53
1 Antigen Processing and Presentation [email protected]

Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

1

Antigen Processing and Presentation

ustcwhmustceducn

2

抗原被什么细胞捕获抗原被什么细胞捕获

抗原被什么分子识别抗原被什么分子识别

抗原经什么途径加工抗原经什么途径加工

抗原被什么分子递呈抗原被什么分子递呈

3

4

More on the Major Histocompatibility Complex Genetics and Function

MHC class I MHC class II

5

11 Production of endogenous antigens

Polyubiquitination

of endogenous antigens

Function of ProteosomeXrarrLMP7

20S proteosome

YrarrLMP2 Immune proteosomeZrarrMECL-1LMP7=PSMB9 LMP2=PSMB2

12 Transport of endogenous antigens

transporter associated with antigen processing TAP12

13 Peptides are stably bound to MHC-I molecules

calnexin tapasin calreticulin

1 MHC-I endogenous antigens Processing pathway

6

7

Crystal Structure Of The 20s ProteasomeFrom Yeast

View

End on

XrarrLMP720S proteosome YrarrLMP2 Immune proteosome

ZrarrMECL-1

LMP7=PSMB9 LMP2=PSMB2

8

In the cytosol proteins are degraded into peptides by proteasomes

The Ubiquitin-Proteasome Pathway

Proteasomes are multicatalytic protease complexes made of ~28 subunits

2004 Nobel Prize in chemistry for the role of ubiquitin in protein recycling

The Protein Ubiquitylation System E1 E2 E3

9

The Protein Ubiquitylation System E1泛素激活酶E2泛素结合酶E3泛素-靶蛋白连接酶

10

11

Degradation in the proteasome

The components of the proteasome include MECL-1 LMP2 LMP7These components are induced by IFN-

and replace constitutive

components to confer proteolytic properties

LMP2 amp 7 encoded in the MHC

Proteasome cleaves proteins after hydrophobic and basic amino acids and releases peptides into the cytoplasm

Cytoplasmic cellular proteins including non-self proteinsare degraded continuously by a multicatalytic protease of 28 subunits

12

ENDOPLASMIC RETICULUM

CYTOSOL

Peptide antigens produced in the cytoplasm are physically separated from newly formed MHC class I

Newly synthesisedMHC class I molecules

Peptides needaccess to the ER in

order to be loaded onto MHC class I molecules

13

The two MHC-linked genes TAP1 [embl X57522] and TAP2 [embl M84748] (for Transporter Associated with antigen Processing) are required for normal presentation of intracellular antigens to T cells These genes encode the polypeptides that form a heteromeric peptide pump The TAP1 (also known as RING4 or PSF1) and TAP2 (also known as RING11 or PSF2) genes possess an ATP binding cassette and 6 to 8 transmembrane helical segments They are responsible for peptides selection and movement across the ER membrane to the binding site of MHC class I molecules

14

15

ER membrane

Lumen of ER

Cytosol

Transporters associated withantigen processing (TAP1 amp 2)

Transporter has preference for gt8 amino acid peptideswith hydrophobic C termini

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

ER membrane

Lumen of ER

Cytosol

TAP-1 TAP-2

Peptide

ATP-binding cassette(ABC) domain

Hydrophobictransmembranedomain

Peptide antigensfrom proteasome

16

Endoplasmic reticulum

Calnexin bindsto nascent

class I

chainuntil 2-M binds

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

B2-M binds and stabilises

floppy MHC

Tapasin calreticulin TAP 1 amp 2 form a complex with

the floppy MHC

Cytoplasmic peptides are loaded onto the

MHC molecule and the structure becomes

compact

Maturation and loading of MHC class I

17

Fate of MHC class I

Sent to lysosomes for degradation

Exported to the cell surface

18

Endoplasmic reticulum

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

HSV protein blocks transportof viral peptides into ER

Sent to lysosomesfor degradation

Evasion of immunity by interference with endogenous antigen processing

19

Sent to lysosomes for degradation

Normally exported to the cell surface

Adenoviralproteinretains MHCclass I in the ER

Evasion of immunity by interference withendogenous antigen processing

20

CYTOSOL PATHWAY

21Nature Immunology 7 7 - 9 (2006)

The chop-and-change of MHC class I assembly

step twoTPN CRT ERp57

step one

MHCMHC--II类抗原加工递呈的亲和力类抗原加工递呈的亲和力ldquoldquo编辑编辑rdquordquo

22

Antigens destined for presentation by MHC class I molecules are degraded by the combined action of proteasome and tripeptidyl peptidase II as well as other proteases in the cytosol The peptides thus generated are then transported into the lumen of the endoplasmic reticulum by TAP Peptides may be chaperoned between proteases and TAP by the cytosolic hsp60 homolog TRiC Once in the lumen of the endoplasmic reticulum peptides can bind to newly assembled MHC class I molecules Assembly of MHC class I from a constituent heavy chain and 2-microglobulin is assisted by calnexin (CNX) possibly in complex with ERp57 Peptide loading proceeds in a two-step process In step one peptide-receptive molecules load with peptide cargo that is not refined in terms of its affinity (off-rate) A subsequent step involving tapasin (TPN) calreticulin (CRT) and ERp57 results in the editing of this peptide cargo in favor of high-affinity ligands This process happens while MHC class I molecules are incorporated into the peptide-loading complex ERAAP is also involved in this peptide editing step by trimming long low-affinity peptide precursors to a size more suited to binding to MHC class I molecules with high affinity

23

Epitope Destruction vs Production

24

The Nobel Prize in Chemistry 2004for the discovery of ubiquitin-mediated protein degradation

Aaron Ciechanover Avram Hershko Irwin Rose13 of the prize 13 of the prize 13 of the prize Israel Israel USA Technion ndash Technion ndashIsrael Institute of Israel Institute of Technology Haifa Israelb 1947

TechnologyHaifa Israelb 1937 (in Karcag Hungary)

University of California Irvine CA USAb 1926

25

Thanks to the work of the three Laureates it is now possible to understand at molecular level how the cell controls a number of central processes by breaking down certain proteins and not others Examples of processes governed by ubiquitin-mediated protein degradation are cell division DNA repair quality control of newly- produced proteins and important parts of the immune defence When the degradation does not work correctly we fall ill Cervical cancer and cystic fibrosis are two examples Knowledge of ubiquitin- mediated protein degradation offers an opportunity to develop drugs against these diseases and others

26

The label consists of a molecule called ubiquitin This fastens to the protein to be destroyed accompanies it to the proteasome where it is recognised as the key in a lock and signals that a protein is on the way for disassembly Shortly before the protein is squeezed into the proteasome its ubiquitin label is disconnected for re-use

lsquokiss of death

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 2: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

2

抗原被什么细胞捕获抗原被什么细胞捕获

抗原被什么分子识别抗原被什么分子识别

抗原经什么途径加工抗原经什么途径加工

抗原被什么分子递呈抗原被什么分子递呈

3

4

More on the Major Histocompatibility Complex Genetics and Function

MHC class I MHC class II

5

11 Production of endogenous antigens

Polyubiquitination

of endogenous antigens

Function of ProteosomeXrarrLMP7

20S proteosome

YrarrLMP2 Immune proteosomeZrarrMECL-1LMP7=PSMB9 LMP2=PSMB2

12 Transport of endogenous antigens

transporter associated with antigen processing TAP12

13 Peptides are stably bound to MHC-I molecules

calnexin tapasin calreticulin

1 MHC-I endogenous antigens Processing pathway

6

7

Crystal Structure Of The 20s ProteasomeFrom Yeast

View

End on

XrarrLMP720S proteosome YrarrLMP2 Immune proteosome

ZrarrMECL-1

LMP7=PSMB9 LMP2=PSMB2

8

In the cytosol proteins are degraded into peptides by proteasomes

The Ubiquitin-Proteasome Pathway

Proteasomes are multicatalytic protease complexes made of ~28 subunits

2004 Nobel Prize in chemistry for the role of ubiquitin in protein recycling

The Protein Ubiquitylation System E1 E2 E3

9

The Protein Ubiquitylation System E1泛素激活酶E2泛素结合酶E3泛素-靶蛋白连接酶

10

11

Degradation in the proteasome

The components of the proteasome include MECL-1 LMP2 LMP7These components are induced by IFN-

and replace constitutive

components to confer proteolytic properties

LMP2 amp 7 encoded in the MHC

Proteasome cleaves proteins after hydrophobic and basic amino acids and releases peptides into the cytoplasm

Cytoplasmic cellular proteins including non-self proteinsare degraded continuously by a multicatalytic protease of 28 subunits

12

ENDOPLASMIC RETICULUM

CYTOSOL

Peptide antigens produced in the cytoplasm are physically separated from newly formed MHC class I

Newly synthesisedMHC class I molecules

Peptides needaccess to the ER in

order to be loaded onto MHC class I molecules

13

The two MHC-linked genes TAP1 [embl X57522] and TAP2 [embl M84748] (for Transporter Associated with antigen Processing) are required for normal presentation of intracellular antigens to T cells These genes encode the polypeptides that form a heteromeric peptide pump The TAP1 (also known as RING4 or PSF1) and TAP2 (also known as RING11 or PSF2) genes possess an ATP binding cassette and 6 to 8 transmembrane helical segments They are responsible for peptides selection and movement across the ER membrane to the binding site of MHC class I molecules

14

15

ER membrane

Lumen of ER

Cytosol

Transporters associated withantigen processing (TAP1 amp 2)

Transporter has preference for gt8 amino acid peptideswith hydrophobic C termini

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

ER membrane

Lumen of ER

Cytosol

TAP-1 TAP-2

Peptide

ATP-binding cassette(ABC) domain

Hydrophobictransmembranedomain

Peptide antigensfrom proteasome

16

Endoplasmic reticulum

Calnexin bindsto nascent

class I

chainuntil 2-M binds

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

B2-M binds and stabilises

floppy MHC

Tapasin calreticulin TAP 1 amp 2 form a complex with

the floppy MHC

Cytoplasmic peptides are loaded onto the

MHC molecule and the structure becomes

compact

Maturation and loading of MHC class I

17

Fate of MHC class I

Sent to lysosomes for degradation

Exported to the cell surface

18

Endoplasmic reticulum

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

HSV protein blocks transportof viral peptides into ER

Sent to lysosomesfor degradation

Evasion of immunity by interference with endogenous antigen processing

19

Sent to lysosomes for degradation

Normally exported to the cell surface

Adenoviralproteinretains MHCclass I in the ER

Evasion of immunity by interference withendogenous antigen processing

20

CYTOSOL PATHWAY

21Nature Immunology 7 7 - 9 (2006)

The chop-and-change of MHC class I assembly

step twoTPN CRT ERp57

step one

MHCMHC--II类抗原加工递呈的亲和力类抗原加工递呈的亲和力ldquoldquo编辑编辑rdquordquo

22

Antigens destined for presentation by MHC class I molecules are degraded by the combined action of proteasome and tripeptidyl peptidase II as well as other proteases in the cytosol The peptides thus generated are then transported into the lumen of the endoplasmic reticulum by TAP Peptides may be chaperoned between proteases and TAP by the cytosolic hsp60 homolog TRiC Once in the lumen of the endoplasmic reticulum peptides can bind to newly assembled MHC class I molecules Assembly of MHC class I from a constituent heavy chain and 2-microglobulin is assisted by calnexin (CNX) possibly in complex with ERp57 Peptide loading proceeds in a two-step process In step one peptide-receptive molecules load with peptide cargo that is not refined in terms of its affinity (off-rate) A subsequent step involving tapasin (TPN) calreticulin (CRT) and ERp57 results in the editing of this peptide cargo in favor of high-affinity ligands This process happens while MHC class I molecules are incorporated into the peptide-loading complex ERAAP is also involved in this peptide editing step by trimming long low-affinity peptide precursors to a size more suited to binding to MHC class I molecules with high affinity

23

Epitope Destruction vs Production

24

The Nobel Prize in Chemistry 2004for the discovery of ubiquitin-mediated protein degradation

Aaron Ciechanover Avram Hershko Irwin Rose13 of the prize 13 of the prize 13 of the prize Israel Israel USA Technion ndash Technion ndashIsrael Institute of Israel Institute of Technology Haifa Israelb 1947

TechnologyHaifa Israelb 1937 (in Karcag Hungary)

University of California Irvine CA USAb 1926

25

Thanks to the work of the three Laureates it is now possible to understand at molecular level how the cell controls a number of central processes by breaking down certain proteins and not others Examples of processes governed by ubiquitin-mediated protein degradation are cell division DNA repair quality control of newly- produced proteins and important parts of the immune defence When the degradation does not work correctly we fall ill Cervical cancer and cystic fibrosis are two examples Knowledge of ubiquitin- mediated protein degradation offers an opportunity to develop drugs against these diseases and others

26

The label consists of a molecule called ubiquitin This fastens to the protein to be destroyed accompanies it to the proteasome where it is recognised as the key in a lock and signals that a protein is on the way for disassembly Shortly before the protein is squeezed into the proteasome its ubiquitin label is disconnected for re-use

lsquokiss of death

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 3: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

