49
UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO FACULDADE DE TECNOLOGIA CURSO DE ENGENHARIA DE PRODUÇÃO – MECÂNICA PROCESSOS DE FABRICAÇÃO III Processos de Fundição Prof. Jaques Jonas Santos Silva Resende, RJ, novembro de 2009.

Apostila PF III - Fundição

Embed Size (px)

Citation preview

Page 1: Apostila PF III - Fundição

UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO

FACULDADE DE TECNOLOGIA

CURSO DE ENGENHARIA DE PRODUÇÃO – MECÂNICA

PROCESSOS DE FABRICAÇÃO I I I

Processos de Fundição

Prof. Jaques Jonas Santos Silva

Resende, RJ, novembro de 2009.

Page 2: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 2

FICHA CATALOGRÁFICA

1. ed. Silva, Jaques Jonas Santos, 1971

Apostila de Processos de Fabricação III – Fundição / Jaques Jonas Santos Silva. 1. ed. – Rio de Janeiro: 2009. 49p.

1. Processos de fabricação 2. Fundição 3. Solidificação das ligas metálicas I. Título

Page 3: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 3

ÍNDICE

1 INTRODUÇÃO À ENGENHARIA DE FABRICAÇÃO .................................................6

1.1 INTRODUÇÃO .............................................................................................................6

1.2 DEPARTAMENTOS DE UMA ORGANIZAÇÃO.......................................................7

2 FUNDIÇÃO .....................................................................................................................10

2.1 FENÔMENOS QUE OCORREM NA SOLIDIFICAÇÃO DOS METAIS............... 11

2.1.1 Cristalização............................................................................................................. 11

2.1.2 Contração de volume ...............................................................................................12

2.1.3 Concentração de impurezas.....................................................................................15

2.1.4 Desprendimento de gases.........................................................................................16

2.2 ETAPAS DA FUNDIÇÃO............................................................................................17

2.3 CARACTERÍSTICAS DOS PROCESSOS DE FUNDIÇÃO ....................................19

2.3.1 Características das peças fundidas..........................................................................19

2.3.2 Defeitos comuns no processo ...................................................................................19

2.3.3 Vantagens do processo .............................................................................................19

2.3.4 Desvantagens do processo........................................................................................20

2.4 CLASSIFICAÇÃO DOS PROCESSOS DE FUNDIÇÃO..........................................20

3 FUNDIÇÃO EM AREIA .................................................................................................22

3.1 CARACTERÍSTICAS DOS MOLDES PARA FUNDIÇÃO EM AREIA .................22

3.2 CARACTERÍSTICAS DAS AREIAS DE FUNDIÇÃO .............................................23

3.3 MATERIAIS UTILIZADOS PARA A MISTURA DAS AREIAS DE FUNDIÇÃO ..23

3.3.1 Elemento refratário..................................................................................................23

3.3.2 Elemento aglomerante .............................................................................................24

Page 4: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 4

3.4 VARIANTES DOS PROCESSOS DE FUNDIÇÃO EM AREIA ...............................25

3.5 FUNDIÇÃO EM AREIA VERDE ...............................................................................25

3.5.1 Etapas da moldagem em areia verde.......................................................................26

3.5.2 Vantagens .................................................................................................................28

3.5.3 Desvantagens............................................................................................................28

3.6 FUNDIÇÃO EM AREIA SECA (ESTUFADA) ..........................................................29

3.7 FUNDIÇÃO EM AREIA COM CIMENTO ...............................................................29

3.8 PROCESSO CO2 .........................................................................................................30

4 PROCESSOS DE FUNDIÇÃO DE PRECISÃO ............................................................31

4.1 FUNDIÇÃO EM CASCA ............................................................................................31

4.1.1 Vantagens .................................................................................................................32

4.1.2 Desvantagens............................................................................................................32

4.2 PROCESSO À CERA PERDIDA (PROCESSO DE INVESTIMENTO) .................33

4.2.1 Vantagens .................................................................................................................34

4.2.2 Desvantagens............................................................................................................34

5 FUNDIÇÃO EM GESSO ................................................................................................35

6 FUNDIÇÃO EM CERÂMICA........................................................................................36

7 MOLDAGEM PLENA ....................................................................................................37

7.1 VANTAGENS...............................................................................................................37

7.2 DESVANTAGENS .......................................................................................................37

Page 5: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 5

8 FUNDIÇÃO EM MOLDES PERMANENTES (COQUILHAS) ...................................38

8.1 VANTAGENS...............................................................................................................39

8.2 DESVANTAGENS .......................................................................................................39

9 FUNDIÇÃO SOB PRESSÃO ..........................................................................................41

9.1 FUNDIÇÃO SOB PRESSÃO EM CÂMARA QUENTE ...........................................42

9.2 FUNDIÇÃO SOB PRESSÃO EM CÂMARA FRIA ..................................................43

9.3 VANTAGENS...............................................................................................................43

9.4 DESVANTAGENS .......................................................................................................44

10 FUNDIÇÃO POR CENTRIFUGAÇÃO .....................................................................45

11 FUNDIÇÃO CONTÍNUA (LINGOTAMENTO CONTÍNUO)......................................47

12 BIBLIOGRAFIA .........................................................................................................49

Page 6: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 6

1 INTRODUÇÃO À ENGENHARIA DE FABRICAÇÃO

1.1 INTRODUÇÃO

Um novo produto surge de uma necessidade do mercado. A fabricação deste

produto deve obedecer a um projeto que leve em conta todas as características do

produto e as condições às quais será submetido:

PRODUTO PROJETO

Um bom projeto de produto não é o suficiente. Outros fatores igualmente

importantes devem ser observados:

• Intercambiabilidade entre peças e componentes: confere

confiabilidade ao produto para consumo em larga escala. Esta condição

pode ser atingida ainda em fase de projeto (tolerâncias de ajuste,

especificações de desvios, acúmulo de tolerâncias).

