, con proyección elíptica

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

11 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

3.- Válvulas de Bola ( Ball Valves )

Se trata de una válvula que tiene en su interior una esfera perforada, la cual obtura el paso del fluido. La estanqueidad que ofrece la hace la más utilizada en redes de distribución en tuberías de diámetros hasta 2” .

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

12 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

13 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

• Existen un gran número de configuraciones de válvulas de bola, y es habitual encontrar configuraciones de tres vías.

• La maniobra de este tipo de válvula puede ser muy rápido, por lo que podría tener efectos perjudiciales de sobrepresión, por lo que se ha de estar atento a la forma de cierre.

• La excelente estanqueidad que ofrece, incluso a altas presiones, la hacen idónea para aplicaciones en la que esta característica prima frente a precio

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

14 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

• Existe un tipo especial de válvula de bola con una mayor capacidad de regulación, son las válvulas de bola caracterizadas. Estas no sólo ofrecen una excelente estanqueidad, sino que mejoran en mucho la capacidad de regulación de caudales, por lo que permite su utilización en sistemas de regulación

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

15 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

4.- Válvulas de Asiento Plano o de Globo ( Globe Valves )

Se trata de una válvula con un vástago conectado a un disco el cual se asienta sobre el orificio de paso cerrando el la válvula. Normalmente el disco se desplaza D/4 , siendo D el diámetro de paso, de tal manera que la superficie lateral que deja entre el agujero y el disco equivalga al área de paso. Existen un gran número de configuraciones y orientaciones, y geometrías. Obviamente produce unas pérdidas mayores que las de compuerta, bola o mariposa, pero en cambio su capacidad de regulación en muchísimo mejor.

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

16 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

17 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

Globo de un asiento con obturador guiado superiormente

Globo de un asiento con obturador guiado en ambos extremos

Globo de doble asiento con obturador guiado en ambos extremos

Existen un gran número de configuraciones posible. En función de la aplicación concreta se debe elegir entre una u otra. Siendo en general una tarea complicada.

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

18 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

19 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

Cuadro resumen de las características principales de las válvulas más comunes

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

20 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

21 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

Comportamiento hidráulico de una Válvula

Las pérdidas introducidas por una válvula las podemos expresar como:

222

22

2

2

2

2..

.21..

.4

21.

.4

21.

2. QKQ

AgkQ

Dgk

DQ

gk

gVkh v

vvvvvv =

⎥⎥⎦

⎢⎢⎣

⎡=

⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛=⎟

⎠⎞

⎜⎝⎛==

ππ

Es evidente que Kv depende en gran medida del tipo de válvula y de la posición relativa del obturador de la misma. Los fabricantes de válvulas suelen utilizar otra notación para indicar lo mismo:

2.QKPPPh vsalent

v =∆

=−

=γγ γ

PQKv ∆

=2

( ) 2/12/1

⎟⎠⎞⎜

⎝⎛∆

=

γP

QKv

PQCv ∆

=COEFICIENTE DE CAUDAL O FACTOR DE FLUJO

Cv es el número de metros cúbicos por hora de agua a 15,6º C que circulan a través de una válvula produciendo una pérdida de carga de 1 bar.

vv

v KAg

k=2.2

De aquí nace la definición

Es un indicador de la capacidad de la válvula

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

22 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

Una expresión de orden práctico para el cálculo de Cv es:

PQN

C relativav ∆=

ρ..

PQCv ∆

= Es habitual encontrar la presión medida en kp/cm2 y el caudal en m3/s cuando se trabaja con estos coeficientes.

Los fabricantes suelen indicar el valor de Cv para la válvula completamente abierta o gráficas o tablas para los valores en función del grado de cierre la válvula.