3

4

More on the Major Histocompatibility Complex Genetics and Function

MHC class I MHC class II

5

11 Production of endogenous antigens

Polyubiquitination

of endogenous antigens

Function of ProteosomeXrarrLMP7

20S proteosome

YrarrLMP2 Immune proteosomeZrarrMECL-1LMP7=PSMB9 LMP2=PSMB2

12 Transport of endogenous antigens

transporter associated with antigen processing TAP12

13 Peptides are stably bound to MHC-I molecules

calnexin tapasin calreticulin

1 MHC-I endogenous antigens Processing pathway

6

7

Crystal Structure Of The 20s ProteasomeFrom Yeast

View

End on

XrarrLMP720S proteosome YrarrLMP2 Immune proteosome

ZrarrMECL-1

LMP7=PSMB9 LMP2=PSMB2

8

In the cytosol proteins are degraded into peptides by proteasomes

The Ubiquitin-Proteasome Pathway

Proteasomes are multicatalytic protease complexes made of ~28 subunits

2004 Nobel Prize in chemistry for the role of ubiquitin in protein recycling

The Protein Ubiquitylation System E1 E2 E3

9

The Protein Ubiquitylation System E1泛素激活酶E2泛素结合酶E3泛素-靶蛋白连接酶

10

11

Degradation in the proteasome

The components of the proteasome include MECL-1 LMP2 LMP7These components are induced by IFN-

and replace constitutive

components to confer proteolytic properties

LMP2 amp 7 encoded in the MHC

Proteasome cleaves proteins after hydrophobic and basic amino acids and releases peptides into the cytoplasm

Cytoplasmic cellular proteins including non-self proteinsare degraded continuously by a multicatalytic protease of 28 subunits

12

ENDOPLASMIC RETICULUM

CYTOSOL

Peptide antigens produced in the cytoplasm are physically separated from newly formed MHC class I

Newly synthesisedMHC class I molecules

Peptides needaccess to the ER in

order to be loaded onto MHC class I molecules

13

The two MHC-linked genes TAP1 [embl X57522] and TAP2 [embl M84748] (for Transporter Associated with antigen Processing) are required for normal presentation of intracellular antigens to T cells These genes encode the polypeptides that form a heteromeric peptide pump The TAP1 (also known as RING4 or PSF1) and TAP2 (also known as RING11 or PSF2) genes possess an ATP binding cassette and 6 to 8 transmembrane helical segments They are responsible for peptides selection and movement across the ER membrane to the binding site of MHC class I molecules

14

15

ER membrane

Lumen of ER

Cytosol

Transporters associated withantigen processing (TAP1 amp 2)

Transporter has preference for gt8 amino acid peptideswith hydrophobic C termini

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

ER membrane

Lumen of ER

Cytosol

TAP-1 TAP-2

Peptide

ATP-binding cassette(ABC) domain

Hydrophobictransmembranedomain

Peptide antigensfrom proteasome

16

Endoplasmic reticulum

Calnexin bindsto nascent

class I

chainuntil 2-M binds

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

B2-M binds and stabilises

floppy MHC

Tapasin calreticulin TAP 1 amp 2 form a complex with

the floppy MHC

Cytoplasmic peptides are loaded onto the

MHC molecule and the structure becomes

compact

Maturation and loading of MHC class I

17

Fate of MHC class I

Sent to lysosomes for degradation

Exported to the cell surface

18

Endoplasmic reticulum

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

HSV protein blocks transportof viral peptides into ER

Sent to lysosomesfor degradation

Evasion of immunity by interference with endogenous antigen processing

19

Sent to lysosomes for degradation

Normally exported to the cell surface

Adenoviralproteinretains MHCclass I in the ER

Evasion of immunity by interference withendogenous antigen processing

20

CYTOSOL PATHWAY

21Nature Immunology 7 7 - 9 (2006)

The chop-and-change of MHC class I assembly

step twoTPN CRT ERp57

step one

MHCMHC--II类抗原加工递呈的亲和力类抗原加工递呈的亲和力ldquoldquo编辑编辑rdquordquo

22

Antigens destined for presentation by MHC class I molecules are degraded by the combined action of proteasome and tripeptidyl peptidase II as well as other proteases in the cytosol The peptides thus generated are then transported into the lumen of the endoplasmic reticulum by TAP Peptides may be chaperoned between proteases and TAP by the cytosolic hsp60 homolog TRiC Once in the lumen of the endoplasmic reticulum peptides can bind to newly assembled MHC class I molecules Assembly of MHC class I from a constituent heavy chain and 2-microglobulin is assisted by calnexin (CNX) possibly in complex with ERp57 Peptide loading proceeds in a two-step process In step one peptide-receptive molecules load with peptide cargo that is not refined in terms of its affinity (off-rate) A subsequent step involving tapasin (TPN) calreticulin (CRT) and ERp57 results in the editing of this peptide cargo in favor of high-affinity ligands This process happens while MHC class I molecules are incorporated into the peptide-loading complex ERAAP is also involved in this peptide editing step by trimming long low-affinity peptide precursors to a size more suited to binding to MHC class I molecules with high affinity

23

Epitope Destruction vs Production

24

The Nobel Prize in Chemistry 2004for the discovery of ubiquitin-mediated protein degradation

Aaron Ciechanover Avram Hershko Irwin Rose13 of the prize 13 of the prize 13 of the prize Israel Israel USA Technion ndash Technion ndashIsrael Institute of Israel Institute of Technology Haifa Israelb 1947

TechnologyHaifa Israelb 1937 (in Karcag Hungary)

University of California Irvine CA USAb 1926

25

Thanks to the work of the three Laureates it is now possible to understand at molecular level how the cell controls a number of central processes by breaking down certain proteins and not others Examples of processes governed by ubiquitin-mediated protein degradation are cell division DNA repair quality control of newly- produced proteins and important parts of the immune defence When the degradation does not work correctly we fall ill Cervical cancer and cystic fibrosis are two examples Knowledge of ubiquitin- mediated protein degradation offers an opportunity to develop drugs against these diseases and others

26

The label consists of a molecule called ubiquitin This fastens to the protein to be destroyed accompanies it to the proteasome where it is recognised as the key in a lock and signals that a protein is on the way for disassembly Shortly before the protein is squeezed into the proteasome its ubiquitin label is disconnected for re-use

lsquokiss of death

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 4: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

4

More on the Major Histocompatibility Complex Genetics and Function

MHC class I MHC class II

5

11 Production of endogenous antigens

Polyubiquitination

of endogenous antigens

Function of ProteosomeXrarrLMP7

20S proteosome

YrarrLMP2 Immune proteosomeZrarrMECL-1LMP7=PSMB9 LMP2=PSMB2

12 Transport of endogenous antigens

transporter associated with antigen processing TAP12

13 Peptides are stably bound to MHC-I molecules

calnexin tapasin calreticulin

1 MHC-I endogenous antigens Processing pathway

6

7

Crystal Structure Of The 20s ProteasomeFrom Yeast

View

End on

XrarrLMP720S proteosome YrarrLMP2 Immune proteosome

ZrarrMECL-1

LMP7=PSMB9 LMP2=PSMB2

8

In the cytosol proteins are degraded into peptides by proteasomes

The Ubiquitin-Proteasome Pathway

Proteasomes are multicatalytic protease complexes made of ~28 subunits

2004 Nobel Prize in chemistry for the role of ubiquitin in protein recycling

The Protein Ubiquitylation System E1 E2 E3

9

The Protein Ubiquitylation System E1泛素激活酶E2泛素结合酶E3泛素-靶蛋白连接酶

10

11

Degradation in the proteasome

The components of the proteasome include MECL-1 LMP2 LMP7These components are induced by IFN-

and replace constitutive

components to confer proteolytic properties

LMP2 amp 7 encoded in the MHC

Proteasome cleaves proteins after hydrophobic and basic amino acids and releases peptides into the cytoplasm

Cytoplasmic cellular proteins including non-self proteinsare degraded continuously by a multicatalytic protease of 28 subunits

12

ENDOPLASMIC RETICULUM

CYTOSOL

Peptide antigens produced in the cytoplasm are physically separated from newly formed MHC class I

Newly synthesisedMHC class I molecules

Peptides needaccess to the ER in

order to be loaded onto MHC class I molecules

13

The two MHC-linked genes TAP1 [embl X57522] and TAP2 [embl M84748] (for Transporter Associated with antigen Processing) are required for normal presentation of intracellular antigens to T cells These genes encode the polypeptides that form a heteromeric peptide pump The TAP1 (also known as RING4 or PSF1) and TAP2 (also known as RING11 or PSF2) genes possess an ATP binding cassette and 6 to 8 transmembrane helical segments They are responsible for peptides selection and movement across the ER membrane to the binding site of MHC class I molecules

14

15

ER membrane

Lumen of ER

Cytosol

Transporters associated withantigen processing (TAP1 amp 2)

Transporter has preference for gt8 amino acid peptideswith hydrophobic C termini

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

ER membrane

Lumen of ER

Cytosol

TAP-1 TAP-2

Peptide

ATP-binding cassette(ABC) domain

Hydrophobictransmembranedomain

Peptide antigensfrom proteasome

16

Endoplasmic reticulum

Calnexin bindsto nascent

class I

chainuntil 2-M binds

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

B2-M binds and stabilises

floppy MHC

Tapasin calreticulin TAP 1 amp 2 form a complex with

the floppy MHC

Cytoplasmic peptides are loaded onto the

MHC molecule and the structure becomes

compact

Maturation and loading of MHC class I

17

Fate of MHC class I

Sent to lysosomes for degradation

Exported to the cell surface

18

Endoplasmic reticulum

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

HSV protein blocks transportof viral peptides into ER

Sent to lysosomesfor degradation

Evasion of immunity by interference with endogenous antigen processing

19

Sent to lysosomes for degradation

Normally exported to the cell surface

Adenoviralproteinretains MHCclass I in the ER

Evasion of immunity by interference withendogenous antigen processing

20

CYTOSOL PATHWAY

21Nature Immunology 7 7 - 9 (2006)

The chop-and-change of MHC class I assembly

step twoTPN CRT ERp57

step one

MHCMHC--II类抗原加工递呈的亲和力类抗原加工递呈的亲和力ldquoldquo编辑编辑rdquordquo

22

Antigens destined for presentation by MHC class I molecules are degraded by the combined action of proteasome and tripeptidyl peptidase II as well as other proteases in the cytosol The peptides thus generated are then transported into the lumen of the endoplasmic reticulum by TAP Peptides may be chaperoned between proteases and TAP by the cytosolic hsp60 homolog TRiC Once in the lumen of the endoplasmic reticulum peptides can bind to newly assembled MHC class I molecules Assembly of MHC class I from a constituent heavy chain and 2-microglobulin is assisted by calnexin (CNX) possibly in complex with ERp57 Peptide loading proceeds in a two-step process In step one peptide-receptive molecules load with peptide cargo that is not refined in terms of its affinity (off-rate) A subsequent step involving tapasin (TPN) calreticulin (CRT) and ERp57 results in the editing of this peptide cargo in favor of high-affinity ligands This process happens while MHC class I molecules are incorporated into the peptide-loading complex ERAAP is also involved in this peptide editing step by trimming long low-affinity peptide precursors to a size more suited to binding to MHC class I molecules with high affinity

23

Epitope Destruction vs Production

24

The Nobel Prize in Chemistry 2004for the discovery of ubiquitin-mediated protein degradation

Aaron Ciechanover Avram Hershko Irwin Rose13 of the prize 13 of the prize 13 of the prize Israel Israel USA Technion ndash Technion ndashIsrael Institute of Israel Institute of Technology Haifa Israelb 1947

TechnologyHaifa Israelb 1937 (in Karcag Hungary)

University of California Irvine CA USAb 1926

25

Thanks to the work of the three Laureates it is now possible to understand at molecular level how the cell controls a number of central processes by breaking down certain proteins and not others Examples of processes governed by ubiquitin-mediated protein degradation are cell division DNA repair quality control of newly- produced proteins and important parts of the immune defence When the degradation does not work correctly we fall ill Cervical cancer and cystic fibrosis are two examples Knowledge of ubiquitin- mediated protein degradation offers an opportunity to develop drugs against these diseases and others

26

The label consists of a molecule called ubiquitin This fastens to the protein to be destroyed accompanies it to the proteasome where it is recognised as the key in a lock and signals that a protein is on the way for disassembly Shortly before the protein is squeezed into the proteasome its ubiquitin label is disconnected for re-use

lsquokiss of death

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 5: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

5

11 Production of endogenous antigens

Polyubiquitination

of endogenous antigens

Function of ProteosomeXrarrLMP7

20S proteosome

YrarrLMP2 Immune proteosomeZrarrMECL-1LMP7=PSMB9 LMP2=PSMB2

12 Transport of endogenous antigens

transporter associated with antigen processing TAP12

13 Peptides are stably bound to MHC-I molecules

calnexin tapasin calreticulin

1 MHC-I endogenous antigens Processing pathway

6

7

Crystal Structure Of The 20s ProteasomeFrom Yeast

View

End on

XrarrLMP720S proteosome YrarrLMP2 Immune proteosome

ZrarrMECL-1

LMP7=PSMB9 LMP2=PSMB2

8

In the cytosol proteins are degraded into peptides by proteasomes

The Ubiquitin-Proteasome Pathway

Proteasomes are multicatalytic protease complexes made of ~28 subunits

2004 Nobel Prize in chemistry for the role of ubiquitin in protein recycling

The Protein Ubiquitylation System E1 E2 E3

9

The Protein Ubiquitylation System E1泛素激活酶E2泛素结合酶E3泛素-靶蛋白连接酶

10

11

Degradation in the proteasome

The components of the proteasome include MECL-1 LMP2 LMP7These components are induced by IFN-

and replace constitutive

components to confer proteolytic properties

LMP2 amp 7 encoded in the MHC

Proteasome cleaves proteins after hydrophobic and basic amino acids and releases peptides into the cytoplasm

Cytoplasmic cellular proteins including non-self proteinsare degraded continuously by a multicatalytic protease of 28 subunits

12

ENDOPLASMIC RETICULUM

CYTOSOL

Peptide antigens produced in the cytoplasm are physically separated from newly formed MHC class I

Newly synthesisedMHC class I molecules

Peptides needaccess to the ER in

order to be loaded onto MHC class I molecules

13

The two MHC-linked genes TAP1 [embl X57522] and TAP2 [embl M84748] (for Transporter Associated with antigen Processing) are required for normal presentation of intracellular antigens to T cells These genes encode the polypeptides that form a heteromeric peptide pump The TAP1 (also known as RING4 or PSF1) and TAP2 (also known as RING11 or PSF2) genes possess an ATP binding cassette and 6 to 8 transmembrane helical segments They are responsible for peptides selection and movement across the ER membrane to the binding site of MHC class I molecules

