454
ARTICLE 24 -LIQUID PENETRANT STANDARDS 25SUBSECTION B DOCUMENTS ADOPTED BY SECTION V 为第 V 部分所采纳之文件 ARTICLE 22 RADIOGRAPHIC STANDARDS 22 放射照相标准 SE-94 STANDARD GUIDE FOR RADIOGRAPHIC EXAMINA- TION SE-94 用于射线照相检测之标准指南 (Identical with ASTM Specification E 94-04(2010).) (ASTM E 94-04(2010)之内容无异) 1. Scope 适用范围 1.1 This guide covers satisfactory X-ray and gamma-ray radiographic examination as applied to industrial radio- graphic film recording. It includes statements about preferred practice without discussing the technical background which justifies the preference. A bibliography of several textbooks and standard documents of other societies is in- cluded for additional information on the subject. 本指南涵盖了符合工业用射线照相胶片要求之 X 射线和γ射 线照相检测,其中仅包括了关于首选实践规程的陈述,而不对所偏好之技术背景提出任何论述,其中也包 括几本教科书与其他学会标准文件之书目,以助用户能获得有关本主题的更多信息。 1.2 This guide covers types of materials to be examined; radiographic examination techniques and production methods; radiographic film selection, processing, viewing, and storage; maintenance of inspection records; and a list of available reference radiograph documents. 在本指南中对所要检测之材料类型、产品射线检查技术和方 法,射线照相胶片之选择、处理、观察和贮存、检测记录的维护,以及可之用于参考射线照相文件的列表 做出了介绍。 NOTE 1Further information is contained in Guide E999, Practice E1025, Test Methods E1030, and E1032. 1 更多指南、实施细则和检测方法等信息分别在 E999E1025 以及 E1030 E1032 做出了更详 尽地论述。 1.3 Interpretation and Acceptance StandardsInterpretation and acceptance standards are not covered by this guide, beyond listing the available reference radiograph documents for castings and welds. Designation of accept reject standards is recognized to be within the cognizance of product specifications and generally a matter of con- tractual agreement between producer and purchaser. 解释和接受标准 本指南仅针对铸件和焊缝列出可用的参 考射线胶片文件,而不涉及解释和允收准则。所指定之接受或拒收准,在工程惯例上被视为是在产品规格 认定上以及是甲乙双方间所要商定的问题。 1.4 Safety PracticesProblems of personnel protection against X rays and gamma rays are not covered by this document. For information on this important aspect of radiography, reference should be made to the current docu- ment of the National Committee on Radiation Protection and Measurement, Federal Register, U.S. Energy Research and Development Administration, National Bureau of Standards, and to state and local regulations, if such exist. For specific radiation safety information refer to NIST Handbook ANSI 43.3, 21 CFR 1020.40, and 29 CFR 1910.1096 or state regulations for agreement states. 安全实施细则 本文件并不涉及人员对 X 射线和伽马射线的防护问 题。有关射线照相之此一重要信息应参考全国辐射防护和测量委员会、联邦公报、美国能源研究与开发 署、国家标准局之现行文件,以及州和地方法规(如果有的话)。有关特定辐射安全信息,请参考 NIST 册、ANSI 43.3, 美国联邦标准第 21 章中 CFR 1020.40 29CFR 1910.1096 或协议状态中之规定。 1.5 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the

ARTICLE 24 -LIQUID PENETRANT STANDARDS ......(Identical with ASTM Specification E 94-04(2010).) (与ASTM E 94-04(2010)之内容无异) 1. Scope ... E1815 Test Method for Classification

  • Upload
    others

  • View
    15

  • Download
    0

Embed Size (px)

Citation preview

  • ARTICLE 24 -LIQUID PENETRANT STANDARDS

    25SUBSECTION B DOCUMENTS ADOPTED

    BY SECTION V 为第 V 部分所采纳之文件

    ARTICLE 22 RADIOGRAPHIC STANDARDS 第 22 章 放射照相标准

    SE-94 STANDARD GUIDE FOR RADIOGRAPHIC EXAMINA-

    TION SE-94 用于射线照相检测之标准指南

    (Identical with ASTM Specification E 94-04(2010).) (与 ASTM E 94-04(2010)之内容无异)

    1. Scope 适用范围

    1.1 This guide covers satisfactory X-ray and gamma-ray radiographic examination as applied to industrial radio-graphic film recording. It includes statements about preferred practice without discussing the technical background which justifies the preference. A bibliography of several textbooks and standard documents of other societies is in-

    cluded for additional information on the subject. 本指南涵盖了符合工业用射线照相胶片要求之 X射线和γ射

    线照相检测,其中仅包括了关于首选实践规程的陈述,而不对所偏好之技术背景提出任何论述,其中也包

    括几本教科书与其他学会标准文件之书目,以助用户能获得有关本主题的更多信息。

    1.2 This guide covers types of materials to be examined; radiographic examination techniques and production methods; radiographic film selection, processing, viewing, and storage; maintenance of inspection records; and a

    list of available reference radiograph documents. 在本指南中对所要检测之材料类型、产品射线检查技术和方

    法,射线照相胶片之选择、处理、观察和贮存、检测记录的维护,以及可之用于参考射线照相文件的列表

    做出了介绍。

    NOTE 1—Further information is contained in Guide E999, Practice E1025, Test Methods E1030, and

    E1032. 注 1 更多指南、实施细则和检测方法等信息分别在 E999、E1025以及 E1030和 E1032做出了更详

    尽地论述。

    1.3 Interpretation and Acceptance Standards— Interpretation and acceptance standards are not covered by this guide, beyond listing the available reference radiograph documents for castings and welds. Designation of accept reject standards is recognized to be within the cognizance of product specifications and generally a matter of con-

    tractual agreement between producer and purchaser. 解释和接受标准 — 本指南仅针对铸件和焊缝列出可用的参考射线胶片文件,而不涉及解释和允收准则。所指定之接受或拒收准,在工程惯例上被视为是在产品规格

    认定上以及是甲乙双方间所要商定的问题。

    1.4 Safety Practices—Problems of personnel protection against X rays and gamma rays are not covered by this document. For information on this important aspect of radiography, reference should be made to the current docu-ment of the National Committee on Radiation Protection and Measurement, Federal Register, U.S. Energy Research and Development Administration, National Bureau of Standards, and to state and local regulations, if such exist. For specific radiation safety information refer to NIST Handbook ANSI 43.3, 21 CFR 1020.40, and 29 CFR 1910.1096

    or state regulations for agreement states. 安全实施细则 — 本文件并不涉及人员对 X射线和伽马射线的防护问题。有关射线照相之此一重要信息应参考全国辐射防护和测量委员会、联邦公报、美国能源研究与开发

    署、国家标准局之现行文件,以及州和地方法规(如果有的话)。有关特定辐射安全信息,请参考 NIST 手

    册、ANSI 43.3, 美国联邦标准第 21章中 CFR 1020.40和 29、CFR 1910.1096或协议状态中之规定。

    1.5 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the

  • responsibility of the user of this standard to establish appropriate safety and health practices and determine the ap-

    plicability of regulatory limitations prior to use. (See 1.4.) 本标准并不旨在解决与其采用的相关所有安全问题

