37
CEFET QUÍMICA UNIDADE RJ QUÍMICA GERAL I EXPERIMENTAL Período Montagem e revisão: Profª. Ana Paula Fontan

apostila 3

Embed Size (px)

Citation preview

CEFET QUÍMICA

UNIDADE RJ

QUÍMICA

GERAL

I

EXPERIMENTAL

Período

Montagem e revisão: Profª. Ana Paula Fontan

- 2 -

QUÍMICA

GERAL

I

EXPERIMENTAL

SUMÁRIO

Noções elementares de segurança em laboratório................................................................................. 03

Material básico de laboratório ................................................................................................................. 05

Limpeza e secagem de material de vidro................................................................................................. 07

PRÁTICA n° 1: Medidas de volume......................................................................................................... 08

PRÁTICA n° 2: Técnicas de pesagem e determinação de densidade................................................. 11

PRÁTICA n° 3: Técnicas de aquecimento e Lei de Lavoisier............................................................. 15

PRÁTICA n° 4: Fenômenos físicos e químicos...................................................................................... 20

MÉTODOS DE SEPARAÇÃO DE MISTURAS.........................................................................................23

PRÁTICA n° 5: Separação de misturas heterogêneas........................................................................... 29

PRÁTICA n° 6: Separação de misturas homogêneas e Obtenção de gases....................................... 33

PRÁTICA n° 7: Ligações iônicas e moleculares..................................................................................... 35

- 3 -

NOÇÕES

ELEMENTARES

DE

SEGURANÇA

EM

LABORATÓRIO

Sendo a Química uma Ciência Experimental, são necessários conhecimentos práticos, pois é a partir

deles que conseguimos compreender suas Leis e Teorias.

A freqüência ao laboratório de Química Geral é de grande importância, particularmente no ensino técnico, uma vez que, além de experiências que permitem a melhor compreensão do que está sendo estudado teoricamente, nele é realizado o aprendizado de técnicas básicas, tão necessárias e usadas ao longo de toda a vida profissional do técnico.

Esta apostila é destinada aos alunos do 1º período e tem por objetivo auxiliar de forma segura os primeiros contatos dos estudantes com os trabalhos de laboratório. Infelizmente, a ocorrência de acidentes em laboratório não é tão rara como possa parecer; sendo assim, com a finalidade de diminuir a freqüência e a gravidade desses eventos, torna-se absolutamente imprescindível que durante os trabalhos realizados em laboratório se observe uma série de normas de segurança:

Siga as instruções específicas do professor. Ao efetuar as experiências, siga rigorosamente seus roteiros, lendo-os com bastante atenção, identificando o material que será utilizado.

Acidentes de qualquer natureza devem ser comunicados imediatamente ao professor.

Localize o extintor de incêndio e familiarize-se com o seu uso.

Certifique-se do bom funcionamento dos chuveiros de emergência.

As tubulações de laboratório possuem cor específica, segundo normas de segurança. No caso do nosso laboratório são encontradas as seguintes cores: verde = água; amarela = gás não liqüefeito; cinza = eletricidade.

Coloque todo o material escolar (mochilas, pastas, cadernos, etc.) no local próprio. Não utilize a bancada como mesa.

Não fume no laboratório.

Não coma dentro do laboratório.

Uso de guarda-pó é indispensável.

Durante as aulas práticas é

obrigatório

o uso de calça comprida e sapato fechado. No caso de cabelos compridos, estes deverão estar presos.

Durante a permanência no laboratório, evite passar os dedos na boca, nariz, olhos e ouvidos. Seja particularmente cuidadoso quando manusear substâncias corrosivas como ácidos e bases. Lave sempre as mãos após manusear reagente (tenha sempre uma toalha pequena ou um perfex no bolso de seu guarda-pó).

Não trabalhe com material imperfeito, principalmente o vidro que contenha rachaduras, pontas ou arestas cortantes.

Leia com atenção o rótulo de qualquer frasco de reagente antes de usá-lo, certificando-se de seu uso.

Segure o frasco de reagente com o rótulo voltado para a palma de sua mão, evitando desta forma, danos ao rótulo.

Sobras de reagentes não devem ser devolvidas ao frasco original, evitando assim possíveis contaminações.

Quando for testar um produto químico pelo odor, não coloque o frasco sob o nariz. Desloque com a mão, para sua direção, os vapores que se desprendem do frasco.

Não aspire gases ou vapores sem antes se certificar de que não são tóxicos.

Todas as experiências que envolvam produtos corrosivos ou vapores tóxicos devem ser realizadas na capela (dispositivo provido de exaustão).

Ao introduzir tubos de vidro em rolhas, umedeça-os convenientemente e enrole a peça numa toalha para proteger as mãos.

- 4 -

Quando for utilizar o gás, abra a torneira somente após acender o palito de fósforo (nunca um isqueiro!) e, ao terminar seu uso, feche com cuidado a torneira, evitando vazamentos. Traga sempre uma caixa de fósforos para as aulas práticas.

Não aqueça reagentes em sistemas fechados.

Ao aquecer tubos de ensaio não volte a extremidade aberta para si ou para uma pessoa próxima.

Não deixe vidro quente onde possam pegá-lo inadvertidamente (o vidro quente parece com o vidro frio!). Coloque-o sempre sobre uma tela de amianto, o que alertará aos demais sobre o perigo de queimaduras.

Para evitar acidentes, não deixe o bico de gás aceso com chama forte sobre a bancada.

Não deixe produtos inflamáveis perto do fogo.

Dedique especial atenção a qualquer operação que necessite aquecimento prolongado ou que desenvolva grande quantidade de energia.

Se qualquer produto químico for derramado sobre a bancada, lave imediatamente o local.

Evite debruçar-se sobre a bancada. Algum reagente pode ter caído sobre a mesma, sem que fosse percebido, o que pode ocasionar acidentes. Conserve, portanto, sempre limpa a bancada e a aparelhagem que utilizar.

Não deixe frascos de reagentes destampados, principalmente se contiverem substâncias voláteis. Tenha o cuidado de não trocar as tampas dos frascos.

Os reagentes de uso coletivo deverão ser mantidos em seus devidos lugares.

Durante os trabalhos em grupo apenas um aluno deverá se deslocar para pegar materiais e reagentes.

Sempre que trabalhar com água e ácidos concentrados, use sempre a capela, adicionando, lentamente, o

ácido

sobre

a

água

e NUNCA

o contrário (poderá haver projeção, devido à energia liberada no processo).

Não jogue nenhum material sólido nas pias e nos ralos. Habitue-se a utilizar sempre a lata de lixo.

Tenha um caderno de laboratório, onde deverão estar registrados todos os dados da prática.

Durante a realização das experiências, dirija sua atenção única e exclusivamente ao trabalho que está executando. Esta atitude permitirá que, além de fazer observações com maior exatidão, sejam evitados acidentes no laboratório.

A princípio, o estudante deverá repetir a experiência caso a mesma não apresente o resultado esperado ou satisfatório. Antes, porém, de fazê-lo, procurar um dos professores para esclarecer as possíveis causas do erro e se há realmente necessidade de proceder a nova experiência.

Ao se retirar do laboratório, verifique se não há torneiras (água ou gás) abertas e limpe todo o material utilizado, bem como a bancada.

Mantenha o laboratório sempre limpo. Higiene também é uma questão de segurança.

OBSERVAÇÃO:

Todos os materiais e reagentes de laboratório são de alto custo, portanto, cuide bem do seu material e utilize somente quantidades necessárias dos reagentes, evitando desperdícios.

Qualquer

material

que

seja

quebrado

por

negligência

do

aluno

deverá

ser

reposto

pelo

mesmo.

ATENÇÃO

Em caso de acidentes envolvendo ácidos ou bases, a primeira providência é lavar

o

local

abundantemente

com

água o maior tempo possível

Não adicione nenhuma substância no local afetado apenas água

- 5 -

MATERIAL

BÁSICO

DE

LABORATÓRIO

A execução de qualquer experimento na Química envolve geralmente a utilização de uma variedade

de equipamentos de laboratório, a maioria muito simples, porém com finalidades específicas. O emprego de um dado equipamento ou material depende dos objetivos e das condições em que a experiência será executada. Contudo, na maioria dos casos, a seguinte correlação pode ser feita:

Material

de

vidro

Tubos de ensaio – utilizado principalmente para efetuar reações químicas em pequena escala.

Béquer ou Becher – recipiente com ou sem graduação, utilizado para o preparo de soluções (onde a concentração seja aproximada), aquecimento de líquidos, recristalizações, etc.

Erlenmeyer – frasco utilizado para aquecer líquidos ou soluções e, principalmente, para efetuar um tipo de análise química denominada titulação.

Kitassato – frasco de paredes espessas, munido de saída lateral e usado em filtrações sob sucção.

Balão de fundo chato ou de Florence – frasco destinado a armazenar líquidos e soluções.

Balão volumétrico – recipiente calibrado, de exatidão, fechado através de rolha esmerilhada, destinado a conter um determinado volume de solução, a uma dada temperatura É utilizado no preparo de soluções de concentrações bem definidas.

Proveta – frasco com graduações, destinado a medidas aproximadas de um líquido ou solução.

Cilindro graduado – frasco com graduações, semelhante à proveta, mas que possui rolha esmerilhada permitindo assim que, além de ser usado para efetuar medidas, possa também ser utilizado no preparo de soluções, desde que não haja um grande rigor no que se refere à concentração da mesma.

Bureta – equipamento calibrado para medida exata de volume de líquidos e soluções. Permite o escoamento do líquido ou solução através de uma torneira esmerilhada e é utilizada em um tipo de análise química denominada titulação.