14

15

ER membrane

Lumen of ER

Cytosol

Transporters associated withantigen processing (TAP1 amp 2)

Transporter has preference for gt8 amino acid peptideswith hydrophobic C termini

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

ER membrane

Lumen of ER

Cytosol

TAP-1 TAP-2

Peptide

ATP-binding cassette(ABC) domain

Hydrophobictransmembranedomain

Peptide antigensfrom proteasome

16

Endoplasmic reticulum

Calnexin bindsto nascent

class I

chainuntil 2-M binds

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

B2-M binds and stabilises

floppy MHC

Tapasin calreticulin TAP 1 amp 2 form a complex with

the floppy MHC

Cytoplasmic peptides are loaded onto the

MHC molecule and the structure becomes

compact

Maturation and loading of MHC class I

17

Fate of MHC class I

Sent to lysosomes for degradation

Exported to the cell surface

18

Endoplasmic reticulum

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

HSV protein blocks transportof viral peptides into ER

Sent to lysosomesfor degradation

Evasion of immunity by interference with endogenous antigen processing

19

Sent to lysosomes for degradation

Normally exported to the cell surface

Adenoviralproteinretains MHCclass I in the ER

Evasion of immunity by interference withendogenous antigen processing

20

CYTOSOL PATHWAY

21Nature Immunology 7 7 - 9 (2006)

The chop-and-change of MHC class I assembly

step twoTPN CRT ERp57

step one

MHCMHC--II类抗原加工递呈的亲和力类抗原加工递呈的亲和力ldquoldquo编辑编辑rdquordquo

22

Antigens destined for presentation by MHC class I molecules are degraded by the combined action of proteasome and tripeptidyl peptidase II as well as other proteases in the cytosol The peptides thus generated are then transported into the lumen of the endoplasmic reticulum by TAP Peptides may be chaperoned between proteases and TAP by the cytosolic hsp60 homolog TRiC Once in the lumen of the endoplasmic reticulum peptides can bind to newly assembled MHC class I molecules Assembly of MHC class I from a constituent heavy chain and 2-microglobulin is assisted by calnexin (CNX) possibly in complex with ERp57 Peptide loading proceeds in a two-step process In step one peptide-receptive molecules load with peptide cargo that is not refined in terms of its affinity (off-rate) A subsequent step involving tapasin (TPN) calreticulin (CRT) and ERp57 results in the editing of this peptide cargo in favor of high-affinity ligands This process happens while MHC class I molecules are incorporated into the peptide-loading complex ERAAP is also involved in this peptide editing step by trimming long low-affinity peptide precursors to a size more suited to binding to MHC class I molecules with high affinity

23

Epitope Destruction vs Production

24

The Nobel Prize in Chemistry 2004for the discovery of ubiquitin-mediated protein degradation

Aaron Ciechanover Avram Hershko Irwin Rose13 of the prize 13 of the prize 13 of the prize Israel Israel USA Technion ndash Technion ndashIsrael Institute of Israel Institute of Technology Haifa Israelb 1947

TechnologyHaifa Israelb 1937 (in Karcag Hungary)

University of California Irvine CA USAb 1926

25

Thanks to the work of the three Laureates it is now possible to understand at molecular level how the cell controls a number of central processes by breaking down certain proteins and not others Examples of processes governed by ubiquitin-mediated protein degradation are cell division DNA repair quality control of newly- produced proteins and important parts of the immune defence When the degradation does not work correctly we fall ill Cervical cancer and cystic fibrosis are two examples Knowledge of ubiquitin- mediated protein degradation offers an opportunity to develop drugs against these diseases and others

26

The label consists of a molecule called ubiquitin This fastens to the protein to be destroyed accompanies it to the proteasome where it is recognised as the key in a lock and signals that a protein is on the way for disassembly Shortly before the protein is squeezed into the proteasome its ubiquitin label is disconnected for re-use

lsquokiss of death

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 6: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

6

7

Crystal Structure Of The 20s ProteasomeFrom Yeast

View

End on

XrarrLMP720S proteosome YrarrLMP2 Immune proteosome

ZrarrMECL-1

LMP7=PSMB9 LMP2=PSMB2

8

In the cytosol proteins are degraded into peptides by proteasomes

The Ubiquitin-Proteasome Pathway

Proteasomes are multicatalytic protease complexes made of ~28 subunits

2004 Nobel Prize in chemistry for the role of ubiquitin in protein recycling

The Protein Ubiquitylation System E1 E2 E3

9

The Protein Ubiquitylation System E1泛素激活酶E2泛素结合酶E3泛素-靶蛋白连接酶

10

11

Degradation in the proteasome

The components of the proteasome include MECL-1 LMP2 LMP7These components are induced by IFN-

and replace constitutive

components to confer proteolytic properties

LMP2 amp 7 encoded in the MHC

Proteasome cleaves proteins after hydrophobic and basic amino acids and releases peptides into the cytoplasm

Cytoplasmic cellular proteins including non-self proteinsare degraded continuously by a multicatalytic protease of 28 subunits

12

ENDOPLASMIC RETICULUM

CYTOSOL

Peptide antigens produced in the cytoplasm are physically separated from newly formed MHC class I

Newly synthesisedMHC class I molecules

Peptides needaccess to the ER in

order to be loaded onto MHC class I molecules

13

The two MHC-linked genes TAP1 [embl X57522] and TAP2 [embl M84748] (for Transporter Associated with antigen Processing) are required for normal presentation of intracellular antigens to T cells These genes encode the polypeptides that form a heteromeric peptide pump The TAP1 (also known as RING4 or PSF1) and TAP2 (also known as RING11 or PSF2) genes possess an ATP binding cassette and 6 to 8 transmembrane helical segments They are responsible for peptides selection and movement across the ER membrane to the binding site of MHC class I molecules

14

15

ER membrane

Lumen of ER

Cytosol

Transporters associated withantigen processing (TAP1 amp 2)

Transporter has preference for gt8 amino acid peptideswith hydrophobic C termini

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

ER membrane

Lumen of ER

Cytosol

TAP-1 TAP-2

Peptide

ATP-binding cassette(ABC) domain

Hydrophobictransmembranedomain

Peptide antigensfrom proteasome

16

Endoplasmic reticulum

Calnexin bindsto nascent

class I

chainuntil 2-M binds

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

B2-M binds and stabilises

floppy MHC

Tapasin calreticulin TAP 1 amp 2 form a complex with

the floppy MHC

Cytoplasmic peptides are loaded onto the

MHC molecule and the structure becomes

compact

Maturation and loading of MHC class I

17

Fate of MHC class I

Sent to lysosomes for degradation

Exported to the cell surface

18

Endoplasmic reticulum

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

HSV protein blocks transportof viral peptides into ER

Sent to lysosomesfor degradation

Evasion of immunity by interference with endogenous antigen processing

19

Sent to lysosomes for degradation

Normally exported to the cell surface

Adenoviralproteinretains MHCclass I in the ER

Evasion of immunity by interference withendogenous antigen processing

20

CYTOSOL PATHWAY

21Nature Immunology 7 7 - 9 (2006)

The chop-and-change of MHC class I assembly

step twoTPN CRT ERp57

step one

MHCMHC--II类抗原加工递呈的亲和力类抗原加工递呈的亲和力ldquoldquo编辑编辑rdquordquo

22

Antigens destined for presentation by MHC class I molecules are degraded by the combined action of proteasome and tripeptidyl peptidase II as well as other proteases in the cytosol The peptides thus generated are then transported into the lumen of the endoplasmic reticulum by TAP Peptides may be chaperoned between proteases and TAP by the cytosolic hsp60 homolog TRiC Once in the lumen of the endoplasmic reticulum peptides can bind to newly assembled MHC class I molecules Assembly of MHC class I from a constituent heavy chain and 2-microglobulin is assisted by calnexin (CNX) possibly in complex with ERp57 Peptide loading proceeds in a two-step process In step one peptide-receptive molecules load with peptide cargo that is not refined in terms of its affinity (off-rate) A subsequent step involving tapasin (TPN) calreticulin (CRT) and ERp57 results in the editing of this peptide cargo in favor of high-affinity ligands This process happens while MHC class I molecules are incorporated into the peptide-loading complex ERAAP is also involved in this peptide editing step by trimming long low-affinity peptide precursors to a size more suited to binding to MHC class I molecules with high affinity

23

Epitope Destruction vs Production

24

The Nobel Prize in Chemistry 2004for the discovery of ubiquitin-mediated protein degradation

Aaron Ciechanover Avram Hershko Irwin Rose13 of the prize 13 of the prize 13 of the prize Israel Israel USA Technion ndash Technion ndashIsrael Institute of Israel Institute of Technology Haifa Israelb 1947

TechnologyHaifa Israelb 1937 (in Karcag Hungary)

University of California Irvine CA USAb 1926

25

Thanks to the work of the three Laureates it is now possible to understand at molecular level how the cell controls a number of central processes by breaking down certain proteins and not others Examples of processes governed by ubiquitin-mediated protein degradation are cell division DNA repair quality control of newly- produced proteins and important parts of the immune defence When the degradation does not work correctly we fall ill Cervical cancer and cystic fibrosis are two examples Knowledge of ubiquitin- mediated protein degradation offers an opportunity to develop drugs against these diseases and others

26

The label consists of a molecule called ubiquitin This fastens to the protein to be destroyed accompanies it to the proteasome where it is recognised as the key in a lock and signals that a protein is on the way for disassembly Shortly before the protein is squeezed into the proteasome its ubiquitin label is disconnected for re-use

lsquokiss of death

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 7: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

7

Crystal Structure Of The 20s ProteasomeFrom Yeast

View

End on

XrarrLMP720S proteosome YrarrLMP2 Immune proteosome

ZrarrMECL-1

LMP7=PSMB9 LMP2=PSMB2

8

In the cytosol proteins are degraded into peptides by proteasomes

The Ubiquitin-Proteasome Pathway

Proteasomes are multicatalytic protease complexes made of ~28 subunits

2004 Nobel Prize in chemistry for the role of ubiquitin in protein recycling

The Protein Ubiquitylation System E1 E2 E3

9

The Protein Ubiquitylation System E1泛素激活酶E2泛素结合酶E3泛素-靶蛋白连接酶

10

11

Degradation in the proteasome

The components of the proteasome include MECL-1 LMP2 LMP7These components are induced by IFN-

and replace constitutive

components to confer proteolytic properties

LMP2 amp 7 encoded in the MHC

Proteasome cleaves proteins after hydrophobic and basic amino acids and releases peptides into the cytoplasm

Cytoplasmic cellular proteins including non-self proteinsare degraded continuously by a multicatalytic protease of 28 subunits

12

ENDOPLASMIC RETICULUM

CYTOSOL

Peptide antigens produced in the cytoplasm are physically separated from newly formed MHC class I

Newly synthesisedMHC class I molecules

Peptides needaccess to the ER in

order to be loaded onto MHC class I molecules

13

The two MHC-linked genes TAP1 [embl X57522] and TAP2 [embl M84748] (for Transporter Associated with antigen Processing) are required for normal presentation of intracellular antigens to T cells These genes encode the polypeptides that form a heteromeric peptide pump The TAP1 (also known as RING4 or PSF1) and TAP2 (also known as RING11 or PSF2) genes possess an ATP binding cassette and 6 to 8 transmembrane helical segments They are responsible for peptides selection and movement across the ER membrane to the binding site of MHC class I molecules

14

15

ER membrane

Lumen of ER

Cytosol

Transporters associated withantigen processing (TAP1 amp 2)

Transporter has preference for gt8 amino acid peptideswith hydrophobic C termini

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

ER membrane

Lumen of ER

Cytosol

TAP-1 TAP-2

Peptide

ATP-binding cassette(ABC) domain

Hydrophobictransmembranedomain

Peptide antigensfrom proteasome

16

Endoplasmic reticulum

Calnexin bindsto nascent

class I

chainuntil 2-M binds

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

B2-M binds and stabilises

floppy MHC

Tapasin calreticulin TAP 1 amp 2 form a complex with

the floppy MHC

Cytoplasmic peptides are loaded onto the

MHC molecule and the structure becomes

compact

Maturation and loading of MHC class I

17

Fate of MHC class I

Sent to lysosomes for degradation

Exported to the cell surface

18

Endoplasmic reticulum

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

HSV protein blocks transportof viral peptides into ER

Sent to lysosomesfor degradation

Evasion of immunity by interference with endogenous antigen processing

19

Sent to lysosomes for degradation

Normally exported to the cell surface

Adenoviralproteinretains MHCclass I in the ER

Evasion of immunity by interference withendogenous antigen processing

20

CYTOSOL PATHWAY

21Nature Immunology 7 7 - 9 (2006)

The chop-and-change of MHC class I assembly

step twoTPN CRT ERp57

step one

MHCMHC--II类抗原加工递呈的亲和力类抗原加工递呈的亲和力ldquoldquo编辑编辑rdquordquo

22

Antigens destined for presentation by MHC class I molecules are degraded by the combined action of proteasome and tripeptidyl peptidase II as well as other proteases in the cytosol The peptides thus generated are then transported into the lumen of the endoplasmic reticulum by TAP Peptides may be chaperoned between proteases and TAP by the cytosolic hsp60 homolog TRiC Once in the lumen of the endoplasmic reticulum peptides can bind to newly assembled MHC class I molecules Assembly of MHC class I from a constituent heavy chain and 2-microglobulin is assisted by calnexin (CNX) possibly in complex with ERp57 Peptide loading proceeds in a two-step process In step one peptide-receptive molecules load with peptide cargo that is not refined in terms of its affinity (off-rate) A subsequent step involving tapasin (TPN) calreticulin (CRT) and ERp57 results in the editing of this peptide cargo in favor of high-affinity ligands This process happens while MHC class I molecules are incorporated into the peptide-loading complex ERAAP is also involved in this peptide editing step by trimming long low-affinity peptide precursors to a size more suited to binding to MHC class I molecules with high affinity