Donde N es un factor numérico:

N=1.16 P ( bars ) Q(m3/h)

N=11.56 P ( kPa ) Q(m3/h)

N=1 P ( gpm ) Q ( psia )

Con esta formula, si colocamos los valores de N, lo que tenemos es la formula de Cv preparada para unidades Inglesas, es decir, Cv en galones por minuto (gpm) cuando la diferencia de presiones es de 1 psi. Lo hacemos asñi porque en muchos catálogos los CV están expresador en esas unidades. Si lo queremos en Cv esté medida en m3/h para diferencias de presiones de 1 bar, solo tenemos que coloacar estas unidaes en Q y P y N = 1.

Importante:

Muy habitual en la literatura anglosajona

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

23 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

También nos encontramos nos encontraremos con expresiones del tipo:

)(.0 xfCC vv =

Donde Cv0 es el coeficiente para la válvula totalmente abierta, y f(x) es una función, a determinar, que varía entre 1 ( válvula totalmente abierta ) y 0 ( válvula totalmente cerrada) con el parámetro X como parámetro que tiene en cuenta el grado de cierre la misma.

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

24 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

Cundo la válvula tiene un diámetro diferente del diámetro de la tubería, se ha de tener en cuenta el efecto de pérdidas adicionales que eso conlleva. Así, por ejemplo

Donde si la válvula tiene un coeficiente kv, el k’ de todo el tramo podemos expresar como:222

1.2

'. ⎥⎦⎤

⎢⎣⎡ −+⎥⎦

⎤⎢⎣⎡==+ A

akaA

gVkh vvalvulaconoc

Hay otra forma de ver el mismo problema de forma más sistemática, como dos resistencias en serie, la de los conos y la de la válvula

rt PPP ∆+∆=∆

Si a cada cono asignamos un ‘coeficente’ de válvula equivalente

222111

VrVVt CCC+=

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

25 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

Si definimos un factor correcto geométrico Fp:

CvCFp vt=

El Cv requerido en la válvula lo podemos calcular como:

t

relativapvtpv P

QFNCFC

∆==

ρ....

F1 se puede calcular como:

( )⎥⎥⎦

⎢⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛∑+=

2

20..2897.4671

dCKF v

pd: Diámetro Válvula en ( mm )

Cv0 : Cv válvula completamente abierta

)( 2121 BB KKKKK −++=∑22

1 15.0 ⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛−=

DdK

22

2 10.1 ⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛−=

DdK

Si cono reductor

Si cono ensanche

Donde K1 y K2 son el coeficiente de pérdidas en los acoples de entrada y salida de la válvula, que para el caso concreto de conos:

KB son coeficientes que tienen en cuenta el efecto causado por tuberías de diferente diámetro a la entrada y salida de la válvula.

4

1 ⎟⎟⎠

⎞⎜⎜⎝

⎛−=

iBi D

dK

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

26 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

Otro coeficiente muy común en válvulas es el Coeficiente de Descarga, Cd., que se deriva directamente del Cv .

2tubería

vd

dCC =

Resulta de utilidad como un indicativo de la capacidad relativa entre diversos tipos de válvulas. En las tablas siguientes se `puede observar el valor de Cd para distintas válvulas sometidas a la misma diferencia de presión y el mismo tamaño

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

27 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

Cavitación en Válvulas

Debido al efecto Venturi, es evidente que en la válvula aparecerá una disminución de la presión, que se acentúa a mediad que la válvula se cierra. Esta disminución podría producir cavitación, o lo que es lo mismo, la presión del agua en esa zona podría bajar por debajo de la presión de vapor del agua a la temperatura de trabajo.

Si en una válvula la presión mínima, en la garganta de la válvula desciende hasta la presión de vapor, se producirían burbujas. Y en función del grado de diferencia de presión, el efecto de la cavitación será diferente.

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

28 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

1.- Cavitación Incipiente

2.- Cavitación Crítica

3.- Danos Incipientes

4.- Bloqueo ( Choking Flow )

El que aparezca algo de cavitación de forma esporádica no es un problema, lo es si es muy severa y continuada, llegando a provocar erosiones, vibraciones, e incluso el bloque el flujo.

La presión de vapor del agua es:mcaPmcaP

v

v

083.0)º4(238.0)º20(

==

PQN

C relativav ∆=

ρ..