Pipeta – equipamento calibrado para medida exata de volume de líquidos e soluções. Diferentemente da proveta, que conterá

o volume desejado, na pipeta deixamos

escoar

o volume necessário à nossa experiência. Existem dois tipos de pipetas: pipeta graduada pipeta volumétrica. A primeira é usada para escoar volumes variáveis enquanto a segunda é usada para escoar volumes fixos de líquidos ou soluções. Em termos de exatidão de medida, a pipeta graduada possui uma exatidão menor que a volumétrica.

Funil – utilizado na transferência de líquidos ou soluções de um frasco para outro e para efetuar filtrações simples. Existem funis que possuem haste curta e de grande diâmetro, adequados para transferência de sólidos secos de um recipiente para outro.

Vidro de relógio – usado geralmente para cobrir bechers contendo soluções, em pesagens, etc.

Dessecador – utilizado no armazenamento de substâncias, quando se necessita de uma atmosfera com baixo teor de umidade. Também pode ser usado para manter substâncias sob pressão reduzida.

Pesa-filtro – recipiente destinado à pesagem de substâncias que sofrem alteração em contato com o meio ambiente (absorção de umidade, de gás carbônico; volatilização; etc.).

Bastão de vidro – usado na agitação e transferência de líquidos e soluções. Quando envolvidos em uma de suas extremidades por um tubo de látex é chamado “policial” e é empregado na remoção quantitativa de precipitados.

Funil ou ampola de separação (também chamado de decantação) – equipamento usado para separar líquidos imiscíveis (mistura heterogênea de líquidos).

Condensador – equipamento destinado à condensação de vapores, em destilações ou aquecimento a refluxo.

o Balão

de

destilação:

recipiente, também de vidro, que possui uma saída lateral na qual o condensador estará acoplado e que é utilizado caso de destilações simples.

- 6 -

o Balão

de

fundo

redondo: é o recipiente acoplado ao condensador no caso do aquecimento

a refluxo ou destilação fracionada, quando estará acoplado à uma coluna de fracionamento.

Em ambos os casos, a forma arredondada dos recipientes permite um aquecimento homogêneo.

Cuba de vidro ou cristalizador – recipiente geralmente utilizado para conter misturas refrigerantes e finalidades diversas.

Material

de

porcelana

Funil de Büchner – utilizado em filtrações por sucção, devendo ser acoplado a um kitassato.

Cápsula – usada para efetuar evaporação de líquidos.

Caçarola – usada para efetuar evaporação de líquidos.

Cadinho – usado para a calcinação de substâncias.

Almofariz (ou gral) e pistilo – destinado à pulverização de sólidos. Além de porcelana, podem ser feitos de ágata, vidro ou metal.

Material

metálico

Suporte universal, mufa e garra – peças metálicas usadas para montar aparelhagens em geral.

Pinças – peças de vários tipos, como Mohr e Hofmann, cuja finalidade é impedir ou reduzir o fluxo de líquidos ou gases através de tubos flexíveis. Existe um outro tipo de pinça usado para segurar objetos aquecidos.

Bico de Bunsen – bico de gás, usado como principal fonte de aquecimento de materiais não inflamáveis.

Tela de amianto – tela metálica, contendo amianto, utilizada para distribuir uniformemente o calor, durante o aquecimento de recipientes de vidro à chama de um bico de gás.

Triângulo de ferro com porcelana – usado principalmente como suporte em aquecimento de cadinhos.

Tripé – usado como suporte, principalmente de telas e triângulos.

Banho de água ou banho–maria – utilizado para aquecimento indireto até 100 ºC.

Argola – usada principalmente como suporte para funil de vidro .

Espátula – usada para transferência de substâncias sólidas.

Furador de rolhas – utilizado na perfuração de rolhas de cortiça ou borracha.

Materiais

diversos

Suporte para tubos de ensaio

Pinça de madeira – utilizada para segurar tubos de ensaio.

Pissete – frasco, geralmente plástico, contendo água destilada, álcool ou outros solventes, usado para efetuar a lavagem de recipientes ou materiais com jatos de líquido nele contido.

Estufa – equipamento empregado na secagem de materiais, por aquecimento, em geral até 200 ºC.

Mufla ou forno – utilizado na calcinação de substâncias, por aquecimento em altas temperaturas (até 1000 ou 1500 ºC).

Manta elétrica – utilizada no aquecimento de líquidos inflamáveis contidos em balão de fundo redondo.

Centrífuga – instrumento que serve para acelerar a sedimentação de sólidos em suspensão em líquidos.

Balança – instrumento para determinação de massa.

- 7 -

LIMPEZA

E

SECAGEM

DE

MATERIAL

DE

VIDRO

Limpeza

Recomenda-se limpar o material com solução de detergente, enxaguá-lo várias vezes com água de

torneira e depois com jatos de água deionizada (utilizar o pissete).

Verifica-se a limpeza, deixando escoar a água, isto é, se a película líquida inicialmente formada nas paredes escorre uniformemente, sem deixar gotículas presas, a superfície está limpa.

Caso seja necessária uma limpeza mais rigorosa, existem soluções especiais para esse objetivo No caso da Química Geral, a lavagem com detergente é suficiente.

Os materiais volumétricos devem estar perfeitamente limpos, para que os resultados das medidas possam ser os mais confiáveis.

Secagem

Para secagem do material, pode-se utilizar:

Secagem comum – por evaporação à temperatura ambiente.

Secagem rápida – pode ser obtida, após enxaguar o material, com álcool ou acetona.

Secagem em corrente de ar – ar aspirado por meio de uma bomba de vácuo ou trompa d’água.

Estufa – aquecimento em estufa em temperatura um pouco superior a 100 ºC.

No caso da estufa, não se pode secar material volumétrico (buretas e pipetas), pois o mesmo nunca deve ser aquecido, o que comprometerá a calibração feita em sua confecção. Caso não se disponha de tempo para secar buretas ou pipetas, deve-se enxaguá-las repetidas vezes com pequenas porções do líquido que será usado para enchê-las (este processo recebe o nome de rinsagem).

LEITURA

DE

RÓTULOS

Um hábito que deve ser adquirido em trabalhos de laboratório é a leitura do rótulo do reagente que se irá manusear. Este hábito evitará acidentes e o uso indevido dos mesmos, como por exemplo, a troca de reagentes em um experimento.

No caso dos reagentes vindos de fábrica, os rótulos contêm informações a respeito da fórmula da substância, sua pureza, densidade, massa molecular, além de símbolos que indicam se o reagente é inflamável, irritante, venenoso, etc. Estes reagentes são normalmente chamados de P.A. (pró – análise) quando possuem um alto grau de pureza.

No caso de soluções preparadas a partir de reagentes P.A., os frascos deverão conter o nome e a fórmula do reagente, assim como a concentração da solução (relação soluto /solvente).

- 8 -

PRÁTICA

Nº.

1:

MEDIDAS

DE

VOLUME

E

TRANSFERÊNCIA

DE

REAGENTES

O material a ser utilizado na medição de volumes depende da exatidão da medida que se necessita.

Quando não é necessária uma grande exatidão na medida, esta pode ser efetuada em becher graduado, proveta ou pipeta graduada (ordem crescente de exatidão).

Para medidas exatas, utiliza-se pipeta volumétrica, balão volumétrico e também buretas, que são calibrados pelo fabricante em temperatura padrão de 20ºC.

Pipeta graduada Pipeta volumétrica Bureta Cilindro graduado Balão volumétrico Becher

Observação:

exatidãopróximo do valor real precisão

repet ibilidade de resultados encontrados

Alguns critérios devem ser considerados na medição de volumes:

O líquido (ou solução) a ser medido deve estar sempre à temperatura ambiente, pois variações de temperatura provocam dilatações e contrações.

A escolha do material para se medir um líquido ou solução depende da exatidão que se necessita e do líquido ou solução a ser medido. Assim, por exemplo, se necessitamos de aproximadamente 20 mL, é mais correto usarmos um becher do que uma proveta.

A medida do volume é feita comparando-se o nível do mesmo com os traços marcados na parede do recipiente. A leitura do nível para líquidos (ou soluções) transparentes, ao contrário dos líquidos escuros, deve ser feita na parte inferior do menisco.

No momento da leitura de volume, a linha de visão do operador deverá estar perpendicular à escala graduada, para evitar o chamado “erro de paralaxe”.

Dependendo da graduação do material, às vezes torna-se necessário fazer uma estimativa do volume a ser medido. Para tal, estimar o volume entre os traços da menor divisão, dividindo-o, mentalmente, em cinco intervalos equivalentes (2 – 4 – 6 – 8) ou, em caso de graduação muito pequena, em dois intervalos (0 –5). Determinar, em seguida, a posição do menisco em relação à graduação.

- 9 -

Técnica

do

uso

de

pipetas

1. Mergulha-se a pipeta, limpa e seca, no líquido (ou solução) a ser medido.

2. Aplica-se sucção (com a boca, pêra de borracha ou pró-pipete, conforme o material a ser pipetado) na parte superior da pipeta, aspirando líquido (ou solução) até um pouco acima da marca. Nesta operação, a

ponta

da

pipeta

deve

ser

mantida

sempre

mergulhada

no

líquido

(ou solução), caso contrário será

aspirado ar.

3. Fecha-se a extremidade superior da pipeta com o dedo indicador. Relaxando levemente a pressão do dedo, deixa-se escoar o líquido (ou solução) excedente, até que a parte inferior (ou superior, dependendo do líquido ou solução utilizada) do menisco coincida com a graduação desejada.

4. Remove-se a gota aderente à pipeta, tocando a ponta desta na parede do frasco utilizado para receber o líquido (ou solução) excedente.

5. A seguir, encosta-se a ponta da pipeta na parede interna do recipiente destinado a receber o líquido (ou solução) e deixa-se escoar. Esperam-se mais 15 segundos e afasta-se a pipeta, sem tentar remover o líquido (ou solução) remanescente na ponta.