23

Epitope Destruction vs Production

24

The Nobel Prize in Chemistry 2004for the discovery of ubiquitin-mediated protein degradation

Aaron Ciechanover Avram Hershko Irwin Rose13 of the prize 13 of the prize 13 of the prize Israel Israel USA Technion ndash Technion ndashIsrael Institute of Israel Institute of Technology Haifa Israelb 1947

TechnologyHaifa Israelb 1937 (in Karcag Hungary)

University of California Irvine CA USAb 1926

25

Thanks to the work of the three Laureates it is now possible to understand at molecular level how the cell controls a number of central processes by breaking down certain proteins and not others Examples of processes governed by ubiquitin-mediated protein degradation are cell division DNA repair quality control of newly- produced proteins and important parts of the immune defence When the degradation does not work correctly we fall ill Cervical cancer and cystic fibrosis are two examples Knowledge of ubiquitin- mediated protein degradation offers an opportunity to develop drugs against these diseases and others

26

The label consists of a molecule called ubiquitin This fastens to the protein to be destroyed accompanies it to the proteasome where it is recognised as the key in a lock and signals that a protein is on the way for disassembly Shortly before the protein is squeezed into the proteasome its ubiquitin label is disconnected for re-use

lsquokiss of death

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 8: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

8

In the cytosol proteins are degraded into peptides by proteasomes

The Ubiquitin-Proteasome Pathway

Proteasomes are multicatalytic protease complexes made of ~28 subunits

2004 Nobel Prize in chemistry for the role of ubiquitin in protein recycling

The Protein Ubiquitylation System E1 E2 E3

9

The Protein Ubiquitylation System E1泛素激活酶E2泛素结合酶E3泛素-靶蛋白连接酶

10

11

Degradation in the proteasome

The components of the proteasome include MECL-1 LMP2 LMP7These components are induced by IFN-

and replace constitutive

components to confer proteolytic properties

LMP2 amp 7 encoded in the MHC

Proteasome cleaves proteins after hydrophobic and basic amino acids and releases peptides into the cytoplasm

Cytoplasmic cellular proteins including non-self proteinsare degraded continuously by a multicatalytic protease of 28 subunits

12

ENDOPLASMIC RETICULUM

CYTOSOL

Peptide antigens produced in the cytoplasm are physically separated from newly formed MHC class I

Newly synthesisedMHC class I molecules

Peptides needaccess to the ER in

order to be loaded onto MHC class I molecules

13

The two MHC-linked genes TAP1 [embl X57522] and TAP2 [embl M84748] (for Transporter Associated with antigen Processing) are required for normal presentation of intracellular antigens to T cells These genes encode the polypeptides that form a heteromeric peptide pump The TAP1 (also known as RING4 or PSF1) and TAP2 (also known as RING11 or PSF2) genes possess an ATP binding cassette and 6 to 8 transmembrane helical segments They are responsible for peptides selection and movement across the ER membrane to the binding site of MHC class I molecules

14

15

ER membrane

Lumen of ER

Cytosol

Transporters associated withantigen processing (TAP1 amp 2)

Transporter has preference for gt8 amino acid peptideswith hydrophobic C termini

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

ER membrane

Lumen of ER

Cytosol

TAP-1 TAP-2

Peptide

ATP-binding cassette(ABC) domain

Hydrophobictransmembranedomain

Peptide antigensfrom proteasome

16

Endoplasmic reticulum

Calnexin bindsto nascent

class I

chainuntil 2-M binds

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

B2-M binds and stabilises

floppy MHC

Tapasin calreticulin TAP 1 amp 2 form a complex with

the floppy MHC

Cytoplasmic peptides are loaded onto the

MHC molecule and the structure becomes

compact

Maturation and loading of MHC class I

17

Fate of MHC class I

Sent to lysosomes for degradation

Exported to the cell surface

18

Endoplasmic reticulum

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

HSV protein blocks transportof viral peptides into ER

Sent to lysosomesfor degradation

Evasion of immunity by interference with endogenous antigen processing

19

Sent to lysosomes for degradation

Normally exported to the cell surface

Adenoviralproteinretains MHCclass I in the ER

Evasion of immunity by interference withendogenous antigen processing

20

CYTOSOL PATHWAY

21Nature Immunology 7 7 - 9 (2006)

The chop-and-change of MHC class I assembly

step twoTPN CRT ERp57

step one

MHCMHC--II类抗原加工递呈的亲和力类抗原加工递呈的亲和力ldquoldquo编辑编辑rdquordquo

22

Antigens destined for presentation by MHC class I molecules are degraded by the combined action of proteasome and tripeptidyl peptidase II as well as other proteases in the cytosol The peptides thus generated are then transported into the lumen of the endoplasmic reticulum by TAP Peptides may be chaperoned between proteases and TAP by the cytosolic hsp60 homolog TRiC Once in the lumen of the endoplasmic reticulum peptides can bind to newly assembled MHC class I molecules Assembly of MHC class I from a constituent heavy chain and 2-microglobulin is assisted by calnexin (CNX) possibly in complex with ERp57 Peptide loading proceeds in a two-step process In step one peptide-receptive molecules load with peptide cargo that is not refined in terms of its affinity (off-rate) A subsequent step involving tapasin (TPN) calreticulin (CRT) and ERp57 results in the editing of this peptide cargo in favor of high-affinity ligands This process happens while MHC class I molecules are incorporated into the peptide-loading complex ERAAP is also involved in this peptide editing step by trimming long low-affinity peptide precursors to a size more suited to binding to MHC class I molecules with high affinity

23

Epitope Destruction vs Production

24

The Nobel Prize in Chemistry 2004for the discovery of ubiquitin-mediated protein degradation

Aaron Ciechanover Avram Hershko Irwin Rose13 of the prize 13 of the prize 13 of the prize Israel Israel USA Technion ndash Technion ndashIsrael Institute of Israel Institute of Technology Haifa Israelb 1947

TechnologyHaifa Israelb 1937 (in Karcag Hungary)

University of California Irvine CA USAb 1926

25

Thanks to the work of the three Laureates it is now possible to understand at molecular level how the cell controls a number of central processes by breaking down certain proteins and not others Examples of processes governed by ubiquitin-mediated protein degradation are cell division DNA repair quality control of newly- produced proteins and important parts of the immune defence When the degradation does not work correctly we fall ill Cervical cancer and cystic fibrosis are two examples Knowledge of ubiquitin- mediated protein degradation offers an opportunity to develop drugs against these diseases and others

26

The label consists of a molecule called ubiquitin This fastens to the protein to be destroyed accompanies it to the proteasome where it is recognised as the key in a lock and signals that a protein is on the way for disassembly Shortly before the protein is squeezed into the proteasome its ubiquitin label is disconnected for re-use

lsquokiss of death

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 9: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

9

The Protein Ubiquitylation System E1泛素激活酶E2泛素结合酶E3泛素-靶蛋白连接酶

10

11

Degradation in the proteasome

The components of the proteasome include MECL-1 LMP2 LMP7These components are induced by IFN-

and replace constitutive

components to confer proteolytic properties

LMP2 amp 7 encoded in the MHC

Proteasome cleaves proteins after hydrophobic and basic amino acids and releases peptides into the cytoplasm

Cytoplasmic cellular proteins including non-self proteinsare degraded continuously by a multicatalytic protease of 28 subunits

12

ENDOPLASMIC RETICULUM

CYTOSOL

Peptide antigens produced in the cytoplasm are physically separated from newly formed MHC class I

Newly synthesisedMHC class I molecules

Peptides needaccess to the ER in

order to be loaded onto MHC class I molecules

13

The two MHC-linked genes TAP1 [embl X57522] and TAP2 [embl M84748] (for Transporter Associated with antigen Processing) are required for normal presentation of intracellular antigens to T cells These genes encode the polypeptides that form a heteromeric peptide pump The TAP1 (also known as RING4 or PSF1) and TAP2 (also known as RING11 or PSF2) genes possess an ATP binding cassette and 6 to 8 transmembrane helical segments They are responsible for peptides selection and movement across the ER membrane to the binding site of MHC class I molecules

14

15

ER membrane

Lumen of ER

Cytosol

Transporters associated withantigen processing (TAP1 amp 2)

Transporter has preference for gt8 amino acid peptideswith hydrophobic C termini

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

ER membrane

Lumen of ER

Cytosol

TAP-1 TAP-2

Peptide

ATP-binding cassette(ABC) domain

Hydrophobictransmembranedomain

Peptide antigensfrom proteasome

16

Endoplasmic reticulum

Calnexin bindsto nascent

class I

chainuntil 2-M binds

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

B2-M binds and stabilises

floppy MHC

Tapasin calreticulin TAP 1 amp 2 form a complex with

the floppy MHC

Cytoplasmic peptides are loaded onto the

MHC molecule and the structure becomes

compact

Maturation and loading of MHC class I

17

Fate of MHC class I

Sent to lysosomes for degradation

Exported to the cell surface

18

Endoplasmic reticulum

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

HSV protein blocks transportof viral peptides into ER

Sent to lysosomesfor degradation

Evasion of immunity by interference with endogenous antigen processing

19

Sent to lysosomes for degradation

Normally exported to the cell surface

Adenoviralproteinretains MHCclass I in the ER

Evasion of immunity by interference withendogenous antigen processing

20

CYTOSOL PATHWAY

21Nature Immunology 7 7 - 9 (2006)

The chop-and-change of MHC class I assembly

step twoTPN CRT ERp57

step one

MHCMHC--II类抗原加工递呈的亲和力类抗原加工递呈的亲和力ldquoldquo编辑编辑rdquordquo

22

Antigens destined for presentation by MHC class I molecules are degraded by the combined action of proteasome and tripeptidyl peptidase II as well as other proteases in the cytosol The peptides thus generated are then transported into the lumen of the endoplasmic reticulum by TAP Peptides may be chaperoned between proteases and TAP by the cytosolic hsp60 homolog TRiC Once in the lumen of the endoplasmic reticulum peptides can bind to newly assembled MHC class I molecules Assembly of MHC class I from a constituent heavy chain and 2-microglobulin is assisted by calnexin (CNX) possibly in complex with ERp57 Peptide loading proceeds in a two-step process In step one peptide-receptive molecules load with peptide cargo that is not refined in terms of its affinity (off-rate) A subsequent step involving tapasin (TPN) calreticulin (CRT) and ERp57 results in the editing of this peptide cargo in favor of high-affinity ligands This process happens while MHC class I molecules are incorporated into the peptide-loading complex ERAAP is also involved in this peptide editing step by trimming long low-affinity peptide precursors to a size more suited to binding to MHC class I molecules with high affinity

23

Epitope Destruction vs Production

24

The Nobel Prize in Chemistry 2004for the discovery of ubiquitin-mediated protein degradation

Aaron Ciechanover Avram Hershko Irwin Rose13 of the prize 13 of the prize 13 of the prize Israel Israel USA Technion ndash Technion ndashIsrael Institute of Israel Institute of Technology Haifa Israelb 1947

TechnologyHaifa Israelb 1937 (in Karcag Hungary)

University of California Irvine CA USAb 1926

25

Thanks to the work of the three Laureates it is now possible to understand at molecular level how the cell controls a number of central processes by breaking down certain proteins and not others Examples of processes governed by ubiquitin-mediated protein degradation are cell division DNA repair quality control of newly- produced proteins and important parts of the immune defence When the degradation does not work correctly we fall ill Cervical cancer and cystic fibrosis are two examples Knowledge of ubiquitin- mediated protein degradation offers an opportunity to develop drugs against these diseases and others

26

The label consists of a molecule called ubiquitin This fastens to the protein to be destroyed accompanies it to the proteasome where it is recognised as the key in a lock and signals that a protein is on the way for disassembly Shortly before the protein is squeezed into the proteasome its ubiquitin label is disconnected for re-use

lsquokiss of death

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 10: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

10

11

Degradation in the proteasome

The components of the proteasome include MECL-1 LMP2 LMP7These components are induced by IFN-

and replace constitutive

components to confer proteolytic properties

LMP2 amp 7 encoded in the MHC

Proteasome cleaves proteins after hydrophobic and basic amino acids and releases peptides into the cytoplasm

Cytoplasmic cellular proteins including non-self proteinsare degraded continuously by a multicatalytic protease of 28 subunits

12

ENDOPLASMIC RETICULUM

CYTOSOL

Peptide antigens produced in the cytoplasm are physically separated from newly formed MHC class I

Newly synthesisedMHC class I molecules

Peptides needaccess to the ER in

order to be loaded onto MHC class I molecules

13

The two MHC-linked genes TAP1 [embl X57522] and TAP2 [embl M84748] (for Transporter Associated with antigen Processing) are required for normal presentation of intracellular antigens to T cells These genes encode the polypeptides that form a heteromeric peptide pump The TAP1 (also known as RING4 or PSF1) and TAP2 (also known as RING11 or PSF2) genes possess an ATP binding cassette and 6 to 8 transmembrane helical segments They are responsible for peptides selection and movement across the ER membrane to the binding site of MHC class I molecules

14

15

ER membrane

Lumen of ER

Cytosol

Transporters associated withantigen processing (TAP1 amp 2)

