5
MSM1Aa  MA THS CORE A: APPLICA TIONS OF DIFFERENTIATION 1.  L’Hˆ opital’s Rule for Limits Fact 1.1.  Suppose that  x 1  < a < x 2 , that  f  an  g  are dierentiable on (x 1 , x 2 ) and that  g (a) = 0. Suppose also that (1) lim xa  f (x) = lim xa  g(x) = 0 and (2) lim xa f  (x) g (x)  exists. Then lim xa f (x) g(x)  = lim xa f  (x) g (x) . 2.  Increasing and Decreasing Functions Denition 2.1.  Let f  be a real-valued function f  of a real variable and let I = (x 1 ,x 2 ) be an interval in dom(f ). Then  f  is said to be: (1)  increasing  (non-decr easing) on  I  if  f (a) f (b) whenever  a, b I  and  a < b; (2)  strictly increasing on  I  if  f (a)  < f (b) whenever  a, b I  and  a < b; (3)  decreasing  (non-increasing) on  I  if  f (a) f (b) whenever  a, b I  and  a < b; (4)  strictly decreasing on  I if  f (a)  > f (b) whenever  a, b I  and  a < b. Fact 2.2.  Let  f  be a real-valued function of a real variable that is dierentiable on I  = (x 1 ,x 2 ). (1)  f  (x) 0 for all  x I  if and only if  f  is non-decreasing on I . (2) If   f  (x)  >  0 for all  x I , then  f  is strictly increasing on  I . (3)  f  (x) 0 for all  x I  if and only if  f  is non-increasing on I . (4) If   f  (x)  <  0 for all  x I , then  f  is strictly decreasing on I . 1

Appli Cs

  • Upload
    hazrol

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

7/24/2019 Appli Cs

http://slidepdf.com/reader/full/appli-cs 1/5

MSM1Aa   MATHS CORE A: APPLICATIONS OF

DIFFERENTIATION

1.   L’Hopital’s Rule for Limits

Fact 1.1.   Suppose that  x1  < a < x2, that  f   an  g  are differentiable on (x1, x2) andthat  g(a) = 0. Suppose also that

(1) limx→a

 f (x) = limx→a

 g(x) = 0 and

(2) limx→a f 

(x)g(x)   exists.

Then

limx→a

f (x)

g(x) = lim

x→a

f (x)

g(x).

2.  Increasing and Decreasing Functions

Definition 2.1.  Let f  be a real-valued function f  of a real variable and let I  = (x1, x2)be an interval in dom(f ). Then  f   is said to be:

(1)   increasing   (non-decreasing) on  I   if  f (a) ≤ f (b) whenever  a, b ∈ I  and  a < b;(2)  strictly increasing on  I   if  f (a) < f (b) whenever  a, b ∈ I   and  a < b;(3)   decreasing   (non-increasing) on  I   if  f (a) ≥ f (b) whenever  a, b ∈ I  and  a < b;(4)  strictly decreasing on  I   if  f (a) > f (b) whenever  a, b ∈ I  and  a < b.

Fact 2.2.   Let  f  be a real-valued function of a real variable that is differentiable onI  = (x1, x2).

(1)   f (x) ≥ 0 for all x ∈ I  if and only if  f  is non-decreasing on  I .(2) If  f (x) >  0 for all  x ∈ I , then  f  is strictly increasing on  I .(3)   f (x) ≤ 0 for all x ∈ I  if and only if  f  is non-increasing on  I .

(4) If  f 

(x) <  0 for all  x ∈ I , then  f   is strictly decreasing on  I .

1

7/24/2019 Appli Cs

http://slidepdf.com/reader/full/appli-cs 2/5

2 MSM1AA   MATHS CORE A: APPLICATIONS OF DIFFERENTIATION

3.  Concave Functions and Points of Inflexion

Definition 3.1.  Let f  be a real-valued function of a real variable that is differentiableon  I  = (x1, x2).

(1) (The graph of)  f   is concave up  on  I   if  f (x) strictly increasing on  I .(2) (The graph of)  f   is concave down  on  I   if  f (x) strictly decreasing on  I .(3) A point  c ∈ I   is a  point of inflexion  of  f   if:

(a) either,  f  is concave up on (x1, c) and concave down on (c, x2);(b) or,  f   is concave down on (x1, c) and concave up on (c, x2).

From Fact 2.2 we have the following:

Fact 3.2.  Let f  be a real-valued function of a real variable that is twice differentiableon  I  = (x1, x2).

(1) If  f (x) >  0 for all  x ∈ (x1, x2), then  f  is concave up on (x1, x2).(2) If  f (x) <  0 for all  x ∈ (x1, x2), then  f   is concave down on (x1, x2).(3) If  c ∈ (x1, x2) is a point of inflexion, then  f (c) = 0.(4) If  f (c) = 0 and  f  changes sign at  c, then  c   is a point of inflexion.