Importante: No caso da pipeta apresentar dois traços em sua porção superior, após o escoamento do líquido (ou solução), deve-se soprá-la, pois o material remanescente na ponta faz parte da leitura realizada.

Observações:

Transferência

de

líquidos

e

sólidos

As transferências realizadas em laboratório devem ser feitas segundo determinadas técnicas, desenvolvidas com o objetivo de evitar acidentes de trabalho.

Transferência

de

líquidos

e

soluções

líquidas

É necessário o uso adequado do bastão de vidro, para evitar que haja projeção do líquido e que o mesmo escorra pelas paredes externas do recipiente que o contém.

Nas transferências para frascos contendo aberturas estreitas, é recomendável o uso de funil.

Transferência

de

sólidos

Em pesagens utilizar uma espátula adequada e limpa para transferir o sólido do frasco reagente. Ter o cuidado de não contaminar as tampas dos frascos dos reagentes utilizados (durante o procedimento mantenha a tampa do frasco sobre uma folha de papel limpa).

Para recipientes de abertura estreita deve ser utilizado um funil de sólidos (haste curta e diâmetro apreciável). No caso de não haver funil de sólidos, pode-se utilizar um papel de filtro, dobrado na forma de um funil, ou uma pequena tira de papel.

- 10 -

PROCEDIMENTO

EXPERIMENTAL:

Atenção:

I ) Leitura

de

volumes :

Um dos componentes do grupo deverá dirigir-se à bancada lateral munido de um becher de capacidade de 250 mL e um bastão de vidro e, com a técnica adequada, transferir para o mesmo, 220 mL de solução nº 1,que se encontra num frasco de reagente, devidamente identificado. Leve este becher para sua bancada utilizando-o para os itens abaixo:

Medir

em

provetas

adequadas os seguintes volumes:

22,0 ml

6,4 mL

10,0 mL

1,8 mL

Medir 20,00 mL da solução utilizando uma pipeta

volumétrica ;

Escolher

pipetas

graduadas

adequadas e deixar escoar os volumes abaixo para um becher de 50 mL :

2,3 mL

6,5 mL

0,7 mL

1,6 mL

2,00 mL

Em um becher com capacidade de 50 mL, coloque um volume qualquer ( inferior à capacidade do becher) da solução nº 2 e estime o volume.

Fazer leitura de volume escoado em bureta.

II ) Comparação

de

volumes :

Compare os valores lidos para um mesmo volume em instrumentos diferentes.

Por exemplo: medir em pipeta graduada um volume de 15 mL e transferir este volume para um becher de 50 mL, avaliando o volume medido no becher . Em seguida, transferir novamente o volume, agora para uma proveta de 50 mL, fazendo a leitura de maneira adequada.

III) Transferência

de

reagentes:

Colocar em um becher certa quantidade de sólido que se encontra na bancada lateral. A seguir, transferir pequenas quantidades para 3 tubos de ensaio utilizando, respectivamente, uma espátula, em funil de papel e uma tira de papel.

- 11 -

PRÁTICA

Nº.

2:

TÉCNICAS

DE

PESAGEM

A pesagem é uma das mais importantes operações nos laboratórios de Química. Neste processo, a

massa de um corpo é determinada por comparação com massas conhecidas, utilizando-se balanças.

Erros

nas

pesagens

As principais causas de erro são:

Modificações nas condições em que se encontra o recipiente e/ou substância, entre pesadas sucessivas.

Empuxo diferente do ar sobre o corpo e os pesos.

Inexatidão nos pesos.

Efeitos da temperatura.

Absorção de umidade e/ou gás carbônico do ar – as substâncias absorvidas também serão pesadas, causando erro. Como solução deve-se secar a substância antes da pesagem, deixá-la esfriar num dessecador e pesá-la num pesa-filtro.

Película de água aderida à superfície dos corpos – correspondente ao teor do vapor de água contido na atmosfera ambiente. Quanto mais baixa for a temperatura do corpo em relação à temperatura ambiente, tanto maior a espessura dessa película. Assim, um corpo frio aparentará maior peso do que um corpo quente. A solução nesse caso consiste em só pesar o objeto após o mesmo ter adquirido a temperatura ambiente.

Cuidados

gerais

com

as

balanças

Balanças não são sensíveis apenas a vibrações, mas reagem também a oscilações rápidas de temperatura e a correntes de ar. Por estes motivos, na instalação das mesmas devem ser evitados locais com incidência de sol e correntes de ar, assim como mesas ou bancadas que sofram trepidações facilmente. No caso das balanças ditas “analíticas”, de grande sensibilidade e exatidão, é conveniente a construção de uma sala exclusiva para elas.

Em virtude do que foi dito, alguns cuidados devem ser tomados no manuseio de balanças, seja qual for o seu tipo:

A balança deve ser mantida sempre limpa.

Os reagentes não devem ser colocados diretamente sobre o prato da balança. Devem ser utilizados recipientes apropriados (vidro de relógio, becher, etc.).

Terminada a pesagem, todos os recipientes devem ser retirados dos pratos e os botões e massas aferidas recolocados à posição inicial (zero).

Quando o objeto a ser pesado é colocado ou retirado do prato, a balança deve estar travada, para evitar desgastes nas peças da balança.

Os objetos a serem pesados não devem ser seguros com a mão, mas com uma pinça ou tira de papel, evitando assim que haja aumento da massa do objeto pela gordura das mãos. Esta preocupação somente é necessária quando se utilizam balanças denominadas analíticas, muito sensíveis, que são capazes de determinar massas até o décimo de miligrama.

Os recipientes e reagentes a serem utilizados devem encontrar-se à temperatura ambiente.

O operador (ou outra pessoa) não deve apoiar-se na bancada da balança durante a pesagem, para evitar oscilações na balança.

- 12 -

Balança

de

prato

externo

digital

Nivelar e ligar a balança.

“Zerar” a balança, pressionando o botão com o dedo indicador.

Colocar sobre o prato da balança o recipiente no qual se fará a pesada.

Para pesar X gramas de uma substância, considerar a massa do recipiente ou utilizar o botão de tara (neste caso, a balança é novamente zerada e a massa do recipiente é ignorada).

Acrescentar cuidadosamente ao recipiente, a substância a ser pesada até que o valor desejado apareça no visor.

Após a pesagem, retirar o recipiente com a substância, zerar novamente a balança, desligando-a posteriormente.

Tipos

de

pesagem

Direta: consiste na determinação da massa de um objeto compacto ( vidro de relógio, becher, etc.).

Por adição: consiste na determinação da massa de substâncias, adicionando-as a um recipiente (vazio) cuja massa foi previamente determinada.

Por diferença: consiste na determinação da massa de substâncias que se alteram em contato com o ar (absorção de umidade, de gás carbônico, substâncias voláteis, etc.). A substância é colocada num recipiente adequado (pesa-filtro), provido de tampa, e o conjunto é pesado. A quantidade necessária da substância é retirada do recipiente e sua massa determinada pesando-se novamente o conjunto.

PROCEDIMENTO

EXPERIMENTAL

Determinar a massa de um vidro de relógio, anotando seu valor. Pesar, por

adição, em torno de 1,2 g de carbonato de cálcio. Anotar o resultado encontrado, levando em conta a exatidão da balança.

Determinar a massa de um becher de 50 mL contendo sal de cozinha até aproximadamente a metade. Pesar, por

diferença, em torno de 5,5 g de sal, anotando o valor encontrado, levando em conta a exatidão da balança. Não esqueça de levar um becher para junto da balança para recolher o sal pesado.

Coloque na balança um becher de 50 mL, tarando-o. Pesar cerca de 8,6 g de areia, anotando o valor encontrado, levando em conta a exatidão da balança.

- 13 -

DETERMINAÇÃO

DE

DENSIDADE

1. OBJETIVO:

Calcular a densidade de algumas amostras de sólidos e líquidos.

2. INTRODUÇÃO

TEÓRICA:

A densidade é uma característica específica das substâncias. Ela é determinada medindo-se a massa

da amostra (através de uma balança), o volume (pode ser determinado através dos conhecimentos de geometria, no caso de sólidos regulares, ou através de instrumentos e técnicas de laboratório que possibilitem tal aferição), e fazendo-se o quociente entre os dois (d = m/v). A massa deve ser expressa em gramas (g) e o volume em centímetros cúbicos (cm3).

3. MATERIAIS

E

REAGENTES:

Materiais

Reagentes

Proveta (plástica) de 50,0 mL Ferro (Fe)

Pipeta graduada de 5,0 e 10,0 mL Chumbo (Pb)

Pipeta volumétrica de 10,00 mL Água deionizada (H2O)

Becher de 50 mL Álcool etílico P.A (C2H5OH)

Bastão de vidro

Balança

4. PROCEDIMENTO

EXPERIMENTAL:

I) Determinação

de

densidade

de

sólidos

1. Pesar um pedaço de ferro, anotando a massa encontrada.

Massa de ferro encontrada: ___________________

2. Em uma proveta de 50,0 mL colocar água suficiente para que o pedaço de ferro pesado possa ficar imerso, .

3. Colocar o pedaço de ferro pesado na água e (corresponde à massa do metal). Para diminuir o erro, retire o volume deslocado com uma pipeta graduada e faça nela a leitura.

Volume de água deslocado: ___________________

4. Calcular a densidade

Densidade =

5. Repetir os procedimentos acima, substituindo o ferro por chumbo.

Massa de chumbo encontrada: _________________

Volume de água deslocado: ___________________

Densidade =

Densidade ( g/mL ) Material

Massa

( g )

Volume

( mL ) teórica experimental

Erro ( % )

Fe 7,86

Pb 11,34

- 14 -

II) Determinação

da

densidade

de

líquidos

1. Determinar a massa de um becher de 50 mL limpo e seco.

Massa do becher: ___________________

2. Pipetar 10,00 mL (com pipeta volumétrica) de água deionizada e transferir para o becher cuja massa já foi determinada, determinando a massa do conjunto becher + água.