Transporter has preference for gt8 amino acid peptideswith hydrophobic C termini

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

ER membrane

Lumen of ER

Cytosol

TAP-1 TAP-2

Peptide

ATP-binding cassette(ABC) domain

Hydrophobictransmembranedomain

Peptide antigensfrom proteasome

16

Endoplasmic reticulum

Calnexin bindsto nascent

class I

chainuntil 2-M binds

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

B2-M binds and stabilises

floppy MHC

Tapasin calreticulin TAP 1 amp 2 form a complex with

the floppy MHC

Cytoplasmic peptides are loaded onto the

MHC molecule and the structure becomes

compact

Maturation and loading of MHC class I

17

Fate of MHC class I

Sent to lysosomes for degradation

Exported to the cell surface

18

Endoplasmic reticulum

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

HSV protein blocks transportof viral peptides into ER

Sent to lysosomesfor degradation

Evasion of immunity by interference with endogenous antigen processing

19

Sent to lysosomes for degradation

Normally exported to the cell surface

Adenoviralproteinretains MHCclass I in the ER

Evasion of immunity by interference withendogenous antigen processing

20

CYTOSOL PATHWAY

21Nature Immunology 7 7 - 9 (2006)

The chop-and-change of MHC class I assembly

step twoTPN CRT ERp57

step one

MHCMHC--II类抗原加工递呈的亲和力类抗原加工递呈的亲和力ldquoldquo编辑编辑rdquordquo

22

Antigens destined for presentation by MHC class I molecules are degraded by the combined action of proteasome and tripeptidyl peptidase II as well as other proteases in the cytosol The peptides thus generated are then transported into the lumen of the endoplasmic reticulum by TAP Peptides may be chaperoned between proteases and TAP by the cytosolic hsp60 homolog TRiC Once in the lumen of the endoplasmic reticulum peptides can bind to newly assembled MHC class I molecules Assembly of MHC class I from a constituent heavy chain and 2-microglobulin is assisted by calnexin (CNX) possibly in complex with ERp57 Peptide loading proceeds in a two-step process In step one peptide-receptive molecules load with peptide cargo that is not refined in terms of its affinity (off-rate) A subsequent step involving tapasin (TPN) calreticulin (CRT) and ERp57 results in the editing of this peptide cargo in favor of high-affinity ligands This process happens while MHC class I molecules are incorporated into the peptide-loading complex ERAAP is also involved in this peptide editing step by trimming long low-affinity peptide precursors to a size more suited to binding to MHC class I molecules with high affinity

23

Epitope Destruction vs Production

24

The Nobel Prize in Chemistry 2004for the discovery of ubiquitin-mediated protein degradation

Aaron Ciechanover Avram Hershko Irwin Rose13 of the prize 13 of the prize 13 of the prize Israel Israel USA Technion ndash Technion ndashIsrael Institute of Israel Institute of Technology Haifa Israelb 1947

TechnologyHaifa Israelb 1937 (in Karcag Hungary)

University of California Irvine CA USAb 1926

25

Thanks to the work of the three Laureates it is now possible to understand at molecular level how the cell controls a number of central processes by breaking down certain proteins and not others Examples of processes governed by ubiquitin-mediated protein degradation are cell division DNA repair quality control of newly- produced proteins and important parts of the immune defence When the degradation does not work correctly we fall ill Cervical cancer and cystic fibrosis are two examples Knowledge of ubiquitin- mediated protein degradation offers an opportunity to develop drugs against these diseases and others

26

The label consists of a molecule called ubiquitin This fastens to the protein to be destroyed accompanies it to the proteasome where it is recognised as the key in a lock and signals that a protein is on the way for disassembly Shortly before the protein is squeezed into the proteasome its ubiquitin label is disconnected for re-use

lsquokiss of death

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 11: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

11

Degradation in the proteasome

The components of the proteasome include MECL-1 LMP2 LMP7These components are induced by IFN-

and replace constitutive

components to confer proteolytic properties

LMP2 amp 7 encoded in the MHC

Proteasome cleaves proteins after hydrophobic and basic amino acids and releases peptides into the cytoplasm

Cytoplasmic cellular proteins including non-self proteinsare degraded continuously by a multicatalytic protease of 28 subunits

12

ENDOPLASMIC RETICULUM

CYTOSOL

Peptide antigens produced in the cytoplasm are physically separated from newly formed MHC class I

Newly synthesisedMHC class I molecules

Peptides needaccess to the ER in

order to be loaded onto MHC class I molecules

13

The two MHC-linked genes TAP1 [embl X57522] and TAP2 [embl M84748] (for Transporter Associated with antigen Processing) are required for normal presentation of intracellular antigens to T cells These genes encode the polypeptides that form a heteromeric peptide pump The TAP1 (also known as RING4 or PSF1) and TAP2 (also known as RING11 or PSF2) genes possess an ATP binding cassette and 6 to 8 transmembrane helical segments They are responsible for peptides selection and movement across the ER membrane to the binding site of MHC class I molecules

14

15

ER membrane

Lumen of ER

Cytosol

Transporters associated withantigen processing (TAP1 amp 2)

Transporter has preference for gt8 amino acid peptideswith hydrophobic C termini

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

ER membrane

Lumen of ER

Cytosol

TAP-1 TAP-2

Peptide

ATP-binding cassette(ABC) domain

Hydrophobictransmembranedomain

Peptide antigensfrom proteasome

16

Endoplasmic reticulum

Calnexin bindsto nascent

class I

chainuntil 2-M binds

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

B2-M binds and stabilises

floppy MHC

Tapasin calreticulin TAP 1 amp 2 form a complex with

the floppy MHC

Cytoplasmic peptides are loaded onto the

MHC molecule and the structure becomes

compact

Maturation and loading of MHC class I

17

Fate of MHC class I

Sent to lysosomes for degradation

Exported to the cell surface

18

Endoplasmic reticulum

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

HSV protein blocks transportof viral peptides into ER

Sent to lysosomesfor degradation

Evasion of immunity by interference with endogenous antigen processing

19

Sent to lysosomes for degradation

Normally exported to the cell surface

Adenoviralproteinretains MHCclass I in the ER

Evasion of immunity by interference withendogenous antigen processing

20

CYTOSOL PATHWAY

21Nature Immunology 7 7 - 9 (2006)

The chop-and-change of MHC class I assembly

step twoTPN CRT ERp57

step one

MHCMHC--II类抗原加工递呈的亲和力类抗原加工递呈的亲和力ldquoldquo编辑编辑rdquordquo

22

Antigens destined for presentation by MHC class I molecules are degraded by the combined action of proteasome and tripeptidyl peptidase II as well as other proteases in the cytosol The peptides thus generated are then transported into the lumen of the endoplasmic reticulum by TAP Peptides may be chaperoned between proteases and TAP by the cytosolic hsp60 homolog TRiC Once in the lumen of the endoplasmic reticulum peptides can bind to newly assembled MHC class I molecules Assembly of MHC class I from a constituent heavy chain and 2-microglobulin is assisted by calnexin (CNX) possibly in complex with ERp57 Peptide loading proceeds in a two-step process In step one peptide-receptive molecules load with peptide cargo that is not refined in terms of its affinity (off-rate) A subsequent step involving tapasin (TPN) calreticulin (CRT) and ERp57 results in the editing of this peptide cargo in favor of high-affinity ligands This process happens while MHC class I molecules are incorporated into the peptide-loading complex ERAAP is also involved in this peptide editing step by trimming long low-affinity peptide precursors to a size more suited to binding to MHC class I molecules with high affinity

23

Epitope Destruction vs Production

24

The Nobel Prize in Chemistry 2004for the discovery of ubiquitin-mediated protein degradation

Aaron Ciechanover Avram Hershko Irwin Rose13 of the prize 13 of the prize 13 of the prize Israel Israel USA Technion ndash Technion ndashIsrael Institute of Israel Institute of Technology Haifa Israelb 1947

TechnologyHaifa Israelb 1937 (in Karcag Hungary)

University of California Irvine CA USAb 1926

25

Thanks to the work of the three Laureates it is now possible to understand at molecular level how the cell controls a number of central processes by breaking down certain proteins and not others Examples of processes governed by ubiquitin-mediated protein degradation are cell division DNA repair quality control of newly- produced proteins and important parts of the immune defence When the degradation does not work correctly we fall ill Cervical cancer and cystic fibrosis are two examples Knowledge of ubiquitin- mediated protein degradation offers an opportunity to develop drugs against these diseases and others

26

The label consists of a molecule called ubiquitin This fastens to the protein to be destroyed accompanies it to the proteasome where it is recognised as the key in a lock and signals that a protein is on the way for disassembly Shortly before the protein is squeezed into the proteasome its ubiquitin label is disconnected for re-use

lsquokiss of death

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 12: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

12

ENDOPLASMIC RETICULUM

CYTOSOL

Peptide antigens produced in the cytoplasm are physically separated from newly formed MHC class I

Newly synthesisedMHC class I molecules

Peptides needaccess to the ER in

order to be loaded onto MHC class I molecules

13

The two MHC-linked genes TAP1 [embl X57522] and TAP2 [embl M84748] (for Transporter Associated with antigen Processing) are required for normal presentation of intracellular antigens to T cells These genes encode the polypeptides that form a heteromeric peptide pump The TAP1 (also known as RING4 or PSF1) and TAP2 (also known as RING11 or PSF2) genes possess an ATP binding cassette and 6 to 8 transmembrane helical segments They are responsible for peptides selection and movement across the ER membrane to the binding site of MHC class I molecules

14

15

ER membrane

Lumen of ER

Cytosol

Transporters associated withantigen processing (TAP1 amp 2)

Transporter has preference for gt8 amino acid peptideswith hydrophobic C termini

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

ER membrane

Lumen of ER

Cytosol

TAP-1 TAP-2

Peptide

ATP-binding cassette(ABC) domain

Hydrophobictransmembranedomain

Peptide antigensfrom proteasome

16

Endoplasmic reticulum

Calnexin bindsto nascent

class I

chainuntil 2-M binds

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

B2-M binds and stabilises

floppy MHC

Tapasin calreticulin TAP 1 amp 2 form a complex with

the floppy MHC

Cytoplasmic peptides are loaded onto the

MHC molecule and the structure becomes

compact

Maturation and loading of MHC class I

17

Fate of MHC class I

Sent to lysosomes for degradation

Exported to the cell surface

18

Endoplasmic reticulum

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

HSV protein blocks transportof viral peptides into ER

Sent to lysosomesfor degradation

Evasion of immunity by interference with endogenous antigen processing

19

Sent to lysosomes for degradation

Normally exported to the cell surface

Adenoviralproteinretains MHCclass I in the ER

Evasion of immunity by interference withendogenous antigen processing

20

CYTOSOL PATHWAY

21Nature Immunology 7 7 - 9 (2006)

The chop-and-change of MHC class I assembly

step twoTPN CRT ERp57

step one

MHCMHC--II类抗原加工递呈的亲和力类抗原加工递呈的亲和力ldquoldquo编辑编辑rdquordquo

22

Antigens destined for presentation by MHC class I molecules are degraded by the combined action of proteasome and tripeptidyl peptidase II as well as other proteases in the cytosol The peptides thus generated are then transported into the lumen of the endoplasmic reticulum by TAP Peptides may be chaperoned between proteases and TAP by the cytosolic hsp60 homolog TRiC Once in the lumen of the endoplasmic reticulum peptides can bind to newly assembled MHC class I molecules Assembly of MHC class I from a constituent heavy chain and 2-microglobulin is assisted by calnexin (CNX) possibly in complex with ERp57 Peptide loading proceeds in a two-step process In step one peptide-receptive molecules load with peptide cargo that is not refined in terms of its affinity (off-rate) A subsequent step involving tapasin (TPN) calreticulin (CRT) and ERp57 results in the editing of this peptide cargo in favor of high-affinity ligands This process happens while MHC class I molecules are incorporated into the peptide-loading complex ERAAP is also involved in this peptide editing step by trimming long low-affinity peptide precursors to a size more suited to binding to MHC class I molecules with high affinity

23

Epitope Destruction vs Production

24

The Nobel Prize in Chemistry 2004for the discovery of ubiquitin-mediated protein degradation

Aaron Ciechanover Avram Hershko Irwin Rose13 of the prize 13 of the prize 13 of the prize Israel Israel USA Technion ndash Technion ndashIsrael Institute of Israel Institute of Technology Haifa Israelb 1947

TechnologyHaifa Israelb 1937 (in Karcag Hungary)

University of California Irvine CA USAb 1926

25

Thanks to the work of the three Laureates it is now possible to understand at molecular level how the cell controls a number of central processes by breaking down certain proteins and not others Examples of processes governed by ubiquitin-mediated protein degradation are cell division DNA repair quality control of newly- produced proteins and important parts of the immune defence When the degradation does not work correctly we fall ill Cervical cancer and cystic fibrosis are two examples Knowledge of ubiquitin- mediated protein degradation offers an opportunity to develop drugs against these diseases and others

26

The label consists of a molecule called ubiquitin This fastens to the protein to be destroyed accompanies it to the proteasome where it is recognised as the key in a lock and signals that a protein is on the way for disassembly Shortly before the protein is squeezed into the proteasome its ubiquitin label is disconnected for re-use

lsquokiss of death

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 13: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

13

The two MHC-linked genes TAP1 [embl X57522] and TAP2 [embl M84748] (for Transporter Associated with antigen Processing) are required for normal presentation of intracellular antigens to T cells These genes encode the polypeptides that form a heteromeric peptide pump The TAP1 (also known as RING4 or PSF1) and TAP2 (also known as RING11 or PSF2) genes possess an ATP binding cassette and 6 to 8 transmembrane helical segments They are responsible for peptides selection and movement across the ER membrane to the binding site of MHC class I molecules

14

15

ER membrane

Lumen of ER

Cytosol

Transporters associated withantigen processing (TAP1 amp 2)