• Qualidade: deve ser mantida constante ao longo dos lotes produzidos.

• Custo final: deve ser o menor possível.

Estes são os pré-requisitos para que o produto seja competitivo.

Os dois últimos fatores (qualidade e custo) só podem ser manipulados após

o projeto ser liberado para a produção.

Entre o projeto do produto e sua produção, encontra-se uma metodologia de

• Dimensionamento; • Verificação de esforços; • Desgaste; • Vida útil; • Etc.

Page 7: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 7

análise e tratamento tecnológico destes dois últimos fatores (qualidade e custo): a

Engenharia de Fabricação.

O diagrama da Figura 2 mostra onde a Engenharia de Fabricação está

inserida dentro do ciclo produtivo.

Figura 2 - Diagrama do ciclo produtivo.

Conhecer os processos de fabricação é condição fundamental para o

desenvolvimento do ciclo produtivo de um produto.

1.2 DEPARTAMENTOS DE UMA ORGANIZAÇÃO

Departamentos que desempenham papel fundamental:

ENGENHARI A DE

PRODUTO

ENGENHARI A DE

FABRICAÇÃO

PRODUÇÃO

CONTROLE DE

QUALIDADE

PRODUTO FINAL

MERCADO

• Pesquisas de aceitação • Competição de mercado

• Experiências • Capacidades dos

processos • Especificações

• Normas

• Alterações das especificações

• Desenhos • Especificações

• Alterações • Simplificações • Melhorias de

desempenho

• Qualidade pré- especificada

• Processos de fabr icação

• Tempos • Métodos • Arranjos

• Sugestões • Problemas

• Sugestões para alteração do projeto

• Estudos econômicos • Alternativas

MARKETING

Page 8: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 8

a) Engenharia de produto:

• Define dimensões, tolerâncias dimensionais e geométricas, acabamentos,

tratamentos, etc.

• Testa os protótipos a fim de verificar sua funcionalidade e qualidade.

b) Produção:

• Produz quantidades programadas dentro do prazo definido.

• Deve ser subsidiado com informações técnicas de forma a antecipar eventuais

problemas.

c) Controle de qualidade:

• Assegura que o produto ao final do ciclo de fabricação seja cópia fiel do

desenho originado no projeto.

• Faz cumprir exigências dimensionais e especificações técnicas.

d) Engenharia de Fabricação:

• Elo entre projetar, produzir e controlar a qualidade.

• Processos de fabricação.

• Tempos e métodos.

• Arranjo físico.

1.3 PROCESSOS DE FABRICAÇÃO

Em um sentido estrito, podemos considerar os processos de fabricação mecânica

como os processos de modificação de um corpo metálico com o fim de lhe conferir

uma forma definida. Tais processos podem ser divididos em dois grupos:

a) Processos mecânicos: as modificações de forma são causadas pela aplicação de

tensões externas. Se as tensões aplicadas forem menores que a tensão de ruptura

do material, temos processos de conformação plástica, caso contrário, temos

Page 9: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 9

processos de usinagem (Figura 3).

b) Processos metalúrgicos: as modificações de forma são causadas por altas

temperaturas. Se as temperaturas aplicadas forem menores que a temperatura de

fusão do material, temos processos de sinterização, caso contrário, temos

processos de fusão / solidificação (Figura 3).

Figura 3 - Organograma dos processos de fabricação.

Processos de conformação dos metais

Processos mecânicos

(σ)

Processos metalúrgicos

(T)

Conformação plástica (σ < σr)

Usinagem (σ > σr)

Sinterização (T < Tf)

Fusão / solidificação

(T > T f) Ex: forjamento,

estiramento. Ex: torneamento, fresagem.

Ex: metalurgia do pó.

Ex: fundição, soldagem.

Page 10: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 10

2 FUNDIÇÃO

Fundição é o processo de fabricação de peças metálicas que consiste

basicamente no preenchimento de moldes (com as dimensões e formato da peça

desejada) com metal em estado líquido (Figura 4).

A fundição pode ser considerada como um processo inicial, pois pode-se

obter (além de peças praticamente acabadas) lingotes, tarugos e placas, os quais são

conformados mecanicamente para a obtenção de perfis, chapas, laminados, etc.

O processo de fundição é conhecido pelo homem desde aproximadamente

3.000 AC. Os primeiros metais a serem fundidos foram o cobre e o bronze.

O desenvolvimento de fornos de fundição com temperaturas de trabalho

mais altas e utensílios capazes de conter o ferro fundido permitiu que as primeiras

fundições de ferro fundido se desenvolvessem a partir de 1.340 D.C.

Atualmente os processos de fundição buscam o controle das propriedades e

microestruturas das ligas.

Figura 4 - Preenchimento de um molde de fundição com metal em estado líquido.

Page 11: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 11

2.1 FENÔMENOS QUE OCORREM NA SOLIDIFICAÇÃO DOS METAIS

São os seguintes os fenômenos que ocorrem durante a solidificação dos

metais.

• Cristalização;

• Contração de volume;

• Concentração de impurezas;

• Desprendimento de gases.

Estes fenômenos tendem a influir negativamente no processo de fundição, e

são comuns a todas as variantes dos processos de fundição, em maior ou menor grau.

2.1.1 Cristalização

Durante a solidificação dos metais há o surgimento de estruturas cristalinas

sendo que o crescimento destas estruturas se dá de maneira não uniforme.

O crescimento das estruturas num processo de fundição é limitado e

influenciado pelas paredes dos moldes. Como as paredes dos moldes estão a uma

temperatura inferior à do metal fundido, surge no interior do molde preenchido com

metal fundido um gradiente de temperatura que favorece o crescimento das estruturas

em uma direção perpendicular às paredes do molde (crescimento dendrítico - Figura 5 e

Figura 6).

Figura 5 - Crescimento de uma dendrita.

Page 12: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 12

Figura 6 – Dentritas em um lingote de aço.