Massa do becher + água: _______________

Massa da água: _______________________

3. Com os valores da massa e do volume da água, determine sua densidade.

Densidade: ________________________

4. Repetir os procedimentos acima, substituindo a água por álcool etílico.

Massa do becher: ___________________

Massa do becher + álcool: _______________

Massa do álcool: _______________________

Densidade: ________________________

Densidade ( g/mL ) Material Massa

( g )

Volume

( mL ) teórica experimental

Erro ( % )

Água 1,00

Álcool 0.79

O erro percentual (E) pode ser dado por:

E = diferença entre os valores teórico e experimental . 100

valor teórico

- 15 -

PRÁTICA

Nº.

3

TÉCNICAS

DE

AQUECIMENTO

E

ESTUDO

DA

LEI

DE

LAVOISIER

Fontes

de

calor

Algumas operações em laboratório envolvem processos de aquecimento. A escolha da fonte de calor

depende do material a ser aquecido e o porquê de ser aquecido.

As fontes de aquecimento mais utilizadas são: gás e energia elétrica

Bicos

de

gás:

Os bicos de gás são utilizados em aquecimento de substâncias não

inflamáveis.

O aquecimento pode ser:

Direto:

a chama fica em contato direto com o recipiente; é o caso do aquecimento de cadinhos, que ficam apoiados sobre o tripé em triângulos de porcelana e de tubos de ensaio, que são seguros através de uma pinça de madeira.

Indireto

os recipientes ficam apoiados sobre uma tela, denominada tela de amianto, que distribui uniformemente o calor da chama; é o caso do aquecimento de bechers, balões de fundo chato, caçarolas, balões de fundo redondo e de destilação, etc.

Energia

elétrica:

Para aquecimento de substâncias inflamáveis são utilizados os seguintes aparelhos:

Manta elétrica – serve para aquecimento de balão de fundo redondo.

Chapa elétrica – serve para aquecimento de balão de fundo chato, becher, erlenmeyer, etc.

Para calcinação e secagem de material:

Forno ou mufla – atinge temperaturas de 1000 a 1500 ºC, sendo utilizado para fazer calcinações. O material mais utilizado neste tipo de aquecimento é o cadinho.

Estufa – utilizada na secagem de materiais, atingindo no máximo 200 ºC.

Trabalhos

com

bico

de

gás

Em nosso laboratório utilizamos um bico de gás denominado bico de Bunsen. As partes fundamentais do bico de Bunsen são: a base

(onde se encontra a entrada de gás), o tubo

ou haste

(onde se encontram as janelas de ar que fornecem o oxigênio necessário para alimentar a combustão, e por onde passa o fluxo de gás) e o anel (parte que envolve a haste e contém as janelas de entrada de ar).

Para utilizar adequadamente o bico de Bunsen, uma vez que ele esteja conectado à rede de distribuição de gás através de um tubo de látex, deve ser observada a seguinte seqüência:

Verificar se a entrada de gás geral da bancada está aberta.

Verificar se as entradas

de

gás

e

ar do bico de Bunsen estão

fechadas.

Acender o fósforo.

Abrir a torneira de gás do bico.

Aproximar o palito aceso da extremidade do bico (a chama obtida é amarela e luminosa)

Regular a entrada de ar, até que se obtenha uma chama azul.

- 16 -

Para apagar o bico, fechar

sempre

a

entrada

de

ar (janela) antes da torneira.

Na chama obtida distinguem-se três zonas distintas: zona

oxidante

(região externa mais quente,

onde se obtêm as maiores temperaturas e localizada acima do cone interno), zona

redutora

(região interna

mais fria, onde se conseguem as temperaturas mais baixas e onde ocorre o início da combustão) e zona

neutra (de baixas temperaturas, pois ainda não se dá a combustão do gás).

Observações

Técnicas

Aquecimento

de

tubos

de

ensaio (aquecimento direto):

O aquecimento é feito com auxílio de uma pinça de madeira, localizada perto da extremidade aberta do tubo. O tubo deverá ficar inclinado durante o aquecimento (cerca de 45º em relação ao bico) e NUNCA

direcionado para alguém que se encontre nas proximidades.

No caso de aquecimento de líquidos ou soluções, o aquecimento é feito em chama branda (a janela do bico encontra-se fechada), que evita projeções, com movimentos ascendentes e descendentes.

No caso de aquecimento de sólidos pode ser usada uma chama intensa (também chamada de oxidante, onde a janela do bico encontra-se aberta), caso seja necessário.

Aquecimento

de

becher (aquecimento indireto):

Utiliza-se um sistema constituído de tripé, tela de amianto e bico de gás. Uma vez terminado o aquecimento, o becher é retirado com auxílio de uma pinça adequada e colocado sobre outra tela de amianto, enquanto esfria, para alertar aos demais do perigo de queimaduras. No caso de aquecimento onde haja a evaporação total do solvente, deve-se

desligar

o

gás

antes

da

secura

completa, para evitar que o becher se quebre.

Aquecimento

de

cadinho (aquecimento direto):

Usado quando há necessidade de aquecimento intenso, o cadinho é colocado sobre um triângulo de porcelana, devidamente apoiado em um tripé, e a chama do bico de gás incide diretamente sobre o mesmo. O aquecimento é feito em chama forte.

PROCEDIMENTO

EXPERIMENTAL

I) Aquecimento

direto

em

cadinho:

Montar um sistema para aquecimento direto de cadinhos (triângulo de porcelana apoiado em tripé).

Pesar um cadinho cadinho limpo e seco e anotar o valor de sua massa.

Massa do cadinho: ______________________

Pesar, por adição, cerca de 2 gramas de sulfato de cobre II pentahidratado (CuSO4·5H2O), anotando a massa correta.

Aspecto do sulfato de cobre II pentahidratado (CuSO4·5H2O): _____________________________________

- 17 -

Massa do cadinho + CuSO4·5H2O: _______________________

Massa do CuSO4·5H2O: ________________________________

Transferir o cadinho para o triângulo de porcelana, segurando-o com a pinça e aquecê-lo fortemente até que toda a coloração azul do sal tenha desaparecido.

Transferir o cadinho para um dessecador e deixá-lo esfriar até atingir a temperatura ambiente.

Pesar novamente o cadinho (na mesma balança) e anotar o valor da massa.

Aspecto do sulfato de cobre II após o aquecimento: _____________________________________

Massa do cadinho + CuSO4: _______________________

Massa do CuSO4: ________________________________

Com o auxílio de uma pipeta, gotejar água sobre o sólido contido no cadinho, tocando a base do mesmo com a ponta dos dedos e anotando suas observações.

II) Aquecimento

indireto

em

becher

(cristalização)

Juntar, em um becher, 10 mL de solução de cloreto de sódio (NaCl).

Aspecto da solução: ______________________________________________________

Aquecê-lo sobre uma tela de amianto, reduzindo o aquecimento quando começarem a se formar os primeiros cristais.

Aquecer em chama branda até quase à secura.

Observar o aspecto dos cristais formados.

Aspecto dos cristais: ______________________________________________________________________

III) Aquecimento

direto

em

tubo

de

ensaio

1. Aquecimento de líquidos ou soluções:

Colocar em um tubo de ensaio um pequeno prego de ferro, com cuidado para que o mesmo não perfure o fundo do tubo.

Pipetar 3,0 mL de solução 10% v/v de ácido clorídrico (HCl) para o interior do tubo e observar por alguns minutos.

Aspecto da solução de ácido clorídrico (HCl) : _________________________________________________

Aspecto da interação prego – solução: ________________________________________________________

Aquecer o tubo, com o auxílio de uma pinça de madeira e a técnica adequada (chama branda), por alguns minutos, anotando suas observações. Cuidado para que não haja projeções durante o aquecimento.

Observações após o aquecimento: ___________________________________________________________

2. Aquecimento de sólidos:

Colocar em um tubo de ensaio uma pequena quantidade de cloreto de amônio sólido.

Aquecer o tubo, com o auxílio de uma pinça de madeira e a técnica adequada (chama oxidante), por alguns minutos.

- 18 -

LEI

DE

LAVOISIER

1. OBJETIVOS:

Verificar experimentalmente a lei de Lavoisier, comprovando que nas reações químicas, em um

sistema fechado, há conservação das massas.

2. INTRODUÇÃO

TEÓRICA:

Lei

de

Lavoisier:

A "Lei da Conservação das Massas" proposta por Lavoisier em 1774, foi enunciada com

base em inúmeras experiências, utilizando-se sistemas fechados, e que diz o seguinte:

"Numa reação química, não ocorre alteração na massa do sistema."

3. MATERIAIS

E

REAGENTES:

Material por bancada

Reagentes

Tubo de Lavoisier (com rolha) Solução de cloreto férrico (FeCl3) 0,1 mol/L

Balança Solução de hidróxido de sódio (NaOH) 0,1 mol/L

Erlenmeyer Carbonato de cálcio (CaCO3)

Bastão de vidro Solução de ácido clorídrico (HCl) ( 30% )

4. PROCEDIMENTO

EXPERIMENTAL:

REAÇÃO EM SISTEMA ABERTO:

Montar um sistema constituído por um erlenmeyer e um tubo de Lavoisier (um dos ramos do tubo deve estar dentro do erlenmeyer).

Colocar em um dos ramos do tubo de Lavoisier (QUE DEVERÁ ESTAR SECO) uma pequena

quantidade

de carbonato de cálcio (CaCO3) e no outro ramo, com cuidado para que não escorra para o ramo anterior, 5,0 mL de solução de ácido clorídrico (HCl). Não

tampar

o

tubo.

Observar atentamente o aspecto das substâncias reagentes.