Note that if   c   is a point if inflexion, then   f (c) does not have to be 0. To findpoints of inflexion, first identify all points  c  such that  f (c) = 0 and then determineat which of these points  f  changes sign.

4.   Stationary Points and Extrema

Definition 4.1.   Let  f  be a real-valued function of a real variable.

(1)   f  has a  local maximum   at  c   if there is some open interval (x1, x2) containingc  such that  f (x) f (c) for all  x ∈ (x1, x2).

(2)   f  has a  absolute  or  global maximum  at  c  if  f (x) f (c) for all  x ∈ dom(f ).(3)   f   has a  local minimum   at  c  if there is some open interval (x1, x2) containing

c  such that  f (x) f (c) for all  x ∈ (x1, x2).(4)   f  has a  absolute  or  global minimum  at  c if  f (x) f (c) for all  x ∈ dom(f ).(5)   f   has a local (or global)   extremum   at   c   if it has either a local (or global)

maximum or minimum at  c.

Definition 4.2.   Let  f   be a real-valued function of a real variable. The point c   is astationary point   of  f   if  f (c) = 0.

Stationary points are often called  turning  or  critical   points.

Fact 4.3.   Let   f   : [x1, x2] →   R   be a continuous function. Then   f   has a globalmaximum and a global minimum (we say that  f  attains its bounds). Moreover, eachglobal extremum of  f   is either:

(1) an end point of the interval [x1, x2]; or(2) a point where the derivative of  f  does not exist; or(3) a stationary point of  f .

7/24/2019 Appli Cs

http://slidepdf.com/reader/full/appli-cs 3/5

MSM1Aa   MATHS CORE A: APPLICATIONS OF DIFFERENTIATION 3

5.  Classifying Stationary Points

5.1.   The First Derivative Test.  This test always works for classifying stationarypoints, but can be tricky to implement.

Suppose that  f  has a stationary point at  c.

(1)   f  has a local maximum at  c  provided  f (c) = 0 and:•  f  > 0 immediately to the left of  c, and•  f  < 0 immediately to the right of  c.

x =   c− c c+

f (x) +ve 0   −veslope   /   − \

(2)   f  has a local minimum at  c  provided  f (c) = 0 and:•  f  < 0 immediately to the left of  c, and•  f  > 0 immediately to the right of  c.

x =   c− c c+

f (x)   −ve 0 +veslope   \ −   /

(3)   f  has a stationary point of inflexion at  c  provided  f (c) = 0 and:

•   either  f 

<  0 both immediately to the left of  c  and immediately to theright of  c;

•  or  f  > 0 both immediately to the left of  c  and immediately to the rightof  c.

x =   c− c c+

f (x) +ve 0 +veslope   /   −   /

or

x =   c− c c+

f (x)   −ve 0   −veslope   \ − \

5.2.   The Second Derivative Test.  This test does not work when  f (c) = 0.Suppose that  f  has a stationary point at  c.

(1)   f  has a local maximum at  c  if  f (c) <  0;(2)   f  has a local minimum at  c  if  f (c) >  0;(3) The test  fails  if  f (c) = 0.

7/24/2019 Appli Cs

http://slidepdf.com/reader/full/appli-cs 4/5

4 MSM1AA   MATHS CORE A: APPLICATIONS OF DIFFERENTIATION

6.   Graph Sketching

(1) Use your knowledge of functions.(2) Identify the   asymptotic   behaviour of   y   =   f (x) as   x → ±∞. If   y   =   f (x)approaches a line  y   =  mx +  c, then this line is an  oblique   asymptote. It isalso possible for y  =  f (x) to be asymptotic to other functions. Try to identifywhether   y   =   f (x) lies above the asymptote or below it. In particular, if f (x) → c as  x → ±∞, then there is a horizontal asymptote.

(3) Identify the  asymptotic  behaviour of  y  =  f (x) near points where  y  tends to±∞: if  f (x) → ±∞  as  x →  c, what happens at  c+ and  c−, i.e. just to theright of  c  and just to the left? It is possible for  f  to tend to +∞  on one sideof  c and −∞ on the other, or for it to tend to +∞ on both sides of  c, or −∞on both sides. These are the  vertical asymptotes   of  y =  f (x).

(4) Plot  easy to calculate  key points (x- and  y-intercepts, stationary points).(5) Observe whether   y   is positive or negative in key regions, greater than or

smaller than an asymptote.(6) Calculate  f : find and classify the stationary points (if any) and note where

the gradient is positive or negative.(7) Calculate   f : find any points of inflexion and note where the function is

concave up and concave down.