    (如果有的话)。本标准旨用户有责任制定适当的安全和健康实施细则,并在采用前确定为法规所限制之适

    用性(见 1.4)。

    1.6 If an NDT agency is used, the agency shall be qualified in accordance with Practice E543. 如果雇用无损检测机构,该机构之实施细则应符合 E543的要求。

    2. Referenced Documents 参考文献

    2.1 ASTM Standards:

    E543 Specification for Agencies Performing Nondestructive Testing

    E746 Practice for Determining Relative Image Quality Response of Industrial Radiographic Imaging Sys-tems

    E747 Practice for Design, Manufacture and Material Grouping Classification of Wire Image Quality Indi-cators (IQI) Used for Radiology

    E801 Practice for Controlling Quality of Radiological Examination of Electronic Devices

    E999 Guide for Controlling the Quality of Industrial Radiographic Film Processing

    E1025 Practice for Design, Manufacture, and Material Grouping Classification of Hole-Type Image Qual-ity Indicators (IQI) Used for Radiology

    E1030 Test Method for Radiographic Examination of Metallic Castings

    E1032 Test Method for Radiographic Examination of Weldments

    E1079 Practice for Calibration of Transmission Densitometers

    E1254 Guide for Storage of Radiographs and Unexposed Industrial Radiographic Films

    E1316 Terminology for Nondestructive Examinations E1390 Specification for Illuminators Used for View-ing Industrial Radiographs

    E1735 Test Method for Determining Relative Image Quality of Industrial Radiographic Film Exposed to X-Radiation from 4 to 25 MeV

    E1742 Practice for Radiographic Examination

    E1815 Test Method for Classification of Film Systems for Industrial Radiography

    2.2 ANSI Standards:

    PH1.41 Specifications for Photographic Film for Archival Records, Silver-Gelatin Type, on Polyester Base PH2.22 Methods for Determining Safety Times of Photographic Darkroom Illumination

    PH4.8 Methylene Blue Method for Measuring Thiosulfate and Silver Densitometric Method for Measuring Residual Chemicals in Films, Plates, and Papers

    T9.1 Imaging Media (Film)—Silver-Gelatin Type Specifications for Stability

    T9.2 Imaging Media—Photographic Process Film Plate and Paper Filing Enclosures and Storage Contain-ers

    2.3 Federal Standards:

    Title 21, Code of Federal Regulations (CFR) 1020.40, Safety Requirements of Cabinet X-Ray Systems

    Title 29, Code of Federal Regulations (CFR) 1910.96, Ionizing Radiation (X-Rays, RF, etc.)

    2.4 Other Document:

  • NBS Handbook ANSI N43.3 General Radiation Safety Installations Using NonMedical X-Ray and Sealed Gamma Sources up to 10 MeV

    3. Terminology 术语

    3.1 Definitions—For definitions of terms used in this guide, refer to Terminology 定义 对于在本指南中所采用之术语定义,参见 E1316中之术语。

    4. Significance and Use 意义和用途

    4.1 Within the present state of the radiographic art, this guide is generally applicable to available materials, pro-cesses, and techniques where industrial radiographic films are used as the recording media. 在放射照相技术之现

    有状态下,本指南一般仅适用于以工业射线照相胶片作为记录介质之现有材料、工艺和技术方面上。

    4.2 Limitations—This guide does not take into consideration special benefits and limitations resulting from the use of nonfilm recording media or readouts such as paper, tapes, xeroradiography, fluoroscopy, and electronic im-age intensification devices. Although reference is made to documents that may be used in the identification and grading, where applicable, of representative discontinuities in common metal castings and welds, no attempt has been made to set standards of acceptance for any material or production process. Radiography will be consistent in sensitivity and resolution only if the effect of all details of techniques, such as geometry, film, filtration, viewing,

    etc., is obtained and maintained. 限度 在本指南中对非胶片记录介质或读出装置(如纸张、磁带、射线静电照

    相术、透视检测和电子图像增感装置等)所带来的特殊优点和限制并不考虑予以采用。尽管参考文献在适用

    时可用之于商用金属铸件和焊缝中类似不连续性的识别和分级上,但就 ASTM本身而言,却从未尝试对任

    何材料或产品过程去制定相应的接受准则。除非在技术上之所有细节效果上 (如几何形状、胶片、滤纸和观

    察等等)得以获得和维护,那射线胶片在灵敏度和分辨率上方能被保持一致。

    5. Quality of Radiographs 射线胶片之质量

    5.1 To obtain quality radiographs, it is necessary to consider as a minimum the following list of items. Detailed information on each item is further described in this guide. 为摄取到优质的放射胶片,须至少顾及以下所列之

    项目。每一项目之详细信息将在本指南中做出更进一步地描述。

    5.1.1 Radiation source (X-ray or gamma), 射源(X射线或伽马)

    5.1.2 Voltage selection (X-ray), 电压选用(X射线)

    5.1.3 Source size (X-ray or gamma), 射源尺寸(X射线或伽马)

    5.1.4 Ways and means to eliminate scattered radiation, 消除散射辐射的方法和手段,

    5.1.5 Film system class, 胶片系统类别,

    5.1.6 Source to film distance, 射源至胶片之距离,

    5.1.7 Image quality indicators (IQI’s), 像质计(IQI)

    5.1.8 Screens and filters, 增感屏和滤镜,

    5.1.9 Geometry of part or component configuration, 物项或物项构造之几何形状,

    5.1.10 Identification and location markers, and 识别和位置标记,和

    5.1.11 Radiographic quality level. 射线照相之质量等级。

    6. Radiographic Quality Level 射线照相之质量等级

  • 6.1.1 Information on the design and manufacture of image quality indicators (IQI’s) can be found in Practices

    E747, E801, E1025, and E1742. 图像质计(IQI)之设计和制造信息可分别在 E747、E801、E1025和 E1742实施

    细则中找到。

    6.1.2 The quality level usually required for radiography is 2 % (2-2T when using hole type IQI) unless a higher or lower quality is agreed upon between the purchaser and the supplier. At the 2 % subject contrast level, three quality levels of inspection, 2-1T, 2-2T, and 2-4T, are available through the design and application of the IQI (Practice E1025, Table 1). Other levels of inspection are available in Practice E1025 Table 1. The level of inspec-tion specified should be based on the service requirements of the product. Great care should be taken in specifying quality levels 2-1T, 1-1T, and 1-2T by first determining that these quality levels can be maintained in production

    radiography. 除非采购方和供货方之间达成协议,决定采用更高或更低的质量等级,否则射线胶片所需之质

    量通常为 2%(当采用孔洞型 IQI 时为 2-2T)。在 2%被摄物反差度等级,可藉由对 IQI的设计和应用(E1025

    实施细则,表 1),而获得 2-1T、2-2T 和 2-4T 等三个观察质量等级。在 E1025 实施细则之表 1中也提供了

    其他的观察等级。所指定之观察等级应以产品的服务要求为背景而进行选用。当规定需采用表中之 2-1T、

    1-1T 和 1-2T 质量等级时,应特别注意的是,藉由对这些质量等级之首次测定 , 以使它们能在后续之产品射

    线照相中被持续地保持住首次质量等级。

    NOTE 2—The first number of the quality level designation refers to IQI thickness expressed as a per-centage of specimen thickness; the second number refers to the diameter of the IQI hole that must be visible on the

    radiograph, expressed as a multiple of penetrameter thickness, T. 注 2 质量等级名称的第一次数位指的是以试样