Aspecto

dos

reagentes:

Carbonato de cálcio (CaCO3): ______________________________________________________________

Solução de ácido clorídrico (HCl): __________________________________________________________

Determinar a massa total do sistema, anotando seu valor.

Massa do sistema antes da reação: ______________________

Inclinar o tubo cuidadosamente, de modo que as substâncias entrem em contato, observando o aspecto dos produtos formados.

Aspecto dos produtos: ____________________________________________________________________

Pesar o sistema com os produtos e anotar o valor.

Massa do sistema após a reação: ______________________

- 19 -

REAÇÃO EM SISTEMA FECHADO:

Montar um sistema constituído por um erlenmeyer e um tubo de Lavoisier (um dos ramos do tubo deve estar dentro do erlenmeyer).

Colocar em um dos ramos do tubo de Lavoisier 2,0 mL de solução de cloreto férrico (FeCl3) e no outro ramo, com cuidado para que não escorra para o ramo anterior, 2,0 mL de solução de hidróxido de sódio (NaOH). Tampar

bem

o

tubo

com

a

rolha e observar atentamente o aspecto das substâncias reagentes.

Aspecto

dos

reagentes:

Solução de cloreto férrico (FeCl3): __________________________________________________________

Solução de hidróxido de sódio (NaOH): ______________________________________________________

Determinar a massa total do sistema, anotando seu valor.

Massa do sistema antes da reação: ______________________

Inclinar o tubo cuidadosamente, de modo que as soluções entrem em contato, observando o aspecto dos produtos formados. (procure equilibrar os volumes nos dois ramos)

Aspecto dos produtos: ____________________________________________________________________

Pesar o sistema com os produtos (na mesma balança utilizada anteriormente) e anotar o valor.

Massa do sistema após a reação: ______________________

- 20 -

PRÁTICA

Nº.

4:

FENÔMENOS

FÍSICOS

E

QUÍMICOS

1. OBJETIVO:

Identificar a diferença entre uma simples mistura de substâncias e uma reação química.

Verificar as diferenças entre os fenômenos físicos e químicos através de processos experimentais.

2. INTRODUÇÃO

TEÓRICA:

Fenômeno físico é aquele que não altera a estrutura das substâncias, ou seja, não altera a sua composição química.

Fenômeno químico é aquele que altera a estrutura das substâncias, modificando sua composição química.

Experimentalmente, é possível diferenciar os fenômenos físicos dos químicos pela observação das alterações ocorridas durante as experiências. A formação de gases, de produtos insolúveis (denominados precipitados) e de colorações inesperadas no sistema, são fortes indícios da ocorrência de um fenômeno químico, uma vez que possuem características diferentes das dos reagentes usados.

Observe

cuidadosamente

os

reagentes

usados:

seu

estado

físico;

se

está

puro

ou

em

mistura;

sua

coloração,

etc.,

com

o

objetivo

de

analisar

as

modificações

ocorridas.

3. MATERIAIS

E

REAGENTES:

Material por bancada

Reagentes

Bico de Bunsen Iodo (I2) ; magnésio metálico (Mg°) Tela de amianto (2) Carbonato de cálcio sólido (CaCO3) Tripé Cobre metálico (Cu°) e ferro metálico (Fe°) Tubos de ensaio Solução de cloreto férrico (FeCl3) 0,1 mol/L Estante para tubos Solução de tiocianato de amônio (NH4SCN) 0,1 mol/L Becher de 50 mL (3) Solução de ácido clorídrico (HCl) 30% v/v Pinça para becher Solução de ácido clorídrico (HCl) 0,1 mol/L Vidro de relógio Solução de hidróxido de sódio (NaOH)0,1 mol/L

Solução de sulfato de sódio (Na2SO4) 0,1 mol/L Solução de cloreto de bário (BaCl2) 0,1 mol/L Solução de sulfato cúprico (CuSO4) 0,1 mol/L Solução de cloreto férrico (FeCl3) 0,1 mol/L Água de cal ou de barita (Ca(OH)2 ou Ba(OH)2)

4. PROCEDIMENTO

EXPERIMENTAL:

Colocar alguns cristais de iodo (I2) em um becher limpo e seco. Cobrir o becher com um vidro de relógio contendo água. Colocar este conjunto sobre uma tela de amianto. Com o auxílio de um tripé aquecê-lo com chama baixa até que os vapores de iodo cheguem ao vidro de relógio. Desligar o gás e deixar esfriar o sistema (colocar o becher para esfriar sobre outra tela de amianto, na bancada). Anotar todas as observações (antes e depois do experimento) e determinar se o fenômeno é físico ou químico.

Aspecto do iodo (I2) antes do aquecimento: ___________________________________________________

Aspecto do iodo (I2) após o aquecimento: _____________________________________________________

Indicação de fenômeno ___________________

Justificativa: ____________________________________________________________________________

- 21 -

Colocar uma pequena porção de carbonato de cálcio (CaCO3) em um becher. Juntar 3,0 mL de solução de ácido clorídrico (HCl) e observar. Esperar até que não mais se note a presença de carbonato de cálcio (se for necessário, acrescentar mais ácido).

Aspecto do carbonato de cálcio (CaCO3): _____________________________________________________

Aspecto da solução de ácido clorídrico (HCl) : _________________________________________________

Observações após a junção dos reagentes: _____________________________________________________

Indicação de fenômeno ___________________

Justificativa: ____________________________________________________________________________

Colocar 1,0 mL de solução de sulfato de sódio (Na2SO4) em um tubo de ensaio e adicionar 1,0 mL de solução de cloreto de bário (BaCl2). Agitar, observar e colocar o tubo na estante. Após algum tempo de repouso, observar novamente o tubo. O fenômeno é físico ou químico?

Aspecto da solução de sulfato de sódio (Na2SO4): ______________________________________________

Aspecto da solução de cloreto de bário (BaCl2): ________________________________________________

Observações após a junção dos reagentes: _____________________________________________________

Indicação de fenômeno ___________________

Justificativa: ____________________________________________________________________________

Colocar 1,0 mL de solução de cloreto férrico (FeCl3) e adicionar 1,0 mL de solução de tiocianato de amônio (NH4SCN). Agitar, observar e colocar o tubo na estante. O fenômeno é físico ou químico?

Aspecto da solução de cloreto férrico (FeCl3): _________________________________________________

Aspecto da solução de tiocianato de amônio (NH4SCN): _________________________________________

Observações após a junção dos reagentes: _____________________________________________________

Indicação de fenômeno ___________________

Justificativa: ____________________________________________________________________________

Em um tubo de ensaio adicionar volumes iguais de solução de sulfato cúprico (CuSO4) e solução de cloreto férrico (FeCl3) (1,0 mL de cada ). Agitar e observar. O fenômeno é físico ou químico?

Aspecto da solução de sulfato cúprico (CuSO4): _______________________________________________

Aspecto da solução de cloreto férrico (FeCl3): _________________________________________________

Observações após a junção dos reagentes: _____________________________________________________

Indicação de fenômeno ___________________

Justificativa: ____________________________________________________________________________

Segurar um pequeno pedaço de magnésio metálico (Mg°) com uma pinça metálica. Introduzir a ponta do metal na chama (zona oxidante) do bico de Bunsen. Observar com cuidado a combustão do magnésio e o aspecto da substância que resta na pinça (a luz produzida é muito viva e pode prejudicar a vista).

Aspecto do magnésio metálico (Mg°) antes e depois da combustão: ______________________________

Indicação de fenômeno ___________________

- 22 -

Em um tubo de ensaio adicionar volumes iguais de solução de ácido clorídrico (HCl) e solução de hidróxido

de sódio (NaOH) (1,0 mL de cada ). Agitar e observar. O fenômeno é físico ou químico?

Aspecto da solução de ácido clorídrico (HCl):__________________________________________________

Aspecto da solução de hidróxido de sódio (NaOH):______________________________________________

Observações após a junção dos reagentes: _____________________________________________________

Indicação de fenômeno ___________________

Justificativa: ____________________________________________________________________________

Em um tubo de ensaio adicionar 2,0 mL de solução de ácido clorídrico (HCl) 30% v/v e um pequeno pedaço de cobre metálico(Cu°). Agitar e observar. O fenômeno é físico ou químico?

Aspecto da solução de ácido clorídrico (HCl):__________________________________________________

Aspecto do pedaço de cobre:______________________________________________

Observações após a junção dos reagentes: _____________________________________________________

Indicação de fenômeno ___________________

Justificativa: ____________________________________________________________________________

Em um tubo de ensaio adicionar 2,0 mL de solução de ácido clorídrico (HCl) 30% v/v e um pequeno pedaço de ferro metálico( prego - Fe°). Agitar e observar. O fenômeno é físico ou químico?

Aspecto da solução de ácido clorídrico (HCl):__________________________________________________

Aspecto do pedaço de ferro:______________________________________________

Observações após a junção dos reagentes: _____________________________________________________

Indicação de fenômeno ___________________

Justificativa: ____________________________________________________________________________

Em um tubo de ensaio adicionar 5,0 mL de água de barita (solução de hidróxido de bário – Ba(OH)2) e soprá-la , introduzindo a ponta de uma pipeta na solução .Observar. O fenômeno é físico ou químico?

Aspecto da água de barita: __________________________________________________

Observações após o sopro: _____________________________________________________

Indicação de fenômeno ___________________

Justificativa: ____________________________________________________________________________

- 23 -

MÉTODOS

DE

SEPARAÇÃO

DE

MISTURAS

Mistura é a associação de duas ou mais substâncias diferentes cujas estruturas permanecem

inalteradas, isto é, não ocorre reação química entre elas. Temos dois tipos de misturas:

a) Mistura

homogênea

não

é

possível

distinguir

superfícies

de

separação

entre seus

componentes, nem mesmo com os mais aperfeiçoados aparelhos de aumento, tais como ultramicroscópio ou microscópio eletrônico.

b) Mistura

heterogênea

é

possível

distinguir

superfícies

de

separação

entre seus componentes,

em alguns casos a olho nu, em outros com microscópio comum.