Transporter has preference for gt8 amino acid peptideswith hydrophobic C termini

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

ER membrane

Lumen of ER

Cytosol

TAP-1 TAP-2

Peptide

ATP-binding cassette(ABC) domain

Hydrophobictransmembranedomain

Peptide antigensfrom proteasome

16

Endoplasmic reticulum

Calnexin bindsto nascent

class I

chainuntil 2-M binds

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

B2-M binds and stabilises

floppy MHC

Tapasin calreticulin TAP 1 amp 2 form a complex with

the floppy MHC

Cytoplasmic peptides are loaded onto the

MHC molecule and the structure becomes

compact

Maturation and loading of MHC class I

17

Fate of MHC class I

Sent to lysosomes for degradation

Exported to the cell surface

18

Endoplasmic reticulum

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

HSV protein blocks transportof viral peptides into ER

Sent to lysosomesfor degradation

Evasion of immunity by interference with endogenous antigen processing

19

Sent to lysosomes for degradation

Normally exported to the cell surface

Adenoviralproteinretains MHCclass I in the ER

Evasion of immunity by interference withendogenous antigen processing

20

CYTOSOL PATHWAY

21Nature Immunology 7 7 - 9 (2006)

The chop-and-change of MHC class I assembly

step twoTPN CRT ERp57

step one

MHCMHC--II类抗原加工递呈的亲和力类抗原加工递呈的亲和力ldquoldquo编辑编辑rdquordquo

22

Antigens destined for presentation by MHC class I molecules are degraded by the combined action of proteasome and tripeptidyl peptidase II as well as other proteases in the cytosol The peptides thus generated are then transported into the lumen of the endoplasmic reticulum by TAP Peptides may be chaperoned between proteases and TAP by the cytosolic hsp60 homolog TRiC Once in the lumen of the endoplasmic reticulum peptides can bind to newly assembled MHC class I molecules Assembly of MHC class I from a constituent heavy chain and 2-microglobulin is assisted by calnexin (CNX) possibly in complex with ERp57 Peptide loading proceeds in a two-step process In step one peptide-receptive molecules load with peptide cargo that is not refined in terms of its affinity (off-rate) A subsequent step involving tapasin (TPN) calreticulin (CRT) and ERp57 results in the editing of this peptide cargo in favor of high-affinity ligands This process happens while MHC class I molecules are incorporated into the peptide-loading complex ERAAP is also involved in this peptide editing step by trimming long low-affinity peptide precursors to a size more suited to binding to MHC class I molecules with high affinity

23

Epitope Destruction vs Production

24

The Nobel Prize in Chemistry 2004for the discovery of ubiquitin-mediated protein degradation

Aaron Ciechanover Avram Hershko Irwin Rose13 of the prize 13 of the prize 13 of the prize Israel Israel USA Technion ndash Technion ndashIsrael Institute of Israel Institute of Technology Haifa Israelb 1947

TechnologyHaifa Israelb 1937 (in Karcag Hungary)

University of California Irvine CA USAb 1926

25

Thanks to the work of the three Laureates it is now possible to understand at molecular level how the cell controls a number of central processes by breaking down certain proteins and not others Examples of processes governed by ubiquitin-mediated protein degradation are cell division DNA repair quality control of newly- produced proteins and important parts of the immune defence When the degradation does not work correctly we fall ill Cervical cancer and cystic fibrosis are two examples Knowledge of ubiquitin- mediated protein degradation offers an opportunity to develop drugs against these diseases and others

26

The label consists of a molecule called ubiquitin This fastens to the protein to be destroyed accompanies it to the proteasome where it is recognised as the key in a lock and signals that a protein is on the way for disassembly Shortly before the protein is squeezed into the proteasome its ubiquitin label is disconnected for re-use

lsquokiss of death

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 14: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

14

15

ER membrane

Lumen of ER

Cytosol

Transporters associated withantigen processing (TAP1 amp 2)

Transporter has preference for gt8 amino acid peptideswith hydrophobic C termini

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

ER membrane

Lumen of ER

Cytosol

TAP-1 TAP-2

Peptide

ATP-binding cassette(ABC) domain

Hydrophobictransmembranedomain

Peptide antigensfrom proteasome

16

Endoplasmic reticulum

Calnexin bindsto nascent

class I

chainuntil 2-M binds

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

B2-M binds and stabilises

floppy MHC

Tapasin calreticulin TAP 1 amp 2 form a complex with

the floppy MHC

Cytoplasmic peptides are loaded onto the

MHC molecule and the structure becomes

compact

Maturation and loading of MHC class I

17

Fate of MHC class I

Sent to lysosomes for degradation

Exported to the cell surface

18

Endoplasmic reticulum

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

HSV protein blocks transportof viral peptides into ER

Sent to lysosomesfor degradation

Evasion of immunity by interference with endogenous antigen processing

19

Sent to lysosomes for degradation

Normally exported to the cell surface

Adenoviralproteinretains MHCclass I in the ER

Evasion of immunity by interference withendogenous antigen processing

20

CYTOSOL PATHWAY

21Nature Immunology 7 7 - 9 (2006)

The chop-and-change of MHC class I assembly

step twoTPN CRT ERp57

step one

MHCMHC--II类抗原加工递呈的亲和力类抗原加工递呈的亲和力ldquoldquo编辑编辑rdquordquo

22

Antigens destined for presentation by MHC class I molecules are degraded by the combined action of proteasome and tripeptidyl peptidase II as well as other proteases in the cytosol The peptides thus generated are then transported into the lumen of the endoplasmic reticulum by TAP Peptides may be chaperoned between proteases and TAP by the cytosolic hsp60 homolog TRiC Once in the lumen of the endoplasmic reticulum peptides can bind to newly assembled MHC class I molecules Assembly of MHC class I from a constituent heavy chain and 2-microglobulin is assisted by calnexin (CNX) possibly in complex with ERp57 Peptide loading proceeds in a two-step process In step one peptide-receptive molecules load with peptide cargo that is not refined in terms of its affinity (off-rate) A subsequent step involving tapasin (TPN) calreticulin (CRT) and ERp57 results in the editing of this peptide cargo in favor of high-affinity ligands This process happens while MHC class I molecules are incorporated into the peptide-loading complex ERAAP is also involved in this peptide editing step by trimming long low-affinity peptide precursors to a size more suited to binding to MHC class I molecules with high affinity

23

Epitope Destruction vs Production

24

The Nobel Prize in Chemistry 2004for the discovery of ubiquitin-mediated protein degradation

Aaron Ciechanover Avram Hershko Irwin Rose13 of the prize 13 of the prize 13 of the prize Israel Israel USA Technion ndash Technion ndashIsrael Institute of Israel Institute of Technology Haifa Israelb 1947

TechnologyHaifa Israelb 1937 (in Karcag Hungary)

University of California Irvine CA USAb 1926

25

Thanks to the work of the three Laureates it is now possible to understand at molecular level how the cell controls a number of central processes by breaking down certain proteins and not others Examples of processes governed by ubiquitin-mediated protein degradation are cell division DNA repair quality control of newly- produced proteins and important parts of the immune defence When the degradation does not work correctly we fall ill Cervical cancer and cystic fibrosis are two examples Knowledge of ubiquitin- mediated protein degradation offers an opportunity to develop drugs against these diseases and others

26

The label consists of a molecule called ubiquitin This fastens to the protein to be destroyed accompanies it to the proteasome where it is recognised as the key in a lock and signals that a protein is on the way for disassembly Shortly before the protein is squeezed into the proteasome its ubiquitin label is disconnected for re-use

lsquokiss of death

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 15: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

15

ER membrane

Lumen of ER

Cytosol

Transporters associated withantigen processing (TAP1 amp 2)

Transporter has preference for gt8 amino acid peptideswith hydrophobic C termini

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

ER membrane

Lumen of ER

Cytosol

TAP-1 TAP-2

Peptide

ATP-binding cassette(ABC) domain

Hydrophobictransmembranedomain

Peptide antigensfrom proteasome

16

Endoplasmic reticulum

Calnexin bindsto nascent

class I

chainuntil 2-M binds

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

B2-M binds and stabilises

floppy MHC

Tapasin calreticulin TAP 1 amp 2 form a complex with

the floppy MHC

Cytoplasmic peptides are loaded onto the

MHC molecule and the structure becomes

compact

Maturation and loading of MHC class I

17

Fate of MHC class I

Sent to lysosomes for degradation

Exported to the cell surface

18

Endoplasmic reticulum

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

HSV protein blocks transportof viral peptides into ER

Sent to lysosomesfor degradation

Evasion of immunity by interference with endogenous antigen processing

19

Sent to lysosomes for degradation

Normally exported to the cell surface

Adenoviralproteinretains MHCclass I in the ER

Evasion of immunity by interference withendogenous antigen processing

20

CYTOSOL PATHWAY

21Nature Immunology 7 7 - 9 (2006)

The chop-and-change of MHC class I assembly

step twoTPN CRT ERp57

step one

MHCMHC--II类抗原加工递呈的亲和力类抗原加工递呈的亲和力ldquoldquo编辑编辑rdquordquo

22

Antigens destined for presentation by MHC class I molecules are degraded by the combined action of proteasome and tripeptidyl peptidase II as well as other proteases in the cytosol The peptides thus generated are then transported into the lumen of the endoplasmic reticulum by TAP Peptides may be chaperoned between proteases and TAP by the cytosolic hsp60 homolog TRiC Once in the lumen of the endoplasmic reticulum peptides can bind to newly assembled MHC class I molecules Assembly of MHC class I from a constituent heavy chain and 2-microglobulin is assisted by calnexin (CNX) possibly in complex with ERp57 Peptide loading proceeds in a two-step process In step one peptide-receptive molecules load with peptide cargo that is not refined in terms of its affinity (off-rate) A subsequent step involving tapasin (TPN) calreticulin (CRT) and ERp57 results in the editing of this peptide cargo in favor of high-affinity ligands This process happens while MHC class I molecules are incorporated into the peptide-loading complex ERAAP is also involved in this peptide editing step by trimming long low-affinity peptide precursors to a size more suited to binding to MHC class I molecules with high affinity

23

Epitope Destruction vs Production

24

The Nobel Prize in Chemistry 2004for the discovery of ubiquitin-mediated protein degradation

Aaron Ciechanover Avram Hershko Irwin Rose13 of the prize 13 of the prize 13 of the prize Israel Israel USA Technion ndash Technion ndashIsrael Institute of Israel Institute of Technology Haifa Israelb 1947

TechnologyHaifa Israelb 1937 (in Karcag Hungary)

University of California Irvine CA USAb 1926

25

Thanks to the work of the three Laureates it is now possible to understand at molecular level how the cell controls a number of central processes by breaking down certain proteins and not others Examples of processes governed by ubiquitin-mediated protein degradation are cell division DNA repair quality control of newly- produced proteins and important parts of the immune defence When the degradation does not work correctly we fall ill Cervical cancer and cystic fibrosis are two examples Knowledge of ubiquitin- mediated protein degradation offers an opportunity to develop drugs against these diseases and others

26

The label consists of a molecule called ubiquitin This fastens to the protein to be destroyed accompanies it to the proteasome where it is recognised as the key in a lock and signals that a protein is on the way for disassembly Shortly before the protein is squeezed into the proteasome its ubiquitin label is disconnected for re-use

lsquokiss of death

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 16: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

16

Endoplasmic reticulum

Calnexin bindsto nascent

class I

chainuntil 2-M binds

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

B2-M binds and stabilises

floppy MHC

Tapasin calreticulin TAP 1 amp 2 form a complex with

the floppy MHC

Cytoplasmic peptides are loaded onto the

MHC molecule and the structure becomes

compact

Maturation and loading of MHC class I

17

Fate of MHC class I

Sent to lysosomes for degradation

Exported to the cell surface

18

Endoplasmic reticulum

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

HSV protein blocks transportof viral peptides into ER

Sent to lysosomesfor degradation

Evasion of immunity by interference with endogenous antigen processing

19

Sent to lysosomes for degradation

Normally exported to the cell surface

Adenoviralproteinretains MHCclass I in the ER

Evasion of immunity by interference withendogenous antigen processing

20

CYTOSOL PATHWAY

21Nature Immunology 7 7 - 9 (2006)

The chop-and-change of MHC class I assembly

step twoTPN CRT ERp57

step one

MHCMHC--II类抗原加工递呈的亲和力类抗原加工递呈的亲和力ldquoldquo编辑编辑rdquordquo

22

Antigens destined for presentation by MHC class I molecules are degraded by the combined action of proteasome and tripeptidyl peptidase II as well as other proteases in the cytosol The peptides thus generated are then transported into the lumen of the endoplasmic reticulum by TAP Peptides may be chaperoned between proteases and TAP by the cytosolic hsp60 homolog TRiC Once in the lumen of the endoplasmic reticulum peptides can bind to newly assembled MHC class I molecules Assembly of MHC class I from a constituent heavy chain and 2-microglobulin is assisted by calnexin (CNX) possibly in complex with ERp57 Peptide loading proceeds in a two-step process In step one peptide-receptive molecules load with peptide cargo that is not refined in terms of its affinity (off-rate) A subsequent step involving tapasin (TPN) calreticulin (CRT) and ERp57 results in the editing of this peptide cargo in favor of high-affinity ligands This process happens while MHC class I molecules are incorporated into the peptide-loading complex ERAAP is also involved in this peptide editing step by trimming long low-affinity peptide precursors to a size more suited to binding to MHC class I molecules with high affinity

23

Epitope Destruction vs Production

24

The Nobel Prize in Chemistry 2004for the discovery of ubiquitin-mediated protein degradation

Aaron Ciechanover Avram Hershko Irwin Rose13 of the prize 13 of the prize 13 of the prize Israel Israel USA Technion ndash Technion ndashIsrael Institute of Israel Institute of Technology Haifa Israelb 1947

TechnologyHaifa Israelb 1937 (in Karcag Hungary)