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

29 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

212

PPPP v

−−

El valor de sigma nos puede indicar si existe o no cavitación, si es mayor que 1 no existe, si en menor que 1 empieza a cavitar y cuanto menor es, mayor es el grado de cavitación

Valores en psi. Valor de Pv = -14.36 psi

Esquema orientativo

( P2 )

( P1 )

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

30 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

Determinación del tamaño de una válvula según la norma ANSI/ISA S075.01 (IEC 534-2-1, 534-2-2)

1.- Especificar las variables requeridas para el problema

• Tipo de Fluido, agua, aceite, etc…• Condiciones de servicio

w o q, P1, P2 o ∆P , T1, G1 , Pv Pc y υ

2.- Determinar que unidades se va a utilizar en el problema

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

31 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

3.- Determinar el factor de geometría de la tubería en la que está montado la válvula, Fp:

( )⎥⎥⎦

⎢⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛∑+=

2

20..2897.4671

dCKF v

Pd: Diámetro Válvula en ( mm )

Cv0 : Cv válvula completamente abierta

)( 2121 BB KKKKK −++=∑22

1 15.0 ⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛−=

DdK

222 10.1

⎟⎟

⎜⎜

⎛⎟⎠⎞

⎜⎝⎛−=DdK

Si cono reductor

Si cono ensanche

Donde K1 y K2 son el coeficiente de pérdidas en los acoples de entrada y salida de la válvula, que para el caso concreto de conos:

KB son coeficientes que tienen en cuenta el efecto causado por tuberías de diferente diámetro a la entrada y salida de la válvula.

4

1 ⎟⎟⎠

⎞⎜⎜⎝

⎛−=

iBi D

dK

Obviamente si no existe ningún tipo de fitting, cono, estabilizador, etc.., añadido a la válvula Fp = 1.

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

32 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

4.- Determinar el qmax o el ∆Pmax :

El q máximo se establece cuando se alcanza lo que se llama Chocked Flow, o flujo estrangulado, cuando disminuciones en la diferencia de presión entre los extremos de la válvula no introducen mayores cambios de caudal. Esto ocurre debido a una vaporización masiva en condiciones de cavitación cuando la presión del líquido en la garganta de la válvula alcanza o baja por debajo de la presión de vapor a la temperatura de servicio

fVF

vL GPFPCFNq .... 1

1max−

=

Donde:Fv

L FPPPPF.1

21−−

=c

vF P

PF 28.096.0 −=

Pv : Presión de vapor absoluta a la entrada de la válvula

Pc: Presión Crítica del agua ( 225.35 bars )

Presiones estáticas absolutas

En el caso de temer conectados fittings a la válvulas, conos mayoritariamente, se debe sustituir FL por el cociente:

( )2/12

20

2

2/1

2

2

221

.1

1.'

⎥⎥⎦

⎢⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛∑+

⎥⎥⎦

⎢⎢⎣

⎡+⎟

⎞⎜⎝

=

dC

NK

FdC

NK

FF

v

L

v

PLP

BKKK 11'1 +=

Referido todo a las perdidas a la entrada a la válvula

Determinar el qmax

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

33 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

En teoría el valor FL es la medida de la capacidad de la válvula para convertir en energía cinética en presión una vez ha pasado el fluido por la garganta. Es decir un índice de recuperación de la presión ( Liquidpressure recovery factor ).

FvL FPP

PPF.1

21−−

=c

vF P

PF 28.096.0 −=

Este índice depende de la geometría interna de la válvula, y en teoría lo deberían dar los fabricantes de válvulas.