É muito comum as substâncias aparecem misturadas na Natureza. Freqüentemente, portanto, é necessário separar as substâncias existentes na mistura, até ficarmos com cada substância totalmente isolada das demais (substância pura). Esta separação chama-se desdobramento, fracionamento ou análise imediata da mistura.

Os processos empregados na análise imediata enquadram-se em dois tipos, conforme a mistura seja homogênea ou heterogênea :

Nas misturas heterogêneas usam-se os processos mecânicos, que têm por finalidade separar as diferentes fases, obtendo-se deste modo misturas homogêneas ou substâncias puras.

Nas misturas homogêneas recorrem-se a processos mais enérgicos, empregando-se processos físicos ou de fracionamento, pois a mistura homogênea fraciona-se em duas ou mais substâncias puras, isto é, seus componentes.

Misturas heterogêneas (processos mecânicos)

ANÁLISE IMEDIATA

Misturas homogêneas (processos físicos)

SEPARAÇÃO

DOS

COMPONENTES

DE

MISTURAS

HETEROGÊNEAS

Sólido

-

Sólido

Catação Separam-se os componentes sólidos usando a mão ou uma pinça.

Ventilação

- Usa-se uma corrente de ar para arrastar os componentes de densidade menor. É o que se faz para separar o café da palha; é também o princípio de funcionamento das máquinas de beneficiamento de arroz e cereais: a corrente de ar arrasta a palha ou a casca, e ficam os grãos.

Levigação

Consiste em lavar a mistura com uma corrente de água, separando assim o sólido menos denso. É o que se faz no garimpo para separar o ouro da areia. A água arrasta o componente menos denso (a areia), e o ouro, bem mais denso, fica.

Separação

magnética (ou imantação) - Usada quando um dos sólidos é atraído por um ímã. Esse processo é usado em larga escala para separar alguns minérios de ferro de suas impurezas e, certos filtros instalados junto às chaminés das indústrias funcionam baseados nesse princípio, retendo as partículas paramagnéticas (suscetíveis de magnetização).

Flotação - Banha-se a mistura em um líquido de densidade intermediária. O componente menos denso flutua e o mais denso se deposita. É o processo utilizado na separação de certos minérios de suas impurezas (ganga). O minério é banhado em óleo, e as partículas recobertas de óleo ficam menos densas que a água. O minério, então, é mergulhado em água (o líquido de densidade intermediária) e flutua. A ganga se deposita.

Peneiração

- A utilização de uma peneira permite separar os componentes. É o que faz o pedreiro quando quer obter areia de várias granulações.

Cristalização

fracionada

- Todos os componentes da mistura são dissolvidos em um líquido que, em seguida, sofre evaporação provocando a cristalização separada de cada componente. A cristalização fracionada é usada, por exemplo, nas salinas para obtenção de sais a partir da água do mar. A evaporação da

- 24 -

água permite a cristalização de diferentes sais, sendo que o último a ser obtido é o cloreto de sódio (NaCl), usado na alimentação.

Dissolução

fracionada

- Trata-se a mistura com um solvente que dissolva apenas um dos componentes.

Por filtração, separam-se os demais. Por evaporação, recupera-se o componente dissolvido. Para separar areia e sal, por exemplo, basta lavar a mistura. O sal se dissolve na água e a nova mistura é filtrada. A areia fica retida e passam a água e o sal dissolvido. Evapora-se a água e recupera-se o sal.

Sólido

-

Líquido

Decantação

Consiste em deixar a mistura em repouso por certo tempo, até que as partículas de sólido se depositem. Depois, com cuidado, transfere-se o líquido para outro recipiente. O café à moda síria ou árabe não é coado. É servido depois que o pó se deposita.

Centrifugação

Consiste em acelerar a decantação pelo uso de centrifugadores (denominados centrífugas). Na centrífuga, devido ao movimento de rotação, as partículas de maior densidade, por inércia, são arremessadas para o fundo do tubo. Para separar as partículas sólidas, ricas em gordura, da fase líquida do leite, as indústrias submetem-no à centrifugação.

Filtração

Consiste em fazer passar a mistura por uma parede ou superfície porosa. O sólido fica retido. Esse processo tem largo emprego doméstico; é usado para coar café ou coalhada, para coar um suco através do pano, etc. Em laboratório, podemos usar a filtração denominada simples, onde o meio filtrante (denominado papel de filtro) é adaptado a um funil e a filtração ocorre por ação da gravidade ou a filtração a vácuo, onde a filtração é acelerada pelo acoplamento de uma bomba de vácuo, que faz com que a pressão no interior do recipiente diminua (neste tipo de filtração usa-se um funil especial, denominado funil de Büchner, que permite que se acople a bomba de vácuo).

Líquido

-

Líquido

Decantação

Quando se trata de separar líquidos imiscíveis com densidades diferentes, usa-se um funil de separação (denominado funil ou ampola de decantação ou funil de bromo).Coloca-se a mistura nesse funil e espera-se que as duas fases se separem. Abre-se a torneira e deixa-se escoar o líquido mais denso. O outro estará automaticamente separado. Pode-se utilizar esse processo na mistura água e óleo.

Líquido

-

Gás

A mistura é heterogênea desde que se observem bolhas de gás disseminadas na fase líquida, a exemplo do que acontece nas bebidas gaseificadas. Para separar um líquido de um gás, basta aquecer a mistura e o gás é eliminado. É por isso que a água fervida não tem gosto agradável - elimina-se o oxigênio nela dissolvido.

Gás

-

Sólido

Decantação

- A mistura passa através de obstáculos, em forma de zigue-zague, onde as partículas sólidas perdem velocidade e se depositam. Industrialmente, esse processo é feito em equipamento denominado câmara de poeira ou chicana.

Filtração

- A mistura passa através de um filtro, onde o sólido fica retido. Esse processo é muito utilizado nas indústrias, principalmente para evitar o lançamento de partículas sólidas na atmosfera. Atualmente, as indústrias potencialmente poluentes são obrigadas por lei a usar dispositivos filtrantes nas chaminés.

Esse método de separação também pode ser utilizado em sua casa, com um equipamento mais simples: o aspirador de pó. As partículas sólidas aspiradas junto com o ar são retidas no filtro.

- 25 -

SEPARAÇÃO

DOS

COMPONENTES

DE

MISTURA

HOMOGÊNEA

Sólido

-

Líquido

Nas misturas homogêneas sólido-líquido (soluções), o componente sólido encontra-se totalmente

dissolvido no líquido, o que impede a sua separação por filtração. A maneira mais comum de separar os componentes desse tipo de mistura está relacionada com as diferenças nos seus pontos de ebulição. Isto pode ser feito de duas maneiras:

Evaporação

- A mistura é deixada em repouso ou é aquecida até que o líquido (componente mais volátil)

sofra evaporação. É o processo empregado nas salinas.

O inconveniente neste processo é o não aproveitamento do componente líquido.

Destilação

simples

- A mistura é aquecida em uma aparelhagem apropriada, de tal maneira que o componente líquido inicialmente evapora e, a seguir, sofre condensação, sendo recolhido em outro frasco.

Líquido

-

Líquido

Destilação

fracionada

- Consiste no aquecimento da mistura de líquidos miscíveis (solução), cujos pontos de ebulição (PE) não sejam muito próximos. Os líquidos são separados na medida em que cada um dos seus pontos de ebulição é atingido. Inicialmente é separado o líquido com menor PE (o mais volátil). Enquanto este destila, a temperatura se mantém constante. Terminada a destilação do primeiro líquido, a temperatura volta a subir até que se atinja o PE do segundo. Começa aí a destilação deste. Tudo é controlado por termômetro.

Na realidade, a temperatura em que começa a ebulição não é a do componente mais volátil, porque, junto com ele, também vaporiza, embora em proporção menor, o menos volátil. Como o produto destilado é mais rico no componente mais volátil, precisaríamos submetê-lo a sucessivas destilações para que ocorressem separações cada vez mais eficientes, obtendo, no final, um produto de alto grau de pureza. Para evitar esse trabalho, adapta-se ao balão de destilação uma coluna de fracionamento, ao longo da qual ocorrem, naturalmente, sucessivas vaporizações e condensações.

A coluna de fracionamento é preenchida com esferas ou anéis de vidro, que servem de obstáculo à passagem do vapor.

Os dois líquidos entram em ebulição e seus vapores, ao encontrar os primeiros obstáculos, condensam-se e aquecem a porção inferior da coluna. A mistura líquida condensada entra novamente em ebulição e vai condensar novamente mais acima, e assim sucessivamente. Como a temperatura diminui gradualmente ao longo da coluna, a fração do componente menos volátil (maior PE) vai ficando cada vez menor. No topo da coluna sai o líquido mais volátil (menor PE), em alto grau de pureza.

Esse processo é muito utilizado, principalmente em indústrias petroquímicas, na separação dos diferentes derivados do petróleo.

Gás

-

Gás

Liquefação

fracionada

- A mistura de gases passa por um processo de liquefação e, posteriormente, pela destilação fracionada. Esse processo é usado industrialmente para separar oxigênio e nitrogênio do ar atmosférico. Após a liquefação do ar, a mistura líquida é destilada e o primeiro componente a ser obtido é o N2, pois apresenta menor PE (-195,8.ºC); posteriormente, obtém-se o O2, que possui maior PE (-183.ºC)

Adsorção Consiste na retenção superficial de gases. Algumas substâncias, tais como o carvão ativo, têm a propriedade de reter, na sua superfície, substâncias no estado gasoso. Uma das principais aplicações da adsorção são as máscaras contra gases venenosos.