University of California Irvine CA USAb 1926

25

Thanks to the work of the three Laureates it is now possible to understand at molecular level how the cell controls a number of central processes by breaking down certain proteins and not others Examples of processes governed by ubiquitin-mediated protein degradation are cell division DNA repair quality control of newly- produced proteins and important parts of the immune defence When the degradation does not work correctly we fall ill Cervical cancer and cystic fibrosis are two examples Knowledge of ubiquitin- mediated protein degradation offers an opportunity to develop drugs against these diseases and others

26

The label consists of a molecule called ubiquitin This fastens to the protein to be destroyed accompanies it to the proteasome where it is recognised as the key in a lock and signals that a protein is on the way for disassembly Shortly before the protein is squeezed into the proteasome its ubiquitin label is disconnected for re-use

lsquokiss of death

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 17: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

17

Fate of MHC class I

Sent to lysosomes for degradation

Exported to the cell surface

18

Endoplasmic reticulum

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

HSV protein blocks transportof viral peptides into ER

Sent to lysosomesfor degradation

Evasion of immunity by interference with endogenous antigen processing

19

Sent to lysosomes for degradation

Normally exported to the cell surface

Adenoviralproteinretains MHCclass I in the ER

Evasion of immunity by interference withendogenous antigen processing

20

CYTOSOL PATHWAY

21Nature Immunology 7 7 - 9 (2006)

The chop-and-change of MHC class I assembly

step twoTPN CRT ERp57

step one

MHCMHC--II类抗原加工递呈的亲和力类抗原加工递呈的亲和力ldquoldquo编辑编辑rdquordquo

22

Antigens destined for presentation by MHC class I molecules are degraded by the combined action of proteasome and tripeptidyl peptidase II as well as other proteases in the cytosol The peptides thus generated are then transported into the lumen of the endoplasmic reticulum by TAP Peptides may be chaperoned between proteases and TAP by the cytosolic hsp60 homolog TRiC Once in the lumen of the endoplasmic reticulum peptides can bind to newly assembled MHC class I molecules Assembly of MHC class I from a constituent heavy chain and 2-microglobulin is assisted by calnexin (CNX) possibly in complex with ERp57 Peptide loading proceeds in a two-step process In step one peptide-receptive molecules load with peptide cargo that is not refined in terms of its affinity (off-rate) A subsequent step involving tapasin (TPN) calreticulin (CRT) and ERp57 results in the editing of this peptide cargo in favor of high-affinity ligands This process happens while MHC class I molecules are incorporated into the peptide-loading complex ERAAP is also involved in this peptide editing step by trimming long low-affinity peptide precursors to a size more suited to binding to MHC class I molecules with high affinity

23

Epitope Destruction vs Production

24

The Nobel Prize in Chemistry 2004for the discovery of ubiquitin-mediated protein degradation

Aaron Ciechanover Avram Hershko Irwin Rose13 of the prize 13 of the prize 13 of the prize Israel Israel USA Technion ndash Technion ndashIsrael Institute of Israel Institute of Technology Haifa Israelb 1947

TechnologyHaifa Israelb 1937 (in Karcag Hungary)

University of California Irvine CA USAb 1926

25

Thanks to the work of the three Laureates it is now possible to understand at molecular level how the cell controls a number of central processes by breaking down certain proteins and not others Examples of processes governed by ubiquitin-mediated protein degradation are cell division DNA repair quality control of newly- produced proteins and important parts of the immune defence When the degradation does not work correctly we fall ill Cervical cancer and cystic fibrosis are two examples Knowledge of ubiquitin- mediated protein degradation offers an opportunity to develop drugs against these diseases and others

26

The label consists of a molecule called ubiquitin This fastens to the protein to be destroyed accompanies it to the proteasome where it is recognised as the key in a lock and signals that a protein is on the way for disassembly Shortly before the protein is squeezed into the proteasome its ubiquitin label is disconnected for re-use

lsquokiss of death

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 18: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

18

Endoplasmic reticulum

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

PeptideTAP-1 TAP-2

Peptide

TAP-1 TAP-2

Peptide

TAP-1 TAP-2

HSV protein blocks transportof viral peptides into ER

Sent to lysosomesfor degradation

Evasion of immunity by interference with endogenous antigen processing

19

Sent to lysosomes for degradation

Normally exported to the cell surface

Adenoviralproteinretains MHCclass I in the ER

Evasion of immunity by interference withendogenous antigen processing

20

CYTOSOL PATHWAY

21Nature Immunology 7 7 - 9 (2006)

The chop-and-change of MHC class I assembly

step twoTPN CRT ERp57

step one

MHCMHC--II类抗原加工递呈的亲和力类抗原加工递呈的亲和力ldquoldquo编辑编辑rdquordquo

22

Antigens destined for presentation by MHC class I molecules are degraded by the combined action of proteasome and tripeptidyl peptidase II as well as other proteases in the cytosol The peptides thus generated are then transported into the lumen of the endoplasmic reticulum by TAP Peptides may be chaperoned between proteases and TAP by the cytosolic hsp60 homolog TRiC Once in the lumen of the endoplasmic reticulum peptides can bind to newly assembled MHC class I molecules Assembly of MHC class I from a constituent heavy chain and 2-microglobulin is assisted by calnexin (CNX) possibly in complex with ERp57 Peptide loading proceeds in a two-step process In step one peptide-receptive molecules load with peptide cargo that is not refined in terms of its affinity (off-rate) A subsequent step involving tapasin (TPN) calreticulin (CRT) and ERp57 results in the editing of this peptide cargo in favor of high-affinity ligands This process happens while MHC class I molecules are incorporated into the peptide-loading complex ERAAP is also involved in this peptide editing step by trimming long low-affinity peptide precursors to a size more suited to binding to MHC class I molecules with high affinity

23

Epitope Destruction vs Production

24

The Nobel Prize in Chemistry 2004for the discovery of ubiquitin-mediated protein degradation

Aaron Ciechanover Avram Hershko Irwin Rose13 of the prize 13 of the prize 13 of the prize Israel Israel USA Technion ndash Technion ndashIsrael Institute of Israel Institute of Technology Haifa Israelb 1947

TechnologyHaifa Israelb 1937 (in Karcag Hungary)

University of California Irvine CA USAb 1926

25

Thanks to the work of the three Laureates it is now possible to understand at molecular level how the cell controls a number of central processes by breaking down certain proteins and not others Examples of processes governed by ubiquitin-mediated protein degradation are cell division DNA repair quality control of newly- produced proteins and important parts of the immune defence When the degradation does not work correctly we fall ill Cervical cancer and cystic fibrosis are two examples Knowledge of ubiquitin- mediated protein degradation offers an opportunity to develop drugs against these diseases and others

26

The label consists of a molecule called ubiquitin This fastens to the protein to be destroyed accompanies it to the proteasome where it is recognised as the key in a lock and signals that a protein is on the way for disassembly Shortly before the protein is squeezed into the proteasome its ubiquitin label is disconnected for re-use

lsquokiss of death

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 19: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

19

Sent to lysosomes for degradation

Normally exported to the cell surface

Adenoviralproteinretains MHCclass I in the ER

Evasion of immunity by interference withendogenous antigen processing

20

CYTOSOL PATHWAY

21Nature Immunology 7 7 - 9 (2006)

The chop-and-change of MHC class I assembly

step twoTPN CRT ERp57

step one

MHCMHC--II类抗原加工递呈的亲和力类抗原加工递呈的亲和力ldquoldquo编辑编辑rdquordquo

22

Antigens destined for presentation by MHC class I molecules are degraded by the combined action of proteasome and tripeptidyl peptidase II as well as other proteases in the cytosol The peptides thus generated are then transported into the lumen of the endoplasmic reticulum by TAP Peptides may be chaperoned between proteases and TAP by the cytosolic hsp60 homolog TRiC Once in the lumen of the endoplasmic reticulum peptides can bind to newly assembled MHC class I molecules Assembly of MHC class I from a constituent heavy chain and 2-microglobulin is assisted by calnexin (CNX) possibly in complex with ERp57 Peptide loading proceeds in a two-step process In step one peptide-receptive molecules load with peptide cargo that is not refined in terms of its affinity (off-rate) A subsequent step involving tapasin (TPN) calreticulin (CRT) and ERp57 results in the editing of this peptide cargo in favor of high-affinity ligands This process happens while MHC class I molecules are incorporated into the peptide-loading complex ERAAP is also involved in this peptide editing step by trimming long low-affinity peptide precursors to a size more suited to binding to MHC class I molecules with high affinity

23

Epitope Destruction vs Production

24

The Nobel Prize in Chemistry 2004for the discovery of ubiquitin-mediated protein degradation

Aaron Ciechanover Avram Hershko Irwin Rose13 of the prize 13 of the prize 13 of the prize Israel Israel USA Technion ndash Technion ndashIsrael Institute of Israel Institute of Technology Haifa Israelb 1947

TechnologyHaifa Israelb 1937 (in Karcag Hungary)

University of California Irvine CA USAb 1926

25

Thanks to the work of the three Laureates it is now possible to understand at molecular level how the cell controls a number of central processes by breaking down certain proteins and not others Examples of processes governed by ubiquitin-mediated protein degradation are cell division DNA repair quality control of newly- produced proteins and important parts of the immune defence When the degradation does not work correctly we fall ill Cervical cancer and cystic fibrosis are two examples Knowledge of ubiquitin- mediated protein degradation offers an opportunity to develop drugs against these diseases and others

26

The label consists of a molecule called ubiquitin This fastens to the protein to be destroyed accompanies it to the proteasome where it is recognised as the key in a lock and signals that a protein is on the way for disassembly Shortly before the protein is squeezed into the proteasome its ubiquitin label is disconnected for re-use

lsquokiss of death

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 20: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

20

CYTOSOL PATHWAY

21Nature Immunology 7 7 - 9 (2006)

The chop-and-change of MHC class I assembly

step twoTPN CRT ERp57

step one

MHCMHC--II类抗原加工递呈的亲和力类抗原加工递呈的亲和力ldquoldquo编辑编辑rdquordquo

22

Antigens destined for presentation by MHC class I molecules are degraded by the combined action of proteasome and tripeptidyl peptidase II as well as other proteases in the cytosol The peptides thus generated are then transported into the lumen of the endoplasmic reticulum by TAP Peptides may be chaperoned between proteases and TAP by the cytosolic hsp60 homolog TRiC Once in the lumen of the endoplasmic reticulum peptides can bind to newly assembled MHC class I molecules Assembly of MHC class I from a constituent heavy chain and 2-microglobulin is assisted by calnexin (CNX) possibly in complex with ERp57 Peptide loading proceeds in a two-step process In step one peptide-receptive molecules load with peptide cargo that is not refined in terms of its affinity (off-rate) A subsequent step involving tapasin (TPN) calreticulin (CRT) and ERp57 results in the editing of this peptide cargo in favor of high-affinity ligands This process happens while MHC class I molecules are incorporated into the peptide-loading complex ERAAP is also involved in this peptide editing step by trimming long low-affinity peptide precursors to a size more suited to binding to MHC class I molecules with high affinity

23

Epitope Destruction vs Production

24

The Nobel Prize in Chemistry 2004for the discovery of ubiquitin-mediated protein degradation

Aaron Ciechanover Avram Hershko Irwin Rose13 of the prize 13 of the prize 13 of the prize Israel Israel USA Technion ndash Technion ndashIsrael Institute of Israel Institute of Technology Haifa Israelb 1947

TechnologyHaifa Israelb 1937 (in Karcag Hungary)

University of California Irvine CA USAb 1926

25

Thanks to the work of the three Laureates it is now possible to understand at molecular level how the cell controls a number of central processes by breaking down certain proteins and not others Examples of processes governed by ubiquitin-mediated protein degradation are cell division DNA repair quality control of newly- produced proteins and important parts of the immune defence When the degradation does not work correctly we fall ill Cervical cancer and cystic fibrosis are two examples Knowledge of ubiquitin- mediated protein degradation offers an opportunity to develop drugs against these diseases and others

26

The label consists of a molecule called ubiquitin This fastens to the protein to be destroyed accompanies it to the proteasome where it is recognised as the key in a lock and signals that a protein is on the way for disassembly Shortly before the protein is squeezed into the proteasome its ubiquitin label is disconnected for re-use

lsquokiss of death

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 21: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

21Nature Immunology 7 7 - 9 (2006)

The chop-and-change of MHC class I assembly

step twoTPN CRT ERp57

step one

MHCMHC--II类抗原加工递呈的亲和力类抗原加工递呈的亲和力ldquoldquo编辑编辑rdquordquo

22

Antigens destined for presentation by MHC class I molecules are degraded by the combined action of proteasome and tripeptidyl peptidase II as well as other proteases in the cytosol The peptides thus generated are then transported into the lumen of the endoplasmic reticulum by TAP Peptides may be chaperoned between proteases and TAP by the cytosolic hsp60 homolog TRiC Once in the lumen of the endoplasmic reticulum peptides can bind to newly assembled MHC class I molecules Assembly of MHC class I from a constituent heavy chain and 2-microglobulin is assisted by calnexin (CNX) possibly in complex with ERp57 Peptide loading proceeds in a two-step process In step one peptide-receptive molecules load with peptide cargo that is not refined in terms of its affinity (off-rate) A subsequent step involving tapasin (TPN) calreticulin (CRT) and ERp57 results in the editing of this peptide cargo in favor of high-affinity ligands This process happens while MHC class I molecules are incorporated into the peptide-loading complex ERAAP is also involved in this peptide editing step by trimming long low-affinity peptide precursors to a size more suited to binding to MHC class I molecules with high affinity

23

Epitope Destruction vs Production

24

The Nobel Prize in Chemistry 2004for the discovery of ubiquitin-mediated protein degradation

Aaron Ciechanover Avram Hershko Irwin Rose13 of the prize 13 of the prize 13 of the prize Israel Israel USA Technion ndash Technion ndashIsrael Institute of Israel Institute of Technology Haifa Israelb 1947