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

34 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

)..( 12

max vFL PFPFP −=∆

)..( 12

max vFLP PFPFP −=∆ FvL FPP

PPF.1

21−−

=

c

vF P

PF 28.096.0 −=Sin conos

Con conos

Determinar ∆Pmax :

Donde

Si:

∆Pmax < P1 – P2 Se produce estrangulamiento del flujo ( Choked Flow ), y en los cálculos de la válvula se debe sustitur la diferencia de presiones cpor el valor máximo ∆Pmax

∆Pmax > P1 – P2 No se produce estrangulamiento del flujo ( Choked Flow )

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

35 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

5.- Determinar Cv :

fP

v

GPPFN

qC21

1. −=

6.- Determinar el tamaño de la válvula:

• Buscar una válvula que no exceda ½ del diámetro nominal de la tubería sobre la que opera

• Determinar si existe alguna de estas válvulas que pueda dar un Cv con un ángulo que no exceda el 80’% del recorrido ni se queda en un 10% , y a ser posible que este centrado en su recorrido.

• SI eso no es posible, estudiar el añadir conos reductores, y recalcular la válvula.

• Si aún así, no esposible, estudiar la introducción de un bypass para la situación en la que lo anterior no se pueda lograr.

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

36 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

Regulación en válvulas

La elección de una válvula no sólo involucra ala válvula en sí, sino que también ha de tener en cuenta el completo de la instalación.

• EL caudal máximo que ha de poder manejar una válvula será del orden del 15-50% superior al caudal nominal de funcionamiento. Ambos caudales se suelen utilizar en la determinación de la válvula.

• Aunque no existe una norma general, puede ser una buena medida de partida el considerar que en conducciones controladas por una válvula, la válvula introduzca un valor que ronde el 50% del valor de las pérdidas por fricción. O en sistemas más completos, en los que existan elementos intermedios en la instalación, al menos 1/3 parte de las pérdidas deberían estar disponibles para perderse en la válvula.

• Si las líneas son muy largas, el porcentaje lo podíamos colocar en un 15 o 25 %

• El tamaño de la válvula no debería ser menor que la mitad del diámetro de la tubería que controla.

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

37 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

Ejemplo de aplicación:Tenemos una instalación con una tubería de fundición, DN300, en la que para el control de

nuestro proceso sabemos que debemos producir en la válvula una pérdida de carga de 30 mca cuando el caudal circulante es de 252m3/h.

barsxhPPh vv 943.2981030. ===∆→∆

= γγ

Suponemos en principio que vamos a elegir una válvula de mariposa del mismo diámetro que la tubería. Así que el Cv lo podemos calcular como:

39.170943.2

13.29416.1..=

⋅=

∆=

PQN

C relativav

ρ

Para DN300, nos damos cuenta que sólo en zonas prácticamente cerrada, menos de 20ºpodría servir esta válvula, y esa zona es la de exclusión, aparte de que la válvula estaría muy forzada

Vemos en la tabla que valores sobre el 170 , y en zonas más o menos medias, tendremos la válvula con un DN150, la de DN125 también, pero en principio es mejor elegir la primera por la relación de diámetro que se establece que como máximo es mejor no sobrepasar ( 1 : 2 ).

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

38 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

Ahora, por tanto, deberemos colocar unos conos reductores a ambos lados de la tubería, por lo que se verá modificadas la pérdidas reales de la válvula:

t

relativavtv P

QFNCFC

∆==

ρ.... 1

1

F1 se puede calcular como:

( ) 1966.11501366.8438.0.2897.4671..2897.4671

2

2

2

20

1 =⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛+=

⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛

∑+=dCKF v

8438.005625.02813.0)( 2121 =++=−++=∑ BB KKKKK

2813.030015015.015.0

2222

1 =⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛−=⎟

⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛−=

DdK

5625.030015010.110.1

2222

2 =⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛−=⎟

⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛−=

DdK

88.203943.2

13.294.1966.116.1..1.=

⋅=

∆=

PQFN

C relativav

ρ

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

39 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología

Cv = 203.88 lo podemos alcanzar con una válvula de mariposa de DN150 en posiciones intermedias

Tem

a 1:

Intro

ducc

ión:

Flu

jo en

Con

duct

os C

erra

dos

40 HIDRAULICA APLICADACódigo 325, 3º Curso, 1º Semestre, INGENIERÍA INDUSTRIAL

Área Mecánica de Fluidos. Dpto. Tecnología