    厚度百分比来表示 IQI的厚度;第二个数位指的是在射线胶片上须可观察到之 IQI 孔洞直径,它以透度计

    厚度(T)的倍数来表示。

    6.2 If IQI’s of material radiographically similar to that being examined are not available, IQI’s of the required dimensions but of a lower-absorption material may be used. 如在放射学上 IQI 不能获得与受检体相似材料,则

    可采用较低吸收率来制作出各式 IQI之所需尺寸。

    6.3 The quality level required using wire IQI’s shall be equivalent to the 2-2T level of Practice E1025 unless a higher or lower quality level is agreed upon between purchaser and supplier. Table 4 of Practice E747 gives a list of various hole-type IQI’s and the diameter of the wires of corresponding EPS with the applicable 1T, 2T, and 4T holes in the plaque IQI. Appendix X1 of Practice E747 gives the equation for calculating other equivalencies, if

    needed. 除非采购方和供货方之间达成协议,决定采用更高或更低的质量等级,否则当采用线型 IQI 所要求

    之质量等级时应等于 E1025实施细则中之 2-2T 等级。在 E747实践规程中之表 4做出了对各类孔洞型 IQI

    之清单以及相应等效 IQI 灵敏度(EPS)之线径以及薄金属板 IQI 中所适用之 1T,2T 和 4T 孔。如需要,在

    E747 实施细则附录 X1做出了计算其他当量的方程式。

    7. Energy Selection 能量选择

    7.1 X-ray energy affects image quality. In general, the lower the energy of the source utilized the higher the achievable radiographic contrast, however, other variables such as geometry and scatter conditions may override the potential advantage of higher contrast. For a particular energy, a range of thicknesses which are a multiple of the half value layer, may be radiographed to an acceptable quality level utilizing a particular X-ray machine or gamma ray source. In all cases the specified IQI (penetrameter) quality level must be shown on the radiograph. In general, satisfactory results can normally be obtained for X-ray energies between 100 kV to 500 kV in a range between 2.5 to 10 half value layers (HVL) of material thickness (see Table 1). This range may be extended by as much as a fac-

    tor of 2 in some situations for X-ray energies in the 1 to 25 MV range primarily because of reduced scatter. X 射线

    能量影响图像质量。通常,射源所利用的能量越低,可实现的射线照相对比度越高,然而,诸如几何形状

    和散射条件等其它变数会使较高对比度可能带来的好处失去效果。对于特定能量,厚度范围是半值层的倍

    数,可通过采用特定 X射线机或伽马射线源进行胶片,从而获得可接受的质量水平。在任何情况下,所指

    定之 IQI(透度计)质量水平都必须显示在射线胶片上。一般而言,对于 100kV 至 500kV 间的 X射线能量,

    在材料厚度范围(参见表 1)为 2.5至 10个半值层(HVL)时,通常可以获得符合要求的照相结果。当 X射线能

    量在 1至 25MV 范围内时,在某些情况下,为减少散射可将半值层范围可扩大到原来的两倍。

  • TABLE 1 Typical Steel HVL Thickness in Inches (mm) for Common Energies 相应于常用能量之典型钢品 HVL厚度[ in. (mm)]表 1

    Energy 能量 Thickness 厚度, Inches (mm)

    120 kV 0.10 (2.5)

    150 kV 0.14 (3.6)

    200 kV 0.20 (5.1)

    250 kV 0.25 (6.4)

    400 kV (Ir 192) 0.35 (8.9)

    1 MV 0.57 (14.5)

    2 MV (Co 60) 0.80 (20.3)

    4 MV 1.00 (25.4)

    6 MV 1.15 (29.2)

    10 MV 1.25 (31.8)

    16 MV and higher 1.30 (33.0)

    8. Radiographic Equivalence Factors 射线照相之当量系数

    8.1 The radiographic equivalence factor of a material is that factor by which the thickness of the material must be multiplied to give the thickness of a “standard” material (often steel) which has the same absorption. Radiographic equivalence factors of several of the more common metals are given in Table 2, with steel arbitrarily assigned a fac-

    tor of 1.0. The factors may be used: 8.材料之射线照相当量系数,系指该材料厚度乘以此系数后,即可得出与

    它具有相同吸收程度之"标准"材料(通常是钢)的厚度。在表 2中做出了几种较为常见金属相应于钢的射线照

    相当量系数,表中将钢之射线照相当量系数指定为 1.0。这些系数可被采用于:

    8.1.1 To determine the practical thickness limits for radiation sources for materials other than steel, and 除钢

    以外之材料,可确定各种射线源对的其他材料所能检测的实际厚度限值,和

    8.1.2 To determine exposure factors for one metal from exposure techniques for other metals. 由其他金属之

    已知曝光技术来确定某一种金属的曝光系数。

    9. Film 胶片

    9.1 Various industrial radiographic film are available to meet the needs of production radiographic work. How-ever, definite rules on the selection of film are difficult to formulate because the choice depends on individual user requirements. Some user requirements are as follows: radiographic quality levels, exposure times, and various cost factors. Several methods are available for assessing image quality levels (see Test Method E746, and Practices E747

    and E801). Information about specific products can be obtained from the manufacturers. 提供各种工业射线照相胶

    片以满足产品射线照相工作之需要。然而,有关胶片选用之确定规则却难以制定,此因是导致于选择权之

    乃取决于各用户要求。某些用户之要求如下:射线照相质量水平,曝光时间和各种成本因素。有几种方法

    可用于评估图像质量水平(检测方法参见 E746,而实施细则可参见 E747和 E801)。有关具体产品之信息可

    以从制造商处获得。

    9.2 Various industrial radiographic films are manufactured to meet quality level and production needs. Test Method E1815 provides a method for film manufacturer classification of film systems. A film system consist of the film and associated film processing system. Users may obtain a classification table from the film manufacturer for the film system used in productionradiography. A choice of film class can be made as provided in Test Method E1815. Additional specific details regarding classification of film systems is provided in Test Method E1815. ANSI

    Standards PH1.41, PH4.8, T9.1, and T9.2 provide specific details and requirements for film manufacturing. 制造各

    种工业射线照相胶片以满足不同质量水平和生产上的实际需求。E1815提供了一种检测方法以用于胶片系

    统之制造商分类上。胶片体系是由胶片和其所附属的胶片处理系统所组成的。用户可从胶片制造商处取得

    分类表,以用于在产品射线照相中所采用之胶片系统。可按E1815检测方法所提供之规定来选用所需之胶

    片等级。有关胶片系统分类之其它具体细节在E1815检测方法中做出。 有关胶片制造之具体细节和要求可

    参见 ANSI PH1.41,PH4.8,T9.1和 T9.2 。

  • 10. Filters 滤镜

    10.1 Definition—Filters are uniform layers of material placed between the radiation source and the film. 定义 - 滤镜是一种定位在射源和胶片之间的均匀材料层。