Em moldes com cantos vivos1, o crescimento de grupos colunares de cristais

em paredes contíguas pode ocasionar o surgimento de planos diagonais, comprometendo

as propriedades mecânicas da peça. Em geral, as peças tendem a ser mais frágeis na

região destes planos, a qual é mais suscetível a fissuras e trincas (Figura 7).

(a) (b)

Figura 7 - Efeito dos cantos na cristalização: (a) Paredes com cantos arredondados. (b) Paredes com

cantos vivos, evidenciando o surgimento de planos diagonais.

2.1.2 Contração de volume

Pode ser de três tipos:

• Contração líquida: causada pelo aumento da densidade à medida que o

metal líquido é resfriado;

• Contração de solidificação: causada pela cristalização durante a

solidificação;

1 Pontos onde não existe uma tangente definida.

Page 13: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 13

• Contração sólida: causada pelo resfriamento do metal solidificado,

desde a temperatura de solidificação até a temperatura ambiente.

A contração é expressa em porcentagem de volume ou, no caso da contração sólida, em

porcentagem de contração linear, a qual depende do material (ver Tabela 1).

Tabela 1 - Porcentagem de contração linear para alguns materiais metálicos:

Material %Contração linear

Aço (0,35%C) 2,4

Alumínio 5,7

Cobre 7,3

Estanho 1,5

Ferro fundido branco 1,3 ~1,4

Ferro fundido cinzento 1,0

Ferro fundido maleável 1,2 ~1,3

Magnésio 5,8

Zinco 4,1

A contração dá origem a um defeito conhecido como “vazio” ou “rechupe”,

causado pela contração que se inicia na periferia do molde (temperatura mais baixa) e

avança até o centro (temperatura mais alta), o qual se solidifica por último (Figura 8).

Figura 8 - Formação do rechupe em um lingote fundido.

Outros efeitos indesejáveis da contração volumétrica:

Page 14: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 14

• Surgimento de trincas;

• Tensões residuais;

• Alterações nas dimensões das peças.

O controle destes efeitos é obtido com o adequado projeto das peças ou

tratamentos térmicos para alívio de tensões (Figura 9).

Figura 9 – Exemplo de trincas a quente causadas pela contração volumétrica.

Os vazios ou rechupes podem ser eliminados através do provimento de

metal fundido às peças ou lingotes através de massalotes (Figura 10) ou alimentadores

(Figura 11).

Page 15: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 15

Figura 10 - Uso do massalote para prevenção do rechupe em um lingote.

Figura 11 - Uso do alimentador para prevenção do rechupe em uma peça fundida.

2.1.3 Concentração de impurezas

Nos processos de fundição, os metais (ou suas ligas) vazados nos moldes

possuem impurezas, as quais não puderam ser completamente eliminadas. Observe-se,

por exemplo, as impurezas presentes em uma liga de ferro-carbono:

Ligas de Fe-C

Impurezas: • Fósforo (P);

• Enxofre (S);

• Manganês (Mn);

• Silício (Si).

Page 16: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 16

Como algumas impurezas são menos solúveis no estado sólido, durante a

solidificação estas acompanham o metal líquido, buscando maiores regiões de maiores

temperaturas (onde são mais solúveis), acumulando-se desta forma na última parte a se

solidificar (Figura 12).

A concentração de impurezas nestas regiões constitui num defeito conhecido

como segregação. A principal conseqüência da segregação é a heterogeneidade na

composição do material, conforme a seção considerada, com conseqüentes alterações

nas suas propriedades mecânicas.

Figura 12 - Segregação de impurezas em um cilindro fundido

A segregação pode ser atenuada com o controle rigoroso da composição

química das ligas ou o controle da velocidade de resfriamento.

2.1.4 Desprendimento de gases

Ocorre principalmente nas ligas de ferro-carbono, onde o oxigênio

dissolvido no metal tende a combinar-se com o carbono, formando CO (monóxido de

carbono) e CO2 (dióxido de carbono).

Durante a solidificação estes gases ficam retidos no interior das peças, na

forma de bolhas. Estas bolhas também podem chegar à superfície da peça, causando

imperfeições no acabamento das peças.

As bolhas podem ser evitadas com a adição de elementos desoxidantes (Si,

Page 17: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 17

Mn, Al) ao metal líquido. Ao combinar-se com o oxigênio, estes elementos formarão

óxidos, os quais se precipitarão (SiO2 �, MnO2

�, Al2O3

�).

A rigor, as bolhas não constituem maior problema nos aços de baixo

carbono, se após a fundição os mesmos forem submetidos a processos de laminação.

Durante a deformação causada por tais processos, as paredes das bolhas acabam por

unir-se por um processo semelhante aos processos de soldagem (caldeamento). Porém,

em aços de alto carbono, os quais possuem baixa soldabilidade, as bolhas devem ser

evitadas.

Além do oxigênio, também o hidrogênio (H2) e o nitrogênio (N2) podem ser

liberados durante a solidificação, causando porosidades, fissuras internas e alterações

nas características mecânicas do material.

2.2 ETAPAS DA FUNDIÇÃO

Genericamente, pode-se resumir o processo de fundição às seguintes etapas:

a) Confecção do modelo: com o formato da peça a ser fundida, servirá para a

construção do molde. Suas dimensões devem prever a contração do metal e o

Matérias primas para a

fundição

• Fundidos

• Moldes e modelos

• Ligas ferrosas • Ligas não ferrosas

• Aço • Ferro fundido

• Ligas de Cu • Ligas de Al • Ligas de Zn • Ligas de Mg • Etc

• Madeiras • Areias • Ligas metálicas • Ceras • Materiais cerâmicos • Polímeros • Etc

Page 18: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 18

sobremetal para posterior usinagem, se for o caso.

b) Confecção do molde: dispositivo que recebe o metal fundido para a obtenção da

peça. Consiste basicamente de uma cavidade deixada em um material pelo

modelo da peça a ser fundida.

c) Confecção dos machos: dispositivos com a função de formar vazios, furos e

reentrâncias na peça. São colocados nos moldes antes de seu fechamento para

receber o metal líquido.

d) Fusão do metal: para vazamento nos moldes.

e) Vazamento: enchimento do molde com o metal líquido.

f) Desmoldagem: retirada da peça do molde após a solidificação do metal.

g) Rebarbação: retirada dos canais de alimentação, alimentadores, massalotes ou

rebarbas existentes.

h) Limpeza: pode ser necessária para eliminação de resíduos, dependendo do

processo.