7.   Tangents, Normals and Inverse Functions

Definition 7.1.  Let  f   : R → R be a function and (a, b) be a point on the graph of  f 

(so that b  =  f (a)). The tangent  to the graph of  f   at (a, b) is the straight line passingthrough the point (a, b) which has the same gradient as  f   at (a, b). The  normal   tothe graph of  f  at (a, b) is the straight line passing through (a, b) perpendicular to thetangent at (a, b).

Fact 7.2.   The gradient of  f   at (a, b) is  f (a), hence the gradient of the tangent tothe graph at the point (a, b) is  f (a).

The gradient of the normal to the graph at (a, b) is −1/f (a).

The equation of the tangent to the graph of  f   at (a, b) is given by  f (a) =  y − b

x − a.

The equation of the normal to the graph of  f   at (a, b) is given by  −1

f (a)  =

  y − b

x−

a,

provided f (a) = 0. If  f (a) = 0, then the normal has equation  x =  a.These equations can be rearranged into the standard form  y = cx + d.

The Graph of an Inverse Function

Suppose that  f   :  R →  R  is a function with an inverse  f −1. Then the graph of  f is the set of points in  R

2 of the form (x, y) where  y  =  f (x) and the graph of  f −1 isthe set of points in   R

2 of the form (y, x) where  x  =  f −1(y) (note that it does notmatter what letter we use to represent the dependent and independent variables).Now y  = f (x) if and only if  x =  f −1(y) and (x, y) the reflection of (y, x) in the liney =  x.  Hence the graph of  f −1 is the reflection of the graph of  f   in the line  y = x.

7/24/2019 Appli Cs

http://slidepdf.com/reader/full/appli-cs 5/5

MSM1Aa   MATHS CORE A: APPLICATIONS OF DIFFERENTIATION 5

8.   Examples

Example.  Determine limx→0(cos x − 1)/x2

.Solution.   As x → 0, both cos x − 1 → 0 and  x2 → 0, so by l’Hopital’s Rule

limx→0

cos x − 1

x2  = lim

x→0

− sin x

2x  .

Again, as  x →  0, both − sin x →  0 and 2x →  0, so we can apply l’Hopital’s Rule asecond time to get

limx→0

cos x − 1

x2  = lim

x→0

− sin x

2x  = lim

x→0

− cos x

2  = −1

2.

Example.   Although  f (0) = 0,  f (x) = x4 does not have a point of inflexion at 0.

Example.  Let f (x) = x3 + 2x2− x − 2, find the regions where  f  is strictly increasingand strictly decreasing and find the points of inflexion of  f .

Solution.  f (x) = x3 + 2x2 − x − 2 = (x − 1)(x + 1)(x + 2), f (x) = 3x2 + 4x − 1 andf (x) = 6x + 4. The roots of 3x2 + 4x − 1 are (−2 ± √ 

7)/3, so  f  is strictly positive,and hence f  is strictly increasing on

−∞, (−2 −√ 7)/3

 and on

(−2 +

√ 7)/3, ∞

.

f  is strictly negative, so  f   is strictly decreasing on

(−2 − √ 7)/3, (−2 +

√ 7)/3

.

For the points of inflexion  f (x) = 0, when  x = −2/3. So  x = −2/3 is a possiblepoint of inflexion. If   x   is lightly less than −2/3, 6x   is slightly less than −4, sof (x) <  0. If  x is slightly greater than −2/3, then 6x  is slightly greater than −4, sothat  f (x) >  0. Hence  f  changes sign at

 −2/3, so this is a point of inflexion.

Example.  Determine the nature of the stationary points of  f (x) = x4−6x2 + 8x + 1.

Solution.  Stationary points when  df 

dx(x) = 0.

Since   f (x) = 4x3 − 12x  + 8, stationary points occur when 0 =   x3 − 3x + 2. Butx3 − 3x + 2 = (x − 1)(x2 + x − 2) = (x − 1)2(x + 2), so stationary points occur whenx − 1 = 0 or  x + 2 = 0, i.e. when  x  = 1, or −2.

Case 1,  x = −2: Now  f (x) = 12x2 − 12 so, when  x = −2,  f (x)  >  0. Therefore,by the Second Derivative Test,  f  has a local minimum at  x = −2.

Case 2,   x   = 1: When x  = 1,   f (x) = 0 so the Second Derivative Test does notapply.

x   1− 1 1+

f  +ve 0 +veslope   /   −   /

Consider values of  x  close to 1, so that  x  = 1+h for some small positive or negativeh. Then f (x) = f (1 + h) = 4(1 + h)3 − 12(1+ h) + 8 = 12h2 + 4h3 = 4h2(3 + h). Forsmall  h  (positive or negative), (3+h) is positive and 4h2 is always positive, so signanalysis shows us that immediately to the left of  x  = 1 (negative  h) and immediatelyto the right of  x  = 1 (positive  h),  f (x) is positive.

Hence we see that there is a point of inflection at  x = 1.

Chris Good, Nov. 07