    10.2 Purpose—The purpose of filters is to absorb the softer components of the primary radiation, thus resulting in one or several of the following practical advantages: 目的 采用滤镜之目的是为吸收掉位于能谱低端的辐射,从而有如下所示之一种或几种实际优点:

    10.2.1 Decreasing scattered radiation, thus increasing contrast. 减少散射辐射,从而提高对比度度。

    10.2.2 Decreasing undercutting, thus increasing contrast. 减少失真,从而提高对比度度。

    10.2.3 Decreasing contrast of parts of varying thickness. 减小厚度过渡部分的对比度。

    10.3 Location—Usually the filter will be placed in one of the following two locations: 位置 通常将滤纸定位在以下两个位置之一:

    10.3.1 As close as possible to the radiation source, which minimizes the size of the filter and also the contribu-

    tion of the filter itself to scattered radiation to the film.尽可能靠近射源,以使滤纸尺寸最小化,从而让滤纸本

    身对胶片散射辐射的影响降至最低。

    10.3.2 Between the specimen and the film in order to absorb preferentially the scattered radiation from the

    specimen. It should be noted that lead foil and other metallic screens (see 13.1) fulfill this function. 在试样和胶片

    之间,以便优先吸收来自试样的散射辐射。所应注意的是铅箔和其他金属屏蔽(见 13.1)亦同样可满足此功

    能。

    10.4 Thickness and Filter Material— The thickness and material of the filter will vary depending upon the fol-lowing: 滤纸厚度和材质 滤纸厚度和材质将随以下因素而改变:

    10.4.1 The material radiographed. 受检测物项之材质。

    10.4.2 Thickness of the material radiographed. 受检测之材料厚度。

    10.4.3 Variation of thickness of the material radiographed. 受检测材料之厚度变化。

    10.4.4 Energy spectrum of the radiation used. 所采用之辐射能谱。

    10.4.5 The improvement desired (increasing or decreasing contrast). Filter thickness and material can be calcu-

    lated or determined empirically. 所期望之改善(增加或减少对比度)。滤纸厚度和材料可以根据经验计算或确

    定。

    11. Masking 掩模

    11.1 Masking or blocking (surrounding specimens or covering thin sections with an absorptive material) is help-ful in reducing scattered radiation. Such a material can also be used to equalize the absorption of different sections,

    but the loss of detail may be high in the thinner sections. 采用屏蔽或围封(用吸收材料包围样品或覆盖薄切片)均

    有助于降低散射辐射。这种材料亦可用于均衡不同厚度的辐射吸收,但在较薄截面中,其在射线胶片所显

    示之细节可能有较高的辐射损失。

    12. Back-Scatter Protection 背向散射防护

    12.1 Effects of back-scattered radiation can be reduced by confining the radiation beam to the smallest practical cross section and by placing lead behind the film. In some cases either or both the back lead screen and the lead contained in the back of the cassette or film holder will furnish adequate protection against back-scattered radiation.

    In other instances, this must be supplemented by additional lead shielding behind the cassette or film holder. 通过

    将辐射束拘束在最小实际横截面并把铅箔定位在胶片背面,可以减少背向散射射线所造成的影响。在某些

  • 情况下,不管是铅屏蔽还是包含在暗盒或胶片夹背面中的铅箔或者是前述之两者, 均能对背向散射线提供

    足够的防护。在其他情况下,仍须藉由在暗盒或胶片夹背面加用铅屏蔽来辅助。

    TABLE 2 Approximate Radiographic Equivalence Factors for Several Metals (Relative to Steel) 表 2 几种金属相对于钢的近似射线照相当量系数

    Metal金属名称 Energy Level 能量等级

    100 kV 150 kV 220 kV 250 kV 400 kV 1 MV 2 MV 4 to 25 MV 192Ir 60Co

    Magnesium镁 0.05 0.05 0.08

    Aluminum铝 0.08 0.12 0.18 0.35 0.35 Aluminum alloy 铝合金 0.10 0.14 0.18 0.35 0.35

    Titanium 钛 0.54 0.54 0.71 0.9 0.9 0.9 0.9 0.9 Iron/all steels 铁/所有钢 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

    Copper铜 1.5 1.6 1.4 1.4 1.4 1.1 1.1 1.2 1.1 1.1

    Zinc锌 1.4 1.3 1.3 1.2 1.1 1.0

    Brass 黄铜 1.4 1.3 1.3 1.2 1.1 1.0 1.1 1.0

    Inconel X 因科镍合金 X 1.4 1.3 1.3 1.3 1.3 1.3 1.3 1.3 Monel蒙乃尔合金 1.7 1.2

    Zirconium锆 2.4 2.3 2.0 1.7 1.5 1.0 1.0 1.0 1.2 1.0 Lead铅 14.0 14.0 12.0 5.0 2.5 2.7 4.0 2.3

    Hafnium铪 14.0 12.0 9.0 3.0

    Uranium铀 20.0 16.0 12.0 4.0 3.9 12.6 3.4

    12.2 If there is any question about the adequacy of protection from back-scattered radiation, a characteristic sym-bol (frequently a 1⁄8 in. (3.2 mm) thick letter B) should be attached to the back of the cassette or film holder, and a radiograph made in the normal manner. If the image of this symbol appears on the radiograph as a lighter density than background, it is an indication that protection against back-scattered radiation is insufficient and that additional

    precautions must be taken. 如对背向散射射线防护是否充分存有疑问时,应在暗盒或胶片夹的背面定位特征

    标记(通常是一个 1/8in.(3.2mm)厚的铅字母 B),并以常度所制成之放射胶片。如此标记图像黑度以比背景黑

    度还淡的方式显示在射线胶片上时,则表明对背向散射射线的防护还不够充分,仍须采取额外的预防措

    施。

    13. Screens 增感屏

    13.1 Metallic Foil Screens: 金属箔增感屏:

    13.1.1 Lead foil screens are commonly used in direct contact with the films, and, depending upon their thick-ness, and composition of the specimen material, will exhibit an intensifying action at as low as 90 kV. In addition, any screen used in front of the film acts as a filter (Section 10) to preferentially absorb scattered radiation arising from the specimen, thus improving radiographic quality. The selection of lead screen thickness, or for that matter, any metallic screen thickness, is subject to the same considerations as outlined in 10.4. Lead screens lessen the scat-ter reaching the film regardless of whether the screens permit a decrease or necessitate an increase in the radio-graphic exposure. To avoid image unsharpness due to screens, there should be intimate contact between the lead

    screen and the film during exposure. 铅箔增感屏通常用于与胶片直接接触,并且根据其厚度和试样材料之化

    学成分,甚至在低至 90kV 下仍显示增感效用。此外,在胶片前面采用任何具有过滤功能之增感屏(见第 10

    段),以优先吸收来自试样品的背向散射射线,从而提高射线照相质量。铅箔增感屏厚度或任何金属增感屏

    厚度之选用上,都应遵循 10.4中所考虑之因素。铅箔增感屏可降低反射到胶片的散射量,而不管增感屏是

    否允许减小还是必须增加射线照相曝光。为避免因增感屏而导致的图像模糊,在曝光期间铅箔增感屏和胶

    片之间应紧密地接触。

    13.1.2 Lead foil screens of appropriate thickness should be used whenever they improve radiographic quality or penetrameter sensitivity or both. The thickness of the front lead screens should be selected with care to avoid ex-cessive filtration in the radiography of thin or light alloy materials, particularly at the lower kilovoltages. In general, there is no exposure advantage to the use of 0.005 in. in front and back lead screens below 125 kV in the radiog-raphy of 1/4 in. (6.35 mm) or lesser thickness steel. As the kilovoltage is increased to penetrate thicker sections of steel, however, there is a significant exposure advantage. In addition to intensifying action, the back lead screens are used as protection against back-scattered radiation (see Section 12) and their thickness is only important for this