Materiais utilizados na confecção do modelo

• Madeira • Alumínio • Aço • Resina • Cera • Isopor • Etc

Materiais utilizados na confecção do molde

• Areia • Cerâmicas • Ligas metálicas • Gesso • Cimento • Etc

Page 19: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 19

2.3 CARACTERÍSTICAS DOS PROCESSOS DE FUNDIÇÃO

2.3.1 Características das peças fundidas

• Acréscimo de sobremetal para posterior usinagem;

• Furos pequenos, reentrâncias e detalhes não são, em geral, reproduzidos

satisfatoriamente (dificultam o processo), sendo obtidos posteriormente

por usinagem;

• Arredondamento de cantos para facilitar o preenchimento do molde e

evitar trincas.

2.3.2 Defeitos comuns no processo

• Inclusão de grãos de areia do molde nas paredes da peça (no caso da

fundição em moldes de areia) – abrasivos, causam defeitos na peça

submetida a posterior usinagem além de reduzir a vida útil das ferramentas

de corte;

• Vazios ou rechupes;

• Porosidade devido ao desprendimento de gases, comprometendo as

características mecânicas ou o acabamento superficial.

2.3.3 Vantagens do processo

• Em geral, os processos de fundição envolvem custos baixos;

• As peças podem apresentar desde formas mais simples até as mais

complexas, até mesmo impossíveis de serem obtidas por outros processos;

• As peças podem apresentar dimensões ilimitadas;

• O processo permite alto grau de automatização, adequando-se à produção

em série;

Page 20: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 20

• Podem ser reproduzidas peças com diversos padrões de acabamento e

tolerância.

2.3.4 Desvantagens do processo

• Em geral, limitado quanto ao grau de acabamento;

• Peças com menores limites de resistência mecânica quando comparadas às

peças produzidas por outros processos, devido ao resfriamento lento do

metal fundido nos moldes, o que propicia o surgimento de estruturas com

granulação grosseira;

• Necessidade de sempre se possuir um molde, o que pode ser desvantajoso

no caso de moldes destrutíveis, já que implica na confecção de um molde

para cada peça a ser produzida, tornando oneroso um volume de produção

mais elevado;

• Equipamentos de grande porte são necessários;

• Alto consumo de energia.

2.4 CLASSIFICAÇÃO DOS PROCESSOS DE FUNDIÇÃO

A qualidade de peças fundidas (tolerâncias dimensionais, acabamentos, etc)

está diretamente relacionada à qualidade do molde utilizado. Partindo-se deste princípio,

pode-se classificar os processos de fundição em relação aos moldes utilizados, conforme

o organograma mostrado na Figura 13.

Page 21: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 21

Classificação dos processos de fundição

quanto ao moldes

Moldes destrutíveis

Moldes permanentes

Modelo destrutível

Modelo permanente

Processo à cera perdida

Moldagem plena

Fundição em areia

Fundição em casca

Fundição em gesso

Fundição em cerâmica

Coquilhas

Fundição sob pressão

Fundição por centrifugação

Lingotamento contínuo

Figura 13 – Organograma representando a classificação dos processos de fundição.

Page 22: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 22

3 FUNDIÇÃO EM AREIA

O processo de fundição em areia consiste basicamente na compactação,

mecânica ou manual, de uma mistura refratária plástica (areia de fundição) sobre um

modelo montado em uma caixa de moldar (Figura 14).

A areia de fundição consiste de uma mistura de um elemento refratário

granular (areia) com um elemento aglomerante.

Figura 14- Molde para fundição em areia.

3.1 CARACTERÍSTICAS DOS MOLDES PARA FUNDIÇÃO EM AREIA

A fim de assegurar a qualidade das peças fundidas, algumas características

do molde devem ser observadas:

a) resistência: para suportar a pressão do metal líquido e a ação erosiva deste

durante o escoamento nos canais e cavidades de molde;

b) mínima geração de gás: a fim de evitar a contaminação do metal;

c) permeabilidade: para possibilitar a saída dos gases gerados durante o

processo de solidificação;

d) refratariedade: para suportar as altas temperaturas de fusão do metal;

e) desmoldabilidade: o molde deve permitir que a peça solidificada seja

desmoldada com relativa facilidade;

Page 23: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 23

f) estabilidade dimensional: deve ser alta o suficiente para não interferir nas

tolerâncias dimensionais da peça;

g) colapsabilidade: os machos devem colapsar sob as tensões causadas pela

contração volumétrica do metal durante a solidificação, de forma a evitar

trincas e o surgimento de tensões internas nas peças fundidas.

3.2 CARACTERÍSTICAS DAS AREIAS DE FUNDIÇÃO

Se a qualidade dos moldes dependem das características observadas no item

anterior, estas dependem das características das areais de fundição.

a) resistência: a qual depende principalmente do elemento aglomerante

utilizado para manter as partículas do material refratário coesas;

b) permeabilidade: à passagem dos gases;

c) refratariedade: a areia moldada deve ser capaz de resistir às altas

temperaturas de fusão dos metais sem que os grãos se fundam ou que o

elemento aglomerante perca sua capacidade de manter as partículas coesas;

d) teor de umidade: o qual afeta a permeabilidade (maior umidade, menor

permeabilidade), a resistência (maior umidade, menor resistência) e a

formação de gases (maior umidade, maior geração de gases);

e) fluidez: a qual afeta a moldabilidade, ou seja, a capacidade de fluência para o

preenchimento de cavidades, reentrância e detalhes.