- 26 -

EXERCÍCIOS

1) Indique os métodos que devem ser utilizados para separar as misturas:

a) solução aquosa de NaCl b) água, areia e ferro c) solução aquosa de acetona

2) Deseja-se fazer a separação dos componentes da pólvora negra, que é constituída de nitrato de sódio, carvão e enxofre. Sabe-se que o nitrato de sódio é solúvel em água, o enxofre é solúvel em dissulfeto de carbono, enquanto que o carvão é insolúvel nesses solventes. Proponha um procedimento para realizar essa separação.

3) Têm-se as seguintes misturas:

I.areia e água II.álcool (etanol) e água III.sal de cozinha (NaCl) e água, neste caso uma mistura homogênea.

Cada uma dessas misturas foi submetida a uma filtração em funil com papel e, em seguida, o líquido resultante (filtrado) foi aquecido até sua total evaporação. Pergunta-se:

a) Qual mistura deixou um resíduo sólido no papel após a filtração? O que era esse resíduo? b) Em qual caso apareceu um resíduo sólido após a evaporação do líquido? O que era esse resíduo?

4) Uma cozinheira deixou cair óleo de cozinha num recipiente contendo sal de cozinha. Sabendo que o sal é imiscível no óleo e solúvel na água, mostre como você procede para separá-los e deixá-los em condições de uso.

5) Duas amostras de uma solução aquosa de CuSO4, de coloração azul, foram submetidas, respectivamente, às seguintes operações: (I) filtração com papel de filtro; (II) destilação simples. Determine a coloração resultante, justificando sua resposta;

a) do material que passou pelo filtro na operação I b) do produto condensado na operação II

6) Assinale as afirmativas corretas: a) A água pura é uma substância simples. b) A dissolução do açúcar em água representa uma transformação física. c) O enegrecimento de um objeto de prata exposto ao ar representa uma transformação química. d) Um sistema formado por gases pode ser homogêneo ou heterogêneo, dependendo da natureza dos gases. e) O funil de decantação pode ser utilizado na separação de dois líquidos imiscíveis. f) A separação dos componentes de uma mistura homogênea sólido - líquido pode ser efetuada através de filtração comum. g) Uma substância pura sempre apresenta pontos de fusão e de ebulição constantes.

7) Considere as misturas da tabela:

Mistura Componentes I água e sal II água e azeite III ar e poeira

Os componentes dessas misturas podem ser separados, respectivamente, pelos processos:

a) I - eletrólise; II - filtração; III – decantação

b) I - destilação; II - filtração; III - decantação

c) I - filtração; II - destilação; III - liquefação do ar

d) I - decantação; II - destilação; III - filtração

e) I - destilação; II - decantação; III - filtração

- 27 -

8) São dadas três misturas heterogêneas de sólidos: I .arroz e casca II. serragem e limalha de ferro III. areia e cascalho

Os processos mais convenientes para separá-las são respectivamente:

I II III a) levigação separação magnética ventilação b) destilação simples flotação peneiração c) ventilação flotação peneiração d) peneiração separação magnética flotação e) peneiração ventilação centrifugação

9) Um modo conveniente para retirar a parte gordurosa do leite é o emprego de ....................

10) Industrialmente, os gases N2 e O2 são extraídos do ar atmosférico. Para tanto, o ar é submetido, sucessivamente, aos processos: a)liquefação e filtração b) solidificação e filtração c) liquefação e destilação fracionada d) solidificação e decantação e) liquefação e fusão fracionada

11) Tintura de iodo é uma solução alcoólica de I2(iodo - sólido de cor violeta) e KI(iodeto de potássio - sólido de cor branca). Deixou-se um frasco dessa solução aberto e depois de certo tempo observou-se que restavam no fundo grãos de cor violeta e branca. Pode-se concluir, a partir desses dados, que : a) a mistura original era heterogênea b) ocorreu cristalização da solução c) ocorreu sublimação dos componentes d) ocorreu vaporização do soluto e) ocorreu vaporização do solvente, restando cristais de iodo e de iodeto de potássio

12) A separação dos componentes de uma mistura de gasolina e água pode ser feita por meio de ..................

13) Em um acampamento, um estudante deixou cair na areia todo o sal de cozinha disponível. Entretanto, tendo conhecimento sobre separação de misturas, conseguiu recuperar praticamente todo o sal. Que operações este estudante pode ter realizado?

14) Considere a tabela a seguir: I II III IV

água e gasolina álcool hidrogênio água e álcool

I) Os sistemas I, II, III e IV são, respectivamente: a) solução - mistura heterogênea - substância composta - substância simples b) solução - mistura heterogênea - substância simples - substância composta c) substância simples - substância composta - solução - mistura heterogênea d) substância composta - substância simples - mistura heterogênea - solução e) mistura heterogênea - substância composta - substância simples - solução

II) Para separar os componentes do sistema I, deve-se usar o processo de:

a) decantação e sifonação b) filtração c) destilação d) levigação e) sublimação

III) O sistema IV pode ser separado por:

- 28 -

a) evaporação b) filtração a vácuo c) fusão simples d) destilação fracionada

e) sublimação

15) Uma mistura gasosa constituída de dois gases, que não reagem entre si, foi liquefeita. Se o líquido obtido for submetido a uma destilação fracionada, à pressão constante, qual o componente que destila primeiro?

RESPOSTAS

1) a) Destilação ou evaporação

b) Separação magnética (imantação) e depois filtração

c) Destilação fracionada

2) Acrescenta-se água à mistura que dissolverá apenas o nitrato de sódio. Filtra-se e separa-se o nitrato da água por destilação. À mistura restante acrescenta-se dissulfeto de carbono para a dissolução do enxofre. Filtra-se para separação do carvão. Recupera-se o enxofre por destilação.

3) a) I ; areia

b) III ; NaCl

4) Junta-se água à mistura e agita-se. O sal se solubiliza na água e sobre ele flutua o óleo de cozinha. Utilizando um funil de separação, separa-se o óleo da mistura água e sal. O sal é separado por evaporação da água.

5) a) Azul, pois o CuSO4 (que comunica a coloração azul à solução) passa através do papel de filtro. b) Incolor, pois o destilado é apenas água

6) b – c – e – g

7) letra e

8) letra c

9) centrifugação

10) letra c

11) letra e

12) Decantação

13) Adiciona-se água à areia e o sal que estão misturados. Filtra-se a mistura, ficando a areia retida no filtro e passando a mistura água e sal. Aquece-se o filtrado, evaporando assim a água e restando o sal.

14) I) letra e II) letra a III) letra d

15) O que tiver menor PE

- 29 -

PRÁTICA

Nº.

5:

SEPARAÇÃO

DE

MISTURAS

HETEROGÊNEAS

1. OBJETIVO: Separar os componentes de misturas heterogêneas.

2. MATERIAIS

E

REAGENTES:

Materiais

Reagentes

Gral (ou almofariz) com pistilo

Becher de 50 e 100 mL (2 de cada) Giz

Proveta de 50 ou 100 mL Precipitado de hidróxido férrico

Suporte universal/ argola e mufa Querosene misturado com iodo

Funil / Papel de filtro Enxofre (S)

Bastão de vidro Sulfato cúprico sólido (CuSO4)

Funil de Büchner / Kitassato

Tubos de centrífuga

Bico de Bunsen

Tripé / Tela de amianto

Ampola de decantação

3. PROCEDIMENTO

EXPERIMENTAL:

I. Filtração: É um processo que consiste em separar de um líquido ou gás, um sólido em suspensão.

Executa-se a filtração fazendo passar a mistura heterogênea através de um material poroso que retenha o sólido que se acha em suspensão.

A especificação do material poroso (filtro) depende dos diâmetros das partículas sólidas a separar.

I.1 Filtração

simples

Na filtração simples, o material que funciona como filtro é um papel de celulose pura, sem cola, bastante poroso (papel de filtro).

Dobra

do

papel

de

filtro

Dobrar o papel ao meio formando um semicírculo.

Fazer uma segunda dobra não exatamente ao meio, mas de tal modo que as extremidades fiquem afastadas mais ou menos 0,5 cm.

Fazer um leve corte numa das extremidades, para facilitar a aderência do papel ao funil.

Após colocar o papel no funil, umedeça-o com água deionizada para facilitar a aderência.

- 30 -

Procedimento

I.2. Filtração

à

pressão

reduzida:

Preparo

do

funil

de

Büchner

O papel de filtro é colocado sobre a placa perfurada do funil de Büchner de modo que se adapte perfeitamente, sem dobras, a um ou dois milímetros do diâmetro interno do funil.

Umedecer o papel de filtro com água deionizada para facilitar a aderência.

- 31 -

Procedimento

II. Centrifugação:

Em análise química, é comum a formação de um precipitado. A decantação pela ação da gravidade às vezes torna-se lenta, podendo ser acelerada pela centrifugação.

A técnica da centrifugação consiste na separação de uma mistura sólido líquido pela ação da força centrífuga. Na prática, dois tubos (denominados tubos de centrífuga) são colocados em posições diametralmente opostas num centrifugador (ou centrífuga): um contendo a mistura e o outro contendo água suficiente para que seu peso seja igual ao do tubo com a mistura (para que haja equilíbrio).

Procedimento

III .Decantação:

Processo que consiste em separar

dois

líquidos

não

miscíveis

de

densidades

diferentes, ou então, um

sólido

de

um

líquido.

- 32 -

Procedimento

IV. Dissolução fracionada:

Usada para separar sólido

de

sólido.

Utiliza-se um solvente que seja capaz de dissolver somente um dos componentes da mistura, daí o nome: dissolução de fração da mistura.

Procedimento

- 33 -

PRÁTICA

Nº.