  • function. As exposure energy is increased to penetrate greater thicknesses of a given subject material, it is custom-ary to increase lead screen thickness. For radiography using radioactive sources, the minimum thickness of the front

    lead screen should be 0.005 in. (0.13 mm) for iridium-192, and 0.010 in. (0.25 mm) for cobalt-60. 当提高射线照相

    质量或透度计灵敏度或两者兼有时,应采使具有适当厚度的铅箔增感屏。前置铅增感屏之厚度应小心选

    择,以避免在薄或轻合金材料之射线照相过程中产生过度过滤,尤其是在较低之千伏电压时。一般来说,

    若采用 0.005 in. 厚度的前置和后置铅增感屏,且以低于 125kV 对小于或等于 1/4 in. (6.35 mm)之钢材进行射

    线照相时,则对曝光来说不存在任何好处的。然而,随着千伏电压的增加以穿透较厚截面的钢品,便会有

    显着的曝光优势。除了有增感作用外,后置铅增感屏可用于防止背向散射射线(见第 12段),并且对此一功

    能而言,在厚度上才具有其应有的重要性。随着曝光能量的增加以穿透更厚之给定材料时,铅屏厚度亦应

    相应地随之加厚。对于采用铱-192放射源所进行之放射线照相,最小前置铅增感屏厚宜为 0.005 in. (0.13

    mm),若采用钴-60时,最小前置铅增感屏厚度宜为 0.010 in. (0.25 mm)。

    13.2 Other Metallic Screen Materials 其他金属增感屏材料

    13.2.1 Lead oxide screens perform in a similar manner to lead foil screens except that their equivalence in lead

    foil thickness approximates 0.0005 in. (0.013 mm). 氧化铅增感屏具有类似于铅箔增感屏的功能,但缺点是它

    仅适用于类似 0.0005 in. (0.013 mm) 铅箔厚度所进行的射线照相功能。

    13.2.2 Copper screens have somewhat less absorption and intensification than lead screens, but may provide

    somewhat better radiographic sensitivity with higher energy above 1 MV. 铜增感屏比铅增感屏之吸收率和增感

    稍微少一点,但它在 1MV 以上之能量下可提供稍佳的射线照相灵敏度。

    13.2.3 Gold, tantalum, or other heavy metal screens may be used in cases where lead cannot be used. 在不能

    采用铅的情况下,可以采用金,钽或其他重金属增感屏。

    13.3 Fluorescent Screens Fluorescent screens may be used as required providing the required image quality is achieved. Proper selection of the fluorescent screen is required to minimize image unsharpness. Technical infor-mation about specific fluorescent screen products can be obtained from the manufacturers. Good film-screen con-tact and screen cleanliness are required for successful use of fluorescent screens. Additional information on the use

    of fluorescent screens is provided in Appendix X1. 荧光增感屏 可根据需求采用荧光增感屏,从而实现所需图

    像质量。 需适当第选择荧光增感屏以使图像模糊度最小化。 有关特定荧光增感屏产品之技术信息可从制造

    商处获得。 为能成功地采用荧光增感屏,胶片与增感屏间需有良好的接触并保持增感屏的清洁度。 有关荧

    光增感屏在采用上之其他信息见附录X1。

    13.4 Screen Care All screens should be handled carefully to avoid dents and scratches, dirt, or grease on active surfaces. Grease and lint may be removed from lead screens with a solvent. Fluorescent screens should be cleaned in accordance with the recommendations of the manufacturer. Screens showing evidence of physical damage should

    be discarded. 增感屏之维护 所有增感屏应小心处理,以避免在其有效表面上产生折痕和划痕,污垢或油

    脂。 可以采用溶剂从铅屏上除去油脂和棉絮。 荧光增感屏应根据制造商所推荐之方进行清洁。 当在增感

    屏上显示实质损坏迹象时即应废弃。

    14. Radiographic Image Quality 射线照相图像质量

    14.1 Radiographic image quality is a qualitative term used to describe the capability of a radiograph to show flaws in the area under examination. There are three fundamental components of radiographic image quality as shown in Fig. 1. Each component is an important attribute when considering a specific radiographic technique or

    application and will be briefly discussed below. 射线照相图像质量是一个定性术语,用于描述射线胶片在检测

    区域显示缺陷的能力。如图 1所示,放射照相图像质量有三个基本组成部分。当顾及特定射线照相技术或

    应用时,每一组成部分件都是重要表征,并在下列做出简要讨论。

    14.2 Radiographic contrast between two areas of a radiograph is the difference between the film densities of those areas. The degree of radiographic contrast is dependent upon both subject contrast and film contrast as illus-

    trated in Fig. 1. 显示在射线胶片上之两个区域间的射线胶片对比度即是那些区域之胶片黑度间的差异。如图

    1所示,射线照相对比度取决于被摄物反差度和胶片对比度。

  • 14.2.1 Subject contrast is the ratio of X-ray or gamma-ray intensities transmitted by two selected portions of a specimen. Subject contrast is dependent upon the nature of the specimen (material type and thickness), the energy (spectral composition, hardness or wavelengths) of the radiation used and the intensity and distribution of scattered radiation. It is independent of time, milliamperage or source strength (curies), source distance and the characteristics

    of the film system. 被摄物反差度是通过试样上的两个选定部分所透射之X射线或γ射线强度比。被摄物反

    差度取决于试样特性(材料类别和厚度)、所采用之辐射能量(光谱组成,射线的透射能力或波长)以及散射辐

    射的强度和分布。它与时间、毫安数或射源强度(居礼)、射源距离和胶片系统特性等等毫无关联。

    14.2.2 Film contrast refers to the slope (steepness) of the film system characteristic curve. Film contrast is de-pendent upon the type of film, the processing it receives and the amount of film density. It also depends upon whether the film was exposed with lead screens (or without) or with fluorescent screens. Film contrast is independ-ent, for most practical purposes, of the wavelength and distribution of the radiation reaching the film and, hence is

    independent of subject contrast. For further information, consult Test Method E1815. 胶片对比度是指胶片系统特

    性曲线的斜率(陡度)。胶片对比度取决于胶片的类型,其接收的处理和胶片黑度的量。它还取决于胶片是

    用铅屏(或不用)还是用荧光屏曝光的。就多数实际目的而言,胶片对比度与到达胶片上之射线波长和分布

    是无关的,因此射线波长和分布与被摄物反差度是无关的。有关胶片对比度之进一步信息,请参阅 E1815

    之检测方法。

    14.3 Film system granularity is the objective measurement of the local density variations that produce the sensa-tion of graininess on the radiographic film (for example, measured with a densitometer with a small aperture of ≦ 0.0039 in. (0.1 mm)). Graininess is the subjective perception of a mottled random pattern apparent to a viewer who sees small local density variations in an area of overall uniform density (that is, the visual impression of irregularity of silver deposit in a processed radiograph). The degree of granularity will not affect the overall spatial radiographic resolution (expressed in line pairs per mm, etc.) of the resultant image and is usually independent of exposure ge-ometry arrangements. Granularity is affected by the applied screens, screen-film contact and film processing condi-

    tions. For further information on detailed perceptibility, consult Test Method E1815. 胶片系统粒度是局部黑度变