3.3 MATERIAIS UTILIZADOS PARA A MISTURA DAS AREIAS DE

FUNDIÇÃO

3.3.1 Elemento refratário

Geralmente utilizam-se areias silicosas, podendo ser:

Page 24: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 24

a) areias naturais: areia lavada (retirada de rios) ou saibro;

b) areias semi-sintéticas: mistura de areias naturais e aditivos para a correção

das propriedades;

c) areias sintéticas: a granulação e a composição são controladas para

otimização das propriedades.

Quanto ao uso, as areias podem ser:

a) de enchimento: com granulometria mais grosseira e de menor custo,

utilizado no enchimento das caixas de moldar;

b) de faceamento: de granulometria mais refinada e de maior custo, ficam em

contato com as faces do modelo de modo a propiciar um melhor acabamento;

c) de macho: utilizadas na confecção dos machos.

3.3.2 Elemento aglomerante

Irá conferir coesão às partículas do elemento refratário de forma a conferir

resistência mecânica ao molde. Podem ser orgânicos, inorgânicos ou minerais.

a) minerais: argilas ou cimentos;

b) orgânicos: óleos secativos2 e semi-secativos (óleos de linhaça, milho,

oiticica, mamona), farinhas de cereais (dextrina3, mogul4) e resinas (breu);

c) inorgânicos: bentonita.

2 Óleos que possuem a capacidade de polimerizar-se sob determinadas condições. 3 Derivado do milho, confere grande resistência ao molde. 4 Derivado do amido de milho.

Page 25: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 25

3.4 VARIANTES DOS PROCESSOS DE FUNDIÇÃO EM AREIA

Dependendo dos processos de conformação dos moldes e os materiais

utilizados, os processos em areia apresentam as seguintes variantes:

a) fundição em areia verde;

b) fundição em areia seca (ou estufada);

c) fundição em areia com cimento;

d) processo CO2.

3.5 FUNDIÇÃO EM AREIA VERDE

Dentre os processos de fundição é o mais simples e o de menor custo, sendo

também o mais utilizado.

A areia de fundição é composta de uma mistura de aproximadamente 75%

de areia silicosa, 20% de argila e 5% de água (composição média – varia conforme o

tipo de areia e da argila utilizada). A mistura recebe o nome de “areia verde” porque

mantém sua umidade original, não sendo necessária sua secagem em estufas. Os

componentes da areia de fundição são misturados secos com o auxílio de misturadores,

seguindo-se da adição, aos poucos, de água até a completa homogeneização da mistura.

A moldagem é realizada manualmente, com soquetes, ou mecanicamente, com auxílio

de máquinas de compressão, impacto, vibração ou projeção centrífuga. A areia utilizada

pode ser reaproveitada, chegando-se a obter índices de recuperação da ordem de 98%.

Os moldes em areia verde se prestam à fundição de metais ferrosos e não-

ferrosos com rapidez e economia, adequando-se à produção em série.

Page 26: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 26

Par te super ior do modelo

Par te infer ior do modelo

L inha de secção

Projeto da peça a ser fundida

Modelo da peça

Posicionadores do macho

3.5.1 Etapas da moldagem em areia verde

a) O modelo da peça é executado de acordo com o projeto da peça, prevendo-se

a contração volumétrica, o sobremetal e os alimentadores (Figura 15).

b) Os machos, se necessários, são confeccionados em moldes apropriados.

c) A parte inferior do modelo é colocada no fundo da caixa de moldar sobre uma

superfície plana. O modelo é coberto com talco ou grafite para evitar a aderência

da areia, a qual deve preencher toda a caixa, sendo compactada manual ou

mecanicamente (Figura 16).

Par te infer ior do modelo

Areia compactada

Figura 15 - Projetos da peça e do modelo.

Figura 16 - Confecção da parte inferior do molde.

Page 27: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 27

d) A parte inferior do molde é virada de modo que a cavidade fique para cima

(Figura 17).

e) Os procedimentos dos itens c e d são repetidos para a parte superior do molde,

desta vez com a inclusão do alimentador e do canal de descida do metal líquido

(Figura 18).

f) Abrem-se as bacias do canal de alimentação e do alimentador (Figura 19).

g) Abrem-se os canais de distribuição na parte inferior do molde (Figura 20).

Alimentador

Canal de descida

Bacia do canal de descida

Bacia do alimentador

Canal de distr ibuição

Figura 17 - Parte inferior do molde pronta.

Figura 18 - Confecção da parte superior do molde.

Figura 19 - Abertura das bacias do canal de alimentação e alimentador.

Figura 20 - Parte superior do molde pronta.

Page 28: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 28

h) As partes superior e inferior do molde são unidas por presilhas ou grampos,

com o macho posicionado nos fixadores. O molde está pronto para receber o

metal líquido (Figura 21).

3.5.2 Vantagens

a) Baixo custo;

b) não requer o uso de equipamentos especiais;

c) areias naturais ou sintéticas podem ser utilizadas, com o mínimo acréscimo

de aditivos;

d) a areia pode ser recuperada;

e) fácil desmoldagem.

3.5.3 Desvantagens

a) Limitado para grandes peças devido às limitações de resistência mecânica do

molde;

b) acabamento superficial limitado;

c) limitado quanto às tolerâncias dimensionais;

d) incrustações de areia na superfície das peças.

Macho posicionado

Alimentador

Canal de descida

Canal de distr ibuição

Par te infer ior do molde

Par te super ior do molde Aba de f ixação

das presilhas ou grampos

Figura 21 - Molde pronto para o vazamento do metal fundido.

Page 29: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 29

3.6 FUNDIÇÃO EM AREIA SECA (ESTUFADA)

Este processo é semelhante ao processo em areia verde, com a diferença que

a areia de fundição, neste caso, é composta por uma mistura de areias sintéticas ou semi-

sintéticas e aglomerantes orgânicos ou inorgânicos. O processo de conformação dos

moldes é idêntico ao processo em areia verde.