TechnologyHaifa Israelb 1937 (in Karcag Hungary)

University of California Irvine CA USAb 1926

25

Thanks to the work of the three Laureates it is now possible to understand at molecular level how the cell controls a number of central processes by breaking down certain proteins and not others Examples of processes governed by ubiquitin-mediated protein degradation are cell division DNA repair quality control of newly- produced proteins and important parts of the immune defence When the degradation does not work correctly we fall ill Cervical cancer and cystic fibrosis are two examples Knowledge of ubiquitin- mediated protein degradation offers an opportunity to develop drugs against these diseases and others

26

The label consists of a molecule called ubiquitin This fastens to the protein to be destroyed accompanies it to the proteasome where it is recognised as the key in a lock and signals that a protein is on the way for disassembly Shortly before the protein is squeezed into the proteasome its ubiquitin label is disconnected for re-use

lsquokiss of death

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 22: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

22

Antigens destined for presentation by MHC class I molecules are degraded by the combined action of proteasome and tripeptidyl peptidase II as well as other proteases in the cytosol The peptides thus generated are then transported into the lumen of the endoplasmic reticulum by TAP Peptides may be chaperoned between proteases and TAP by the cytosolic hsp60 homolog TRiC Once in the lumen of the endoplasmic reticulum peptides can bind to newly assembled MHC class I molecules Assembly of MHC class I from a constituent heavy chain and 2-microglobulin is assisted by calnexin (CNX) possibly in complex with ERp57 Peptide loading proceeds in a two-step process In step one peptide-receptive molecules load with peptide cargo that is not refined in terms of its affinity (off-rate) A subsequent step involving tapasin (TPN) calreticulin (CRT) and ERp57 results in the editing of this peptide cargo in favor of high-affinity ligands This process happens while MHC class I molecules are incorporated into the peptide-loading complex ERAAP is also involved in this peptide editing step by trimming long low-affinity peptide precursors to a size more suited to binding to MHC class I molecules with high affinity

23

Epitope Destruction vs Production

24

The Nobel Prize in Chemistry 2004for the discovery of ubiquitin-mediated protein degradation

Aaron Ciechanover Avram Hershko Irwin Rose13 of the prize 13 of the prize 13 of the prize Israel Israel USA Technion ndash Technion ndashIsrael Institute of Israel Institute of Technology Haifa Israelb 1947

TechnologyHaifa Israelb 1937 (in Karcag Hungary)

University of California Irvine CA USAb 1926

25

Thanks to the work of the three Laureates it is now possible to understand at molecular level how the cell controls a number of central processes by breaking down certain proteins and not others Examples of processes governed by ubiquitin-mediated protein degradation are cell division DNA repair quality control of newly- produced proteins and important parts of the immune defence When the degradation does not work correctly we fall ill Cervical cancer and cystic fibrosis are two examples Knowledge of ubiquitin- mediated protein degradation offers an opportunity to develop drugs against these diseases and others

26

The label consists of a molecule called ubiquitin This fastens to the protein to be destroyed accompanies it to the proteasome where it is recognised as the key in a lock and signals that a protein is on the way for disassembly Shortly before the protein is squeezed into the proteasome its ubiquitin label is disconnected for re-use

lsquokiss of death

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 23: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

23

Epitope Destruction vs Production

24

The Nobel Prize in Chemistry 2004for the discovery of ubiquitin-mediated protein degradation

Aaron Ciechanover Avram Hershko Irwin Rose13 of the prize 13 of the prize 13 of the prize Israel Israel USA Technion ndash Technion ndashIsrael Institute of Israel Institute of Technology Haifa Israelb 1947

TechnologyHaifa Israelb 1937 (in Karcag Hungary)

University of California Irvine CA USAb 1926

25

Thanks to the work of the three Laureates it is now possible to understand at molecular level how the cell controls a number of central processes by breaking down certain proteins and not others Examples of processes governed by ubiquitin-mediated protein degradation are cell division DNA repair quality control of newly- produced proteins and important parts of the immune defence When the degradation does not work correctly we fall ill Cervical cancer and cystic fibrosis are two examples Knowledge of ubiquitin- mediated protein degradation offers an opportunity to develop drugs against these diseases and others

26

The label consists of a molecule called ubiquitin This fastens to the protein to be destroyed accompanies it to the proteasome where it is recognised as the key in a lock and signals that a protein is on the way for disassembly Shortly before the protein is squeezed into the proteasome its ubiquitin label is disconnected for re-use

lsquokiss of death

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 24: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

24

The Nobel Prize in Chemistry 2004for the discovery of ubiquitin-mediated protein degradation

Aaron Ciechanover Avram Hershko Irwin Rose13 of the prize 13 of the prize 13 of the prize Israel Israel USA Technion ndash Technion ndashIsrael Institute of Israel Institute of Technology Haifa Israelb 1947

TechnologyHaifa Israelb 1937 (in Karcag Hungary)

University of California Irvine CA USAb 1926

25

Thanks to the work of the three Laureates it is now possible to understand at molecular level how the cell controls a number of central processes by breaking down certain proteins and not others Examples of processes governed by ubiquitin-mediated protein degradation are cell division DNA repair quality control of newly- produced proteins and important parts of the immune defence When the degradation does not work correctly we fall ill Cervical cancer and cystic fibrosis are two examples Knowledge of ubiquitin- mediated protein degradation offers an opportunity to develop drugs against these diseases and others

26

The label consists of a molecule called ubiquitin This fastens to the protein to be destroyed accompanies it to the proteasome where it is recognised as the key in a lock and signals that a protein is on the way for disassembly Shortly before the protein is squeezed into the proteasome its ubiquitin label is disconnected for re-use

lsquokiss of death

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 25: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

25

Thanks to the work of the three Laureates it is now possible to understand at molecular level how the cell controls a number of central processes by breaking down certain proteins and not others Examples of processes governed by ubiquitin-mediated protein degradation are cell division DNA repair quality control of newly- produced proteins and important parts of the immune defence When the degradation does not work correctly we fall ill Cervical cancer and cystic fibrosis are two examples Knowledge of ubiquitin- mediated protein degradation offers an opportunity to develop drugs against these diseases and others

26

The label consists of a molecule called ubiquitin This fastens to the protein to be destroyed accompanies it to the proteasome where it is recognised as the key in a lock and signals that a protein is on the way for disassembly Shortly before the protein is squeezed into the proteasome its ubiquitin label is disconnected for re-use

lsquokiss of death

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 26: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

26

The label consists of a molecule called ubiquitin This fastens to the protein to be destroyed accompanies it to the proteasome where it is recognised as the key in a lock and signals that a protein is on the way for disassembly Shortly before the protein is squeezed into the proteasome its ubiquitin label is disconnected for re-use

lsquokiss of death

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 27: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

27

21 Endosomes

and Compartments for antigen processing22 Antigen degradation

multi-catalytic unit immunodominant

site

23 MHC-II transportERrarrαchain

and β

chain

Calnexin CxIa-associated invariant chain IiClass II-

associated invariant chain peptide CLIP

Ii3α3β3

Trans-Golgi networkrarrendosome24 Ii degredation

in endosome

25 Peptides are stably bound to MHC-II moleculeHLA-DM26 Antigen presentation

2 MHC-II Exogenous

antigens Processing pathway

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 28: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

28Proteases produce ~24 amino acid long peptides from antigensDrugs that raise the pH of endosomes inhibit antigen processing

Endosomes

Exogenous pathway

Increasein acidity

Cell surface

To lysosomes

Uptake Protein antigensIn endosome

Cathepsin B D and L proteases are activated by the decrease in pH

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 29: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

29

Need to prevent newly synthesised unfolded

self proteins from binding to immature MHC

Invariant chain stabilises MHC class II by non- covalently binding to the

immature MHC class II molecule and forming a nonomeric complex

In the endoplasmic reticulum

MHC class II maturation and invariant chain

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 30: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

30

Invariant chain structure

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 31: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

31

Class II-associated invariant-chain peptide (CLIP)

The invariant chain

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 32: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

32

Invariant chain structure

Three extended peptides each bind into the grooves of three MHC class II molecules to form the nonomeric complex

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 33: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

33

A peptide of the invariant chain blocks the MHC molecule binding siteThis peptide is called the CLass II associated Invariant chain Peptide

(CLIP)

Invariant chain CLIP peptide

and

chains of MHC class II molecules

CLIP

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 34: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

34

Endosomes

Cell surface

Uptake

Class II associated invariant chain peptide (CLIP)

(inv)3 complexesdirected towardsendosomes byinvariant chain

Cathepsin L degrades Invariant chain

CLIP blocks groove in MHC molecule

MHC Class IIcontaining vesiclesfuse with antigen

containing vesicles

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 35: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

35

Removal of CLIP

How can the peptide stably bind to a floppy binding siteCompetition between large number of peptides

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 36: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

36

HLA-DM HLA-DR

HLA-DM assists in the removal of CLIP

HLA-DM Crystallised without a peptide in the grooveIn space filling models the groove is very small

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 37: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

37

HLA-DM

HLA-DR

Single pocket in ldquogrooverdquoinsufficient to accommodate

a peptide

Multiple pocketsin groove sufficient to

accommodate a peptide

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 38: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

38

HLA-DM catalyses the removal of CLIP

MIIC compartment

HLA-DMReplaces CLIP with a

peptide antigen using a catalytic mechanism (ie efficient at sub-

stoichiometric levels)

Discovered using mutant cell lines that

failed to present antigen

HLA-DO may also play a role in peptide

exchange

Sequence in cytoplasmic tail retains HLA-DM in endosomes

HLA-DMHLA-DR

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 39: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

39

MIIC compartment sorts peptide-MHC complexes for surface expression orlysosomal degradation

Surface expression of MHC class II-peptide complexes

Exported to the cell surface (t12 = 50hr)

Sent to lysosomes for degradation

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 40: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

40

MHC molecules possess binding sites that are flexible at an early intracellular stage of maturation

Floppy Compact

Flexibility of the peptide bindingsite in MHC molecules

Although this example shows MHC class I molecules the flexibility in the peptide binding site of MHC class II molecules also occurs at an early

stage of maturation in the endoplasmic reticulum

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 41: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

41

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 42: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

42

两类抗原加工递呈途径的比较两类抗原加工递呈途径的比较

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 43: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

43Nature Reviews Immunology 7 543-555 (2007)

MHCMHC--II类抗原的交叉递呈途径类抗原的交叉递呈途径

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 44: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

44

Christian Muumlnz Autophagy and antigen presentationCellular MicrobiologyVolume 8 Page 891 - June 2006

Christian Muumlnz

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 45: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

45J Mol Med (2006) 84 194ndash202

自噬加工递呈途径自噬加工递呈途径

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 46: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

46

CD1dCD1d加工递呈途径加工递呈途径 Lipid antigen Lipid antigen

NKTNKT细胞的识别与活化细胞的识别与活化

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 47: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

47

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 48: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

48

Nature reviews immunology 20077(12) 933

CD1dSynthetic glycolipid

α-GalCerEndogenous ligand

iGb3Bacterial glycosphingolipids

GSL-1GSL-1rsquoBacterial cell wall antigens

PBS 30 PBS59 PBS 50

Gram-LPS+

DC

MyD88

hexb

iG3b

NKT

IFN-γ

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 49: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

49

Nature reviews immunology 20077(12) 932

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 50: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

50

The structure of human CD1b has now been solved by Gadola et al (page 721) revealing a fascinating set of tunnels and tubes that explains how one protein can bind lipids of such variety See also the News amp Views by Niazi et al (page 703) Painting is acrylic on canvas by Michael Malicki

Nature Immunology August 2002 - Volume 3 Issue 8

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 51: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

51

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 52: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

52

超抗原递呈途径超抗原递呈途径

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53
Page 53: Antigen Processing and Presentation - USTCioi.ustc.edu.cn/_upload/article/files/2a/5e/f0aae6d74f60...antigen processing 19 Sent to lysosomes for degradation Normally exported to the

53

Chain of eventsNature Reviews Immunol

July 2008 Vol 8 No 7

  • 幻灯片编号 1
  • 幻灯片编号 2
  • 幻灯片编号 3
  • 幻灯片编号 4
  • 幻灯片编号 5
  • 幻灯片编号 6
  • 幻灯片编号 7
  • 幻灯片编号 8
  • 幻灯片编号 9
  • 幻灯片编号 10
  • 幻灯片编号 11
  • 幻灯片编号 12
  • 幻灯片编号 13
  • 幻灯片编号 14
  • 幻灯片编号 15
  • 幻灯片编号 16
  • 幻灯片编号 17
  • 幻灯片编号 18
  • 幻灯片编号 19
  • 幻灯片编号 20
  • 幻灯片编号 21
  • 幻灯片编号 22
  • Epitope Destruction vs Production
  • 幻灯片编号 24
  • 幻灯片编号 25
  • 幻灯片编号 26
  • 幻灯片编号 27
  • 幻灯片编号 28
  • 幻灯片编号 29
  • 幻灯片编号 30
  • 幻灯片编号 31
  • 幻灯片编号 32
  • 幻灯片编号 33
  • 幻灯片编号 34
  • 幻灯片编号 35
  • 幻灯片编号 36
  • 幻灯片编号 37
  • 幻灯片编号 38
  • 幻灯片编号 39
  • 幻灯片编号 40
  • 幻灯片编号 41
  • 幻灯片编号 42
  • 幻灯片编号 43
  • 幻灯片编号 44
  • 幻灯片编号 45
  • 幻灯片编号 46
  • 幻灯片编号 47
  • 幻灯片编号 48
  • 幻灯片编号 49
  • 幻灯片编号 50
  • 幻灯片编号 51
  • 幻灯片编号 52
  • 幻灯片编号 53