    化的客观测量,其在射线照射胶片上产生颗粒感的感觉[例如,用黑度计测量时,所配套之光圈大小为等于

    或小于 0.0039 in. (0.1 mm)]。粒度是在整体均匀黑度范围中,当观察者查看局部黑度变化时,对斑点状随机

    图像的一种主观感知[即,在放射线胶片处理过程中所堆积之不规则性金属银颗粒密度上的视觉感]。粒度

    程度不会影响所得图像之整体空间射线照相分辨率(以每亳米中有几个线对表示),且通常与曝光几何排列

    无关。颗粒度受所采用的增感屏,增感屏与胶片的接触度和胶片处理条件等因素的影响。有关感受性之进

    一步详细信息,请参阅 E1815之检测方法。

    14.4 Radiographic definition refers to the sharpness of the image (both the image outline as well as image de-tail). Radiographic definition is dependent upon the inherent unsharpness of the film system and the geometry of the

    radiographic exposure arrangement (geometric unsharpness) as illustrated in Fig. 1. 射线照相定义是指图像的清晰度(图像轮廓以及图像细节)。如图 1,所示射线照相定义取决于胶片系统的固有模糊度和放射照相曝光装置

    的几何形状(几何模糊度)。

    14.4.1 Inherent unsharpness (𝑈𝑖) is the degree of visible detail resulting from geometrical aspects within the film-screen system, that is, screen-film contact, screen thickness, total thickness of the film emulsions, whether single or doublecoated emulsions, quality of radiation used (wavelengths, etc.) and the type of screen. Inherent un-

    sharpness is independent of exposure geometry arrangements. 固有模糊度(𝑈𝑖)是由胶片 增感屏系统内由几何方面所引起的可见细节程度,即增感屏与胶片接触间隙、屏幕厚度、胶片乳胶层总厚度、单一或双乳胶层、

    所采用之射线质量(波长等)和增感屏类型等细节。固有模糊度与曝光几何布置无关。

  • FIG. 1 Variables of Radiographic Image Quality 图 1 射线照相图像质量的变数

    Radiographic Image Quality

    Radiographic Contrast 射线照相对比度 Film System Granularity 胶片系统粒度 Radiographic Definition 放射学定义

    Subject Contrast 被摄物反差度 Film Contrast 胶片对比度 • Grain size and distribution within the film

    emulsion在胶片乳化内之颗粒大小和分布

    • Processing conditions (type and activity of developer, temperature of developer, etc.)

    处理条件(显影剂类型和活度,显影液温度

    等)

    • Type of screens (that is, fluorescent, lead or none) 增感屏类型(即荧光增感屏,铅屏或

    无)

    • Radiation quality (that is, energy level, filtration, etc. 射线质量(即能量级和过滤等)

    • Exposure quanta (that is, intensity, dose, etc.)曝光量(即,强度和剂量等)

    Inherent Unsharpness 固有模糊度 Geometric Unsharpness 几何模糊

    Affected by: 受下列之影响: • Absorption differences in speci-

    men (thickness, composition, density)

    试样之吸收差异(厚度、组成和黑度)

    • Radiation wavelength射线波长 • Scattered radiation散射射线

    Affected by: 受下列之影响:

    • Type of film胶片类别 • Degree of development (type of

    developer, time, temperature and ac-

    tivity of developer, degree of agita-

    tion) 显影度(显影剂类型、时间、

    温度、显影剂活性和搅拌度)

    • Film density 胶片黑度

    • Type of screens (that is, fluores-cent, lead or none) 增感屏类型(即荧

    光增感屏,铅增感屏或无)

    Affected by: 受下列之影响:

    • Degree of screen-film contact 增感屏与胶片之接触程度

    • Total film thickness 总底厚度 • Single or double emulsion coatings

    单或双乳胶涂层

    • Radiation quality 射线质量 • Type and thickness of screens (fluo-

    rescent, lead or none) 增感屏类型和厚

    度(荧光,铅或无)

    Affected by: 受下列之影响:

    • Focal spot or source physi-cal size焦点或射源实际大小

    • Source-to-film distance射源至胶片之距离

    • Specimen-to-film distance试样到胶片的距离

    • Abruptness of thickness changes in specimen试样厚度上

    的变化性

    • Motion of specimen or radi-ation source试样或射源的移动速率 Reduced or enhanced by: 为下列因素

    所导致降低或提高:

    • Masks and diaphragms 蔽光框和光圈

    • Filters 滤镜 • Lead screens 铅增感屏 • Potter-Bucky diaphragms 巴基网

  • 14.4.2 Geometric unsharpness (𝑈𝑔) determines the degree of visible detail resultant from an “in-focus”

    exposure arrangement consisting of the source-to-film-distance, object-to-filmdistance and focal spot size. Fig. 2(a)

    illustrates these conditions. Geometric unsharpness is given by the equation: 几何模糊度(𝑈𝑔) 决定了由“对焦”

    曝光布置所得到之可见细节程度,该“对焦”曝光布置是由源到胶片距离,物项到胶片的距离和焦点尺寸

    等因子所组成的综合表现。图 2(a)举例出这些条件。几何模糊度可由下式做出:

    𝑈𝑔 = 𝐹𝑡 𝑑𝑜⁄ (1)

    where: 其中

    𝑈𝑔 = geometric unsharpness, 几何模糊度,

    F = maximum projected dimension of radiation source, 射源之最大投影尺寸

    t = distance from source side of specimen to film, and 从试样射源侧到胶片的距离

    𝑑𝑜 = source-object distance. 射源至物项的距离。

    NOTE 3—𝑑𝑜 and t must be in the same units of measure; the units of 𝑈𝑔 will be in the same units

    as F. 注 3 𝑑𝑜和 t 必须采用相同的计量单位; 𝑈𝑔的单位与 F 的单位相同。

    NOTE 4—A nomogram for the determination of 𝑈𝑔 is given in Fig. 3 (inch-pound units). Fig. 4

    represents a nomogram in metric units. 注 4 在图 3中做出𝑈𝑔列线图的确定方法。而在图 4 中对列线图以公制

    单位做出了描画。

    Example: 范例

    Given: 做出条件

    Source-object distance 射源至物项的距离 (𝑑𝑜) = 40 in.,

    Source size 射源尺寸 (F) = 500 mils 密耳, and

    Source side of specimen to film distance 试样射源侧到胶片的距离 (t) = 1.5 in.