Os moldes depois de conformados são secos em estufas a temperaturas entre

150ºC e 300ºC, ou queimados com maçaricos de forma a consolidar a resistência

mecânica do molde. A superfície do molde que irá entrar em contato com o metal

fundido pode, eventualmente, ser protegida com tinta refratária para um melhor

acabamento.

Devido à maior resistência mecânica dos moldes, este processo é adequado

à fundição de peças de grandes dimensões e peso elevado. Os moldes em areia seca

permitem ainda um melhor acabamento superficial, além de serem mais permeáveis que

os moldes em areia verde, devido à ausência umidade residual. O processo de secagem

produz ainda moldes com melhor estabilidade dimensional, proporcionando a obtenção

de peças com melhores tolerâncias. Ao contrário do processo com areia verde, a areia

neste caso não é reutilizável.

3.7 FUNDIÇÃO EM AREIA COM CIMENTO

Neste processo a areia de fundição consiste em uma mistura de areia

silicosa, cimento portland e água. Os moldes feitos com esta mistura passam por um

processo de secagem sem que seja necessária a utilização de fornos ou estufas (o calor

liberado pela reação exotérmica do cimento e água é o suficiente para a secagem do

molde).

O molde resultante apresenta elevada resistência mecânica, prestando-se à

Page 30: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 30

fundição de peças grandes e pesadas. Entretanto, devido à natureza do aglomerante, a

desmoldagem é dificultada, além do que a areia não é reutilizável. Pode-se citar ainda

como desvantagem o custo da mistura, o qual é relativamente maior comparando-se aos

outros processos de fundição em areia.

3.8 PROCESSO CO2

Neste processo, a areia é aglomerada com silicato de sódio (2,5% a 6,0% em

peso). Após a moldagem, o molde é submetido a um tratamento com CO2, fazendo com

que o silicato de sódio transforme-se em sílica-gel, conferindo grande resistência ao

molde e reduzindo o teor de umidade residual, já que este é um material higroscópico.

Na2SiO3 + H2O + CO2 � Na2CO3 + SiO2.H2O

O processo permite a confecção de peças com precisão dimensional

superiores à peças produzidas através do processo com areia seca , produção rápida de

moldes com alta resistência sem a necessidade de estufas, prestando-se à produção de

peças com quaisquer dimensões.

Entre as desvantagens, pode-se citar o custo relativamente elevado do CO2 e

do silicato de sódio, além da impossibilidade da reutilização da areia. Devido ao elevado

custo do processo, pode-se utilizar o processo CO2 apenas no faceamento da peça.

silicato de sódio sílica-gel

Page 31: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 31

4 PROCESSOS DE FUNDIÇÃO DE PRECISÃO

4.1 FUNDIÇÃO EM CASCA

Neste processo, o molde é confeccionado a partir de uma mistura de areia

com uma resina termofixa polimerizável a quente, na proporção de 3% a 10% em peso.

O modelo confeccionado em material metálico é envolvido pela mistura e aquecido

entre 177ºC e 260ºC de forma a polimerizar a resina. O conjunto molde + modelo é

levado a uma estufa para o processo de cura a cerca de 350ºC. (Figura 22).

Figura 22 - Processo de confecção do molde para fundição em casca: (1) modelo coberto com areia + resina, (2) aquecimento, (3) retirada do excesso de areia não polimerizada, (4) cura do molde, (5) extração

do modelo do molde.

O resultado é uma casca fina e rígida com o formato do modelo (Figura 23).

Dependendo do tempo de aquecimento do modelo (de 15 a 60 segundos) pode-se obter

cascas com espessuras de 5mm a 10mm.

Page 32: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 32

Figura 23 - Duas metades de um molde produzido para o processo de fundição em casca.

A outra metade do molde é executada de modo semelhante, sendo as duas

partes coladas de forma a se obter o molde final. No caso da necessidade de utilização

de machos, as duas partes (com os machos posicionados) são fechadas com grampos ou

colados após o correto posicionamento dos machos.

4.1.1 Vantagens

a) Boa precisão dimensional devido à alta rigidez da casca;

b) Devido à pequena espessura da casca, pode-se empregar areia com

granulometria refinada (melhor acabamento) sem prejuízo da permeabilidade.

4.1.2 Desvantagens

a) Custo maior do modelo, o qual deve ser metálico (geralmente alumínio ou

ferro fundido) e isento de defeitos superficiais;

b) Custo elevado da mistura areia + resina;

c) Dimensões das peças são limitadas quando comparadas às produzidas por

fundição em areia;

d) A mistura da areia de fundição é de difícil manuseio e armazenamento.

Page 33: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 33

4.2 PROCESSO À CERA PERDIDA (PROCESSO DE INVESTIMENTO)

Neste processo os modelos são confeccionados em cera ou termoplástico

através da injeção destes materiais em matrizes próprias. Os modelos são então

montados ao redor de um canal central (confeccionado com o mesmo material do

modelo), formando uma “árvore de modelos” (Figura 24, Figura 27).

A “árvore de modelos” é banhada em uma lama refratária (constituída a

partir de gesso, pó de sílica ou pó de zircônia) sendo logo após recoberta por uma

camada de areia (Figura 25).

O molde então é aquecido de forma a consolidar a sua resistência mecânica

e eliminação da umidade. No aquecimento, os modelos e os canais são derretidos e

deixam o molde, podendo o material ser posteriormente reaproveitado. Seguem-se então

os processos de vazamento do metal líquido, desmoldagem, corte dos canais,

Molde para confecção dos

modelos

Injeção de cera ou termoplástico

Modelo pronto

Montagem da árvore de modelos

Banho em lama refratária

Cobertura de areia

Árvore de modelos pronta

Figura 25 - Confecção do molde.

Page 34: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 34

rebarbamento e acabamento final (Figura 26).