6:

SEPARAÇÃO

DE

MISTURAS

HOMOGÊNEAS

E

OBTENÇÃO

DE

GASES

1. OBJETIVO: Separar os componentes de misturas homogêneas.

2. MATERIAIS

E

REAGENTES:

Materiais

Reagentes

Balão de destilação – Condensador – Unha

Suporte Universal – Garras e mufas - Tripé Solução p/destilação

Tela de amianto – Bico de Bunsen – Tubos de látex Solução alcoólica de naftaleno

Bastão de vidro – Argola - Funil

Erlenmeyer de 100 ou 250 mL - Proveta de 50 mL

Rolhas (para o balão de destilação e condensador)

Tubos de ensaio - Estante para tubo

Papel de filtro

4. PROCEDIMENTO

EXPERIMENTAL:

Destilação

Simples:

Colocar em um becher cerca de 50 mL de solução para destilação.

Montar a aparelhagem conforme o esquema acima.

Usando um funil, transfira, com auxílio de um bastão, a solução para o balão de destilação.

Colocar pérolas de vidro no balão de destilação (evitam o superaquecimento).

Ligar a água, para que ocorra a refrigeração no condensador, verificando se todas as conexões estão em ordem e se o fluxo de água não está muito intenso.

- 34 -

Aquecer o balão.

Verificar que, quando a solução atinge seu ponto de ebulição, a água passa para o estado gasoso, indo para o condensador, onde volta ao estado líquido.

A primeira parte do destilado deverá ser desprezada (pode conter impurezas).

O aquecimento deverá cessar pouco antes de levar o balão à secura.

II. Precipitação

por

mudança

de

solvente:

Método se separação dos componentes de uma mistura homogênea, adicionando-se uma substância

que solubiliza apenas um dos componentes presentes na mistura, havendo então, decantação do outro componente que poderá ser separado, por exemplo, por filtração.

OBTENÇÃO

DE

GASES

1. OBJETIVO:

Fornecer ao aluno algumas técnicas básicas de obtenção de gases em laboratório, que poderão ser utilizadas de formas diferentes e para diversos fins.

2. INTRODUÇÃO

TEÓRICA:

Muitas vezes se torna necessária a obtenção de gases em laboratório, para sua posterior utilização como reagente de uma outra reação. As técnicas empregadas são simples, mas é necessário que se tenha cuidado na verificação das vedações da aparelhagem, para que não haja perdas do produto obtido.

3. MATERIAIS

E

REAGENTES:

Materiais

Reagentes

Tubo microgerador de gás com rolha Solução de ácido clorídrico 30% v/v (HCl)

Tubo de látex e cuba Zinco granulado (Zn o) ou alumínio (Al o)

Tubos e estante para tubos

4. PROCEDIMENTO

EXPERIMENTAL:

Obtenção

de

hidrogênio

(H2):

Montar um sistema conforme o explicado pelo professor

Adicionar ao tubo microgerador de gás uma pequena quantidade de zinco granulado (ou alumínio).

A seguir, adicionar 3 mL de ácido clorídrico, fechando imediatamente o tubo com o auxílio de uma rolha.

Recolher o gás obtido em tubos de ensaio cheios d'água e invertidos em cuba contendo água, desprezando a primeira porção de gás obtido e mantendo os tubos, após o recolhimento do gás , com a extremidade aberta voltada para baixo ( o hidrogênio é mais leve que o ar ).

Teste de confirmação: aproximar um palito de fósforo aceso da extremidade aberta do tubo de ensaio e observar.

- 35 -

PRÁTICA

Nº.7:

LIGAÇÕES

IÔNICAS

E

MOLECULARES

1. OBJETIVOS:

Constatar, na prática, diferenças entre o comportamento de substâncias iônicas e moleculares.

Verificar a solubilidade de alguns compostos, já que a natureza iônica de uma substância influi na solubilidade em determinados solventes.

2. INTRODUÇÃO

TEÓRICA:

Substâncias iônicas são aquelas formadas por íons (cátions e ânions) ligados entre si por forças de natureza elétrica.

Substâncias moleculares ou covalentes são formadas a partir do compartilhamento de elétrons entre os átomos dos elementos que estão se ligando. Apesar de não possuírem íons em sua constituição, as moléculas podem apresentar pólos elétricos, devido à diferença de eletronegatividade dos elementos; neste caso, são denominadas moléculas polares.

Quando não há diferença de epletronegatividade ou quando a resultante dessas diferenças é nula, a molécula é denominada apolar.

As substâncias moleculares têm suas moléculas atraídas entre si por forças denominadas de intermoleculares.

No caso de substâncias cujas moléculas sejam apolares a força de atração que justifica sua existência nos estados sólido e líquido é denominada de dipolo

induzido

– dipolo

induzido; no caso de substâncias cujas moléculas sejam polares a força intermolecular é denominada dipolo

permanente

– dipolo

permanente

ou simplesmente dipolo – dipolo.

Há um tipo de dipolo – dipolo, muito forte, que ocorre entre moléculas onde o hidrogênio esteja ligado a oxigênio, nitrogênio ou flúor. Esta força recebe o nome particular de ponte

de

hidrogênio

(ou ligação de hidrogênio).

Nas substâncias moleculares, de um modo geral, dois fatores influem nos PF e PE:

Quanto mais intensas as atrações intermoleculares, maiores os seus PF e PE.

Quanto maior for o tamanho de uma molécula, maior será a sua superfície, o que propicia um maior número de interações com as moléculas vizinhas, acarretando PF e PE maiores

Para comparar os pontos de fusão e ebulição de diferentes substâncias, devemos considerar esses dois fatores

Quanto maior a intensidade da interação, maiores os PF e PE.

Quanto maior o tamanho da molécula, maiores os PF e PE.

A solubilidade de uma substância (denominada soluto) em outra (denominada solvente), está relacionada à semelhança das forças atuantes nas mesmas (iônicas ou intermoleculares). Em conseqüência disso, substâncias iônicas e substâncias moleculares polares tendem a se solubilizar em solventes também polares, enquanto que substâncias apolares tendem a se solubilizar em solventes apolares. O envolvimento

- 36 -

das partículas do soluto pelas moléculas do solvente é denominado de solvatação

e, no caso do solvente

usado ser a água é comum substituir-se o termo por hidratação.

O fenômeno da dissolução é fundamentalmente um processo físico-químico, dependendo, em

grande extensão, das forças de coesão que ligam:

As moléculas do solvente

As partículas do soluto

As moléculas do solvente e as partículas do soluto.

Embora não seja possível prever com precisão absoluta quando uma substância é solúvel em outra, podemos estabelecer genericamente que:

A dissolução ocorre com facilidade, quando as forças de ligação entre as moléculas do solvente, de um lado, e entre as partículas do soluto, de outro, são do mesmo tipo e magnitude.

Uma

substância

é

solúvel

em

outra

que

lhe

é

semelhante, interpretando esta semelhança do ponto de vista estrutural, de polaridade e caráter das forças intermoleculares.

Assim,

um

composto

polar

é

solúvel

em

solvente

polar.

3. MATERIAIS

E

REAGENTES:

Materiais

Reagentes

3 Buretas de 25,00 ou 50,0 mL Sólidos

: Cloreto de sódio (NaCl) ; cloreto de zinco (ZnCl2)

Suportes e garras para buretas Naftaleno sólido (C10H8) ; Iodo sólido (I2) ;

Bico de Bunsen Sacarose (C12H22O11)

Tubos de ensaio e estante

Pissete Álcool etílico P.A. (C2H5OH)

Pinça de madeira Óleo comestível

Tetracloreto de carbono (CCl4) ou querosene

4. PROCEDIMENTO

EXPERIMENTAL:

I . SUBSTÂNCIAS

IÔNICAS

E

MOLECULARES

FRENTE

AO

AQUECIMENTO:

Atenção:

Procurar um dos professores, levando um tubo de ensaio, para que uma pequena quantidade de iodo seja adicionada ao tubo. Retorne à sua bancada e aqueça o tubo, com o auxílio de uma pinça de madeira, até observar alguma mudança no estado físico do iodo.

Em três tubos de ensaio, adicionar respectivamente sacarose, cloreto de zinco (ZnCl2) e cloreto de sódio (NaCl) ( todos no estado sólido ).

Aquecer, com o auxílio de uma pinça de madeira, cada um dos tubos até observar mudança no seu estado físico.

- 37 -

II. POLARIDADE

E

SOLUBILIDADE:

Atenção: Por se tratar de um ensaio comparativo, é necessário utilizar-se quantidades equivalentes de reagentes nos tubos de ensaio!

Em três tubos de ensaio adicionar, utilizando as buretas, respectivamente, 1,0 mL de água, 1,0 mL de álcool etílico e 1,0 mL de querosene. A cada um dos tubos adicionar 2 gotas de óleo comestível, agitar intensamente e observar os resultados.

Repetir o procedimento anterior, substituindo o óleo comestível por quantidades pequenas e equivalentes de: Cloreto de sódio; Naftaleno; Iodo.

Solubilidade comparativa Solvente

óleo NaCl naftaleno iodo

Água

Álcool etílico

Querosene

QUESTIONÁRIO

1) Considerando o aquecimento das substâncias no item I, explique, levando em conta o tipo de ligação química, o tipo de força intermolecular, etc., a diferença de comportamento observada.

2) Pode-se observar que o iodo é uma substância que sublima. Todas as substâncias moleculares sublimam? Justifique a sua resposta.

3) Apesar de termos aquecido o cloreto de sódio, não foi possível observar sua fusão. Todas as substâncias iônicas têm ponto de fusão tão elevado quanto o NaCl? Justifique.

4) Explicar o comportamento observado no procedimento II da prática, levando em conta o tipo de ligação química, a polaridade ou não das substâncias usadas e, consequentemente, suas forças intermoleculares.

5) Se utilizássemos como solventes: água, álcool metílico (CH3 OH), hexano (C6H14) e sulfeto de carbono (CS2) e como solutos: gasolina, amônia (NH3), enxofre (S) e cloreto de amônio (NH4Cl), quais seriam os resultados encontrados? Por quê?