    Draw a straight line (dashed in Fig. 3) between 500 mils on the F scale and 1.5 in. on the t scale. Note the point on intersection (P) of this line with the pivot line. Draw a straight line (solid in Fig. 3) from 40 in. on the do scale through point P and extend to the 𝑈𝑔 scale. Intersection of this line with the 𝑈𝑔 scale gives geometrical

    unsharpness in mils, which in the example is 19 mils. 在 F 标度上的 500密耳处和 t 标度上的 1.5英寸处将之连

    成一条直线(图 3中的虚线)。注意此线与枢轴线交点(P)上的点。再从点 P点到 do刻度上之 40英寸处间绘制初一直线(图 3中的实线),并延伸到𝑈𝑔刻度,此时与𝑈𝑔标度线之交叉点处的读数即代表几何模糊度,以

    mil为单位,在示例中为 19密耳。

    Inasmuch as the source size, F, is usually fixed for a given radiation source, the value of 𝑈𝑔 is es-

    sentially controlled by the simple 𝑑𝑜 𝑡⁄ ratio. 由于源尺寸(F)对给定射源通常是固定的,所以𝑈𝑔值在基本上是

    由简单的𝑑𝑜 𝑡⁄ 之比值所控制。

    Geometric unsharpness (𝑈𝑔) can have a significant effect on the quality of the radiograph; therefore

    source-to-film-distance (SFD) selection is important. The geometric unsharpness (𝑈𝑔) equation, Eq 1, is for infor-

    mation and guidance and provides a means for determining geometric unsharpness values. The amount or degree

    of unsharpness should be minimized when establishing the radiographic technique. 几何模糊度(𝑈𝑔)对 X射线胶

    片质量具有显着影响,因此线源到胶片之距离(SFD)选择是重要的。几何模糊度(𝑈𝑔)方程式(1)可作为一种

    信息和指南,并为几何模糊度值的提供了确定作法。在制定射照相技术时应当使模糊度量或程度最小化。

  • (a) (b) (c) (d)

    Geometric Unsharpness

    几何模糊度

    Radioagraphic Enlargement

    放射放大

    Radioagraphic Reduction

    放射缩小

    Radiographic Distortion

    放射失真

    𝑑𝑜 = source-to-object dis-tance

    𝑑𝑜 = source-to-object distance (image will be smaller than

    object or feature)

    𝐿𝑖 = dimension of un-distorted image

    t = object-to-film distance t = object-to-film distance 𝐿𝑑 = dimension of distorted

    image F = greatest dimension of

    source or focal stop 𝐿𝑛 = dimension of object 𝐿𝑑 𝐿𝑖 = ∆L

    𝐿𝑜 = dimension of image Percentage distortion =

    (AUL) x 100

    𝐿𝑖 𝐿𝑜 = △L = 2t x tan Ѳ/2

    Percentage enlargement:

    ∆L/∆𝐿 𝐿𝑜⁄ x 100

    FIG. 2 Effects of Object-Film Geometry

    图 2 物项与胶片几何的影响

    15. Radiographic Distortion 射线照相失真

    15.1 The radiographic image of an object or feature within an object may be larger or smaller than the object or feature itself, because the penumbra of the shadow is rarely visible in a radiograph. Therefore, the image will be larger if the object or feature is larger than the source of radiation, and smaller if object or feature is smaller than the source. The degree of reduction or enlargement will depend on the source-to-object and object-to-film distances,

    and on the relative sizes of the source and the object or feature (Fig. 2(b) and (c)). 对像或物项内特征的放射图像

    可能大于或小于对像或特征本身,因为半阴影在射线胶片中很少可见。因此,如果对像或特征大于辐射

    源,则图像亦随之放大,而如果对像或特征小于射源,则图像亦相对缩少。缩少或放大程度将取决于射源

    到物项和对像到胶片的距离,以及射源和对像或特征的相对大小[见图 2(b)和(c)]。

    15.2 The direction of the central beam of radiation should be perpendicular to the surface of the film whenever possible. The object image will be distorted if the film is not aligned perpendicular to the central beam. Different parts of the object image will be distorted different amount depending on the extent of the film to central beam off-

    set (Fig. 2(d)). 中央射线束方向应尽可能垂直于胶片表面。如果胶片没有垂直于中心光束对准,则物体图像

    将失真,对像图像不同部分将根据胶片到中心束偏移的程度而有不同的失真量(图 2(d))。

    Penumbra

    半阴影

    Umbra 阴影

    Image 图像

    Object 物项

    Source 射源 Source aperture 光圈

  • 16. Exposure Calculations or Charts 曝光计算或图表

    16.1 Development or procurement of an exposure chart or calculator is the responsibility of the individual labor-atory. 开发或采购曝光图或计算器是各单独实验室的责任。

    16.2 The essential elements of an exposure chart or calculator must relate the following: 曝光图表或计算器之基本要素须与以下内容相关:

    16.2.1 Source or machine, 射源或装置,

    16.2.2 Material type, 材料类别,

    16.2.3 Material thickness, 材料厚度,

    16.2.4 Film type (relative speed), 胶片类型(相对速度)

    16.2.5 Film density, (see Note 5), 胶片黑度(见注 5), 16.2.7

    16.2.6 Source or source to film distance, 射源或焦点至胶片的距离,

    16.2.7 Kilovoltage or isotope type, 千伏或同位素类别,

    NOTE 5—For detailed information on film density and density measurement calibration, see Practice

    E1079. 注 5 有关胶片黑度和黑度测量校准之详细信息,请参见E1079之实施细则。

    16.2.8 Screen type and thickness, 增感屏类型和厚度,

    16.2.9 Curies or milliampere/minutes, 居里或毫安/分钟,

    16.2.10 Time of exposure,曝光时间,

    16.2.11 Filter (in the primary beam), 滤纸(在主波束中),

    16.2.12 Time-temperature development for hand processing; access time for automatic processing; time-

    temperature development for dry processing, and 16.2.12 手工处理时间和温度的制定;用于自动处理时的设定

    时间;干式处理时间和温度的制定,和

    16.2.13 Processing chemistry brand name, if applicable. 处理时所用之化学品牌名称(如适用)。

    16.3 The essential elements listed in 16.2 will be accurate for isotopes of the same type, but will vary with X-ray equipment of the same kilovoltage and milliampere rating. 在 16.2中准确地列出同类同位素的基本要素,但对

    各 X射线设备即使在相同千伏和毫安等级下也会有所改变。

    16.4 Exposure charts should be developed for each X-ray machine and corrected each time a major component is replaced, such as the X-ray tube or high-voltage transformer. 宜为每台 X光机拟定曝光图,并在每次更换主要

    物项(如 X射线管或高压变压器)时进行校准。

    16.5 The exposure chart should be corrected when the processing chemicals are changed to a different manufac-turer’s brand or the time-temperature relationship of the processor may be adjusted to suit the exposure chart. The exposure chart, when using a dry processing method, should be corrected based upon the time-temperature changes

    of the processor. 当处理用化学品更换为不同制造商之品牌时应修正曝光图表,或对处理器之时间和温度间

    的关系进行调整以与曝光图相配。当采用干式处理方法时,曝光图应根据处理器的时间-温度变化进行校

    准。

  • FIG. 3 Nomogram for Determining Geometrical Unsharpness (Inch-Pound Units)

    用于确定几何模糊度之诺谟图 (英寸单位)

    Pivot Line 枢轴线 "F" Focal Spot Mils

    聚焦点尺寸 [密耳 (千

    分之一英寸 )]

    "𝑑𝑜" Distance Inches 射源至胶片之距离(𝒅𝐨)

    "t" Source Side Specimen to Film

    Distance Inches 射源侧试样至胶片

    之距离 (in.)