Figura 27 - Modelo em cera (à direita) e peças produzidas (à esquerda).

4.2.1 Vantagens

a) Produção em série de peças com geometrias complexas;

b) Acabamento melhor que no processo de fundição em casca.

4.2.2 Desvantagens

a) Custo do molde (matriz) para a confecção dos modelos em cera ou

termoplástico;

b) Relação entre o peso das peças e o peso do canal geralmente é baixa.

Aquecimento da árvore de

modelos

Cera ou termoplástico

derretido

Calor Calor

Vazamento

Metal fundido

Desmoldagem

Peças prontas

Figura 26 - Finalização do molde, vazamento e peças prontas.

Page 35: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 35

5 FUNDIÇÃO EM GESSO

A fundição em gesso é um processo bastante antigo, utilizado a

aproximadamente 4.000 anos pelos chineses, e utiliza-se de moldes em gesso para a

fundição de metais não ferrosos.

Este processo apresenta bom acabamento e boa precisão dimensional,

porém a baixa permeabilidade do gesso dificulta o escape dos gases gerados na

solidificação. Em função desta desvantagem, foram criadas as seguintes variantes do

processo:

a) Antioch: os moldes em gesso são levados à um forno autoclave com vapor a

temperatura elevada, de forma a se obter um material poroso.

b) Gesso esponjoso: neste processo, a porosidade do material é obtida com a

adição de detergentes à mistura para a retenção de ar.

Page 36: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 36

6 FUNDIÇÃO EM CERÂMICA

Este processo é empregado na fundição de peças que exigem grande

precisão dimensional, e utiliza-se de moldes construídos a partir de uma pasta refratária

à base de pó cerâmico e um aglomerante catalítico (silicato alcalino). Os moldes são

executados de forma semelhante aos moldes em areia.

As principais variantes do processo de fundição em cerâmica são o processo

shaw e o processo unicast:

a) Processo shaw: os moldes são aquecidos para que o álcool presente no

catalisador evapore, resultando em uma malha de fissuras finas no molde,

tornando-o permeável.

b) Processo unicast: o molde é submetido à um banho químico, o qual reage

com o catalisador e resulta em um material esponjoso e permeável.

Em ambos os casos, os moldes são curados em estufas a temperaturas da

ordem de 980ºC por aproximadamente uma hora, após o que são montados com o

posicionamento dos machos, se necessários.

Os moldes resultantes deste processo possuem alta resistência e coeficiente

de dilatação térmica próximo a zero, possibilitando a fundição de peças de alta precisão.

Page 37: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 37

7 MOLDAGEM PLENA

Este processo é patenteado pela Full Mold Process, Inc, e emprega modelos

confeccionados em espuma de poliestireno. Blocos e chapas deste material são cortados

e colados com o formato da peça desejada para a confeccção do molde. Devido ao baixo

peso específico da espuma de poliestireno (16Kg/m3) podem ser confeccionados

modelos de grandes dimensões.

O modelo é colocado em uma caixa de moldar, a qual é preenchida com

areia de fundição. Não há necessidade da retirada do modelo do interior do molde, pois

este vaporiza-se quando o metal fundido é vazado no molde.

7.1 VANTAGENS

a) Uma quantidade menor de aglomerante é necessária na mistura da areia de

fundição;

b) Furos e reentrâncias podem ser reproduzidos no modelo, sem a necessidade

de machos, já que não há a necessidade de se retirar o modelo do molde;

c) Facilita a reprodução de geometrias complexas.

7.2 DESVANTAGENS

a) Geração de gás e resíduos devido à vaporização da espuma de poliestireno,

prejudicando o acabamento (geralmente mais grosseiro que em outros

processos).

Page 38: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 38

8 FUNDIÇÃO EM MOLDES PERMANENTES (COQUILHAS)

Nos processos com moldes permanentes, o molde (também chamado de

coquilha) é confeccionado em material metálico (ferro fundido, aço e, mais raramente,

bronze), sendo que não há necessidade da sua destruição para a retirada da peça fundida

(Figura 28).

A vida útil do molde depende do material a ser vazado e da temperatura de

vazamento da liga, podendo varia, por exemplo, de 5.000 peças (de ferro fundido) até

1.000.000 peças (de ligas de magnésio e zinco).

A alta condutibilidade térmica dos materiais dos moldes permite um

resfriamento rápido do fundido, proporcionando o surgimento de granulações mais

refinadas na estrutura da peça fundida, com a conseqüente melhora de suas propriedades

mecânicas. Por este motivo, peças fabricadas por fundição que necessitem de seções

com elevada resistência mecânica podem ser produzidas através de moldes mistos, ou

seja, moldes produzidos por outros processos e com seções coquilhadas naquelas

regiões onde se deseja ter uma resistência mecânica mais elevada (Figura 29).

Figura 28- Molde permanente (coquilha).

Page 39: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 39

Figura 29 - Molde misto para fundição de um cilindro de laminação. A seção coquilhada apresentará resistência mecânica maior que nas outras seções.

O vazamento do metal líquido nos moldes permanentes pode se dar por

gravidade ou por pressão.

8.1 VANTAGENS

a) Bom acabamento superficial;

b) Estreitas tolerâncias dimensionais;

c) Melhora nas propriedades mecânicas quando comparadas a outros processos

de fundição.

8.2 DESVANTAGENS

a) Alto custo do molde;

b) Processo limitado a peças de tamanho relativamente pequeno ou médio;

c) Excessivamente oneroso para séries pequenas;

Page 40: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 40

d) Nem todas as ligas podem ser fundidas em moldes permanentes

(principalmente nos processos de fundição sob pressão);

e) Peças de geometria complexa dificultam o projeto do molde e a extração da

peça fundida de seu interior.

Page 41: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 41

9 FUNDIÇÃO SOB PRESSÃO

Nos processos de fundição sob pressão, o metal fundido é submetido a uma

pressão de forma a forçá-lo a penetrar na cavidade do molde (neste caso também

chamado de matriz).