    "𝑈g" Geometrical Unsharp-

    ness Mils几何模糊度尺寸

    (𝑼𝐠)[密耳 (千分之一英寸)]

  • FIG. 4 Nomogram for Determining Geometrical Unsharpness (Metric Units)

    用于确定几何模糊度之诺谟图 (公制单位)

    17. Technique File 技术档案

    17.1 It is recommended that a radiographic technique log or record containing the essential elements be main-tained.建议将包含基本要素之射线照相技术日志或记录予以保存。

    17.2 The radiographic technique log or record should contain the following: 射线照相技术日志或记录宜包含以下内容:

    17.2.1 Description, photo, or sketch of the test object illustrating marker layout, source placement, and film

    location. 以图解方式说明检测物项之标记规划,射源位置和胶片位置。

    Pivot Line

    枢轴线 "t" Source Side Specimen to Film Distance Inches

    "𝑈g" Geometrical

    Unsharpness Mils "𝑑𝑜" Distance

    Inches "F" Focal Spot Mils

  • 17.2.2 Material type and thickness, 材料类别和厚度,

    17.2.3 Source to film distance, 射源至胶片之距离,

    17.2.4 Film type, 胶片类型,

    17.2.5 Film density, (see Note 5), 胶片黑度(见注 5),

    17.2.6 Screen type and thickness, 增感屏类型和厚度,

    17.2.7 Isotope or X-ray machine identification,同位素或 X光机标识符,

    17.2.8 Curie or milliampere minutes, 居里或每分钟多少毫安,

    17.2.9 IQI and shim thickness, IQI 和垫片厚度,

    17.2.10 Special masking or filters, 特殊掩模或滤镜,

    17.2.11 Collimator or field limitation device, 准直器或射场限制装置,

    17.2.12 Processing method, and 处理方法,和

    17.2.13 View or location. 观察或位置。

    17.3 The recommendations of 17.2 are not mandatory, but are essential in reducing the overall cost of radiog-raphy, and serve as a communication link between the radiographic interpreter and the radiographic operator. 17.2

    之建议并非强制性的,但在降低射线照相之总体成本上却是有其存在的必要性,并可作为射线照相术解释

    员和射线照相操作者之间的沟通桥梁。

    18. Penetrameters (Image Quality Indicators) 透度计(像质计)

    18.1 Practices E747, E801, E1025, and E1742 should be consulted for detailed information on the design, manu-facture and material grouping of IQI’s. Practice E801 addresses IQI’s for examination of electronic devices and pro-

    vides additional details for positioning IQI’s, number of IQI’s required, and so forth. 17.3 对于 IQI 之设计、制造

    和材料分组的详细信息,宜查阅 E747,E801,E1025和 E1742实施细则。E801实施细则满足了 IQI 用于电

    子设备检测时的需求,并提供了 IQI定位、IQI 所需数量等之额外细节。

    18.2 Test Methods E746 and E1735 should be consulted for detailed information regarding IQI’s which are used for determining relative image quality response of industrial film. The IQI’s can also be used for measuring the im-age quality of the radiographic system or any component of the systems equivalent penetrameter sensitivity (EPS)

    performance. 对于当 IQI 用于确定工业用胶片之相对图像质量感应度时,其详细信息应查阅 E746和 E1735

    之检测方法。 IQI 还可以用于测量射线照相系统图像质量或用于测量系统等效透度计灵敏度(EPS)性能之任

    何构成要素。

    18.2.1 An example for determining and EPS performance evaluation of several X-ray machines is as follows:

    用于确定几台 X光机 EPS性能评估结果的一种示例如下:

    18.2.1.1 Keep the film and film processing parameters constant, and take multiple image quality expo-sures with all machines being evaluated. The machines should be set for a prescribed exposure as stated in the standard and the film density equalized. By comparison of the resultant films, the relative EPS variations between

    the machines can be determined. 保持胶片和胶片处理参数恒定,并对正在评估的所有机器进行多次图像质量

    曝光。宜该按照标准所述将机器设定为所规定曝光参数,并使底黑度等量化。通过比较所得到之胶片,可

    确定几台机器间的相对 EPS变数。

    18.2.2 Exposure condition variables may also be studied using this plaque. 亦可采用薄金属板来研究曝光

    条件变数。

    18.2.3 While Test Method E746 plaque can be useful in quantifying relative radiographic image quality,

    these other applications of the plaque may be useful. E746 检测方法中在之薄金属板对量化相对射线照相图像质

    量视有效的,但薄金属板在其它应用上还是有所帮助的。

  • 19. Identification of and Location Markers on Radiographs 标识符和在射线胶片上之位置标记

    19.1 Identification of Radiographs: 射线胶片标识符:

    19.1.1 Each radiograph must be identifieded uniquely so that there is a permanent correlation between the part radiographed and the film. The type of identification and method by which identification is achieved shall be as

    agreed upon between the customer and inspector. 每一射线胶片必须有其单独的标识符,以便在受检测物项和

    胶片间具有永久的相应关联性。识别类型和方法应在客户和检查员之间达成协议。

    19.1.2 The minimum identification should at least include the following: the radiographic facility’s identifi-cation and name, the date, part number and serial number, if used, for unmistakable identification of radiographs with the specimen. The letter R should be used to designate a radiograph of a repair area, and may include − 1, − 2,

    etc., for the number of repair. 最低标识需求应至少包括以下内容:射线照相设备之标识符、名称、日期、物

    项号和序列号(如被采用时),当射线胶片上具有试样图像时应以不可能发生误解的方式予以识别。应用字

    母 R 表示返修区域之放射线胶片,且-1,-2等来表示返修次数。

    19.2 Location Markers: 位置标记:

    19.2.1 Location markers (that is, lead or high-atomic number metals or letters that are to appear as images on the radiographic) should be placed on the part being examined, whenever practical, and not on the cassette. Their exact locations should also be marked on the surface of the part being radiographed, thus permitting the area of in-terest to be located accurately on the part, and they should remain on the part during radiographic inspection. Their

    exact location may be permanently marked in accordance with the customer’s requirements. 只要可行,位置标记

    (即铅或高原子金属数位或字母所组成,以便在射线照相上显示出其图像)应定位在受检测之物项上,而非

    住志在底片暗盒上。它们的确切位置也应当标记在受检测物项之表面上,从而使需要定位之受检测区域准

    确地定位在物项上,并且在射线检测期间将其保留在物项上。其确切位置可根据客户要求进行永久性标

    记。

    19.2.2 Location markers are also used in assisting the radiographic interpreter in marking off defective areas of components, castings, or defects in weldments; also, sorting good and rejectable items when more than one item

    is radiographed on the same film. 位置标记还可辅助射线照相解释者标记出物项中、铸件中的缺陷区域或焊

    接件上的缺陷;当在同一胶片上对一个以上之物项进行射线照相时,还可对好的和可拒收之物项进行分

    类。

    19.2.3 Sufficient markers must be