As matrizes são confeccionadas em aço-ferramenta tratado termicamente e

são geralmente construídas em duas partes as quais são hermeticamente fechadas no

momento do vazamento do metal líquido. O metal é bombeado na cavidade da matriz

sob uma pressão suficiente para o preenchimento total de todas as suas cavidades e

reentrâncias. A pressão é mantida até que o metal se solidifique, no que então a matriz é

aberta e a peça ejetada por meio de pinos acionados hidraulicamente (Figura 30). As

matrizes podem ser refrigeradas a água para evitar seu superaquecimento, aumentando

sua vida útil e evitando defeitos nas peças.

Figura 30 - Matriz para fundição sob pressão.

Page 42: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 42

A fundição sob pressão é automatizada e é realizada em equipamentos de

câmara quente ou câmara fria.

9.1 FUNDIÇÃO SOB PRESSÃO EM CÂMARA QUENTE

O processo de fundição sob pressão realizado na máquina de câmara quente

utiliza um equipamento no qual existe um recipiente aquecido onde o metal líquido está

depositado. No seu interior está um pistão hidráulico que, ao descer, força o metal

líquido a entrar em um canal que leva diretamente à matriz. A pressão exercida pelo

pistão faz com que todas as cavidades da matriz sejam preenchidas, formando-se assim

a peça. Após a solidificação do metal, o pistão retorna à sua posição inicial, mais metal

líquido entra na câmara, por meio de um orifício, e o processo se reinicia (Figura 31).

Figura 31 - Fundição sob pressão em câmara quente.

Page 43: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 43

9.2 FUNDIÇÃO SOB PRESSÃO EM CÂMARA FRIA

Temperaturas de fusão mais altas da liga a ser fundida podem causar dano

ao sistema de bombeamento (cilindro e pistão). Nestes casos, utiliza-se a máquina de

fundição sob pressão de câmara fria, empregada principalmente para fundir ligas de

alumínio, magnésio e cobre.

O princípio de funcionamento desse equipamento é o mesmo das máquinas

de câmara quente, com a diferença que o forno que contém o metal líquido é

independente do equipamento, de modo que o sistema de injeção não fica dentro do

banho de metal (Figura 32).

Figura 32 - Fundição sob pressão em câmara fr ia.

9.3 VANTAGENS

a) Peças com maior resistência mecânica do que as fundidas em areia;

b) Produção de peças com formas mais complexas;

c) Tolerâncias dimensionais mais estreitas;

d) Alta capacidade de produção;

Page 44: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 44

9.4 DESVANTAGENS

a) Limitações no emprego do processo (utilizado para ligas não-ferrosas, com

poucas exceções);

b) Limitação no peso das peças (raramente superiores a 5 kg.);

c) Retenção de ar no interior das matrizes, originando peças incompletas e

porosidade na peça fundida;

d) Alto custo do equipamento e dos acessórios, limitando o seu emprego a

grandes volumes de produção.

Page 45: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 45

10 FUNDIÇÃO POR CENTRIFUGAÇÃO

Este processo consiste no vazamento de metal líquido num molde

submetido a um movimento de rotação, o qual imprime ao metal líquido uma força

centrífuga a qual projeta o metal líquido de encontro às paredes do molde.

Uma das principais aplicações consiste na fabricação de tubos de ferro

fundido para linhas de suprimento de água. Neste caso, o equipamento empregado

consiste de um molde metálilco cilíndrico montado sobre roletes de forma a ser

submetido a um movimento de rotação. O cilindro é envolto por uma camisa d’água, a

qual proporciona o seu resfriamento. O metal líquido é vazado no interior do molde

através de uma calha, alimentada por uma panela de fundição. À medida em que o metal

líquido é vazado, o molde em rotação é deslocado longitudinalmente em relação á calha,

fazendo com que o metal líquido sofra a ação da força centrífuga, sendo projetado de

encontro à paredes do molde cilìndrico até a sua solidificação (Figura 33).

Figura 33 - Produção de tubos através da fundição por centrifugação (o macho em areia evita a projeção do metal fundido para fora do molde).

Page 46: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 46

O processo também pode ser aplicado em sistemas verticais para a produção

de peças tais como engrenagens, anéis, discos, flanges, etc (Figura 34).

Figura 34 - Sistema vertical de fundição por centrifugação.

Page 47: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 47

11 FUNDIÇÃO CONTÍNUA (LINGOTAMENTO CONTÍNUO)

Neste processo são fundidas peças longas com seção quadrada, retangular,

hexagonal, etc, as quais serão posteriormente processadas por laminação, trefilação,

usinagem, etc.

O processo consiste, basicamente, no vazamento de metal fundido num

cadinho aquecido, sendo que o metal escoa através de uma matriz de grafita ou de cobre

resfriada à água. A barra, já no estado sólido é arrastada para frente com o auxílio de

cilindros de laminação, com velocidade correspondente à velocidade da frente de

solidificação do metal. As barras são posteriormente cortadas com auxílio de serras ou

chama de oxiacetileno para posterior processamento (Figura 35).

Figura 35 - Processo de fundição contínua.

Page 48: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 48

Este processo é amplamente empregado na indústria siderúrgica para a

produção de placas, tarugos e barras de aço.

Page 49: Apostila PF III - Fundição

FAT/UERJ

PROCESSOS DE FABRICAÇÃO I I I 49

12 BIBLIOGRAFIA

1. CHIAVERINI, VICENTE – Tecnologia Mecânica - Materiais de Construção

Mecânica Vol. II – 2ª Edição – Mc Graw Hill, São Paulo, SP – Brasil – 1986.

2. KALPAKJIAN, S. et al. – Manufacturing Engineering and Technology – Prentice

Hall – USA – 2000.

3. TORRE, J. – Manual de Fundição – Hemus, São Paulo, SP – Brasil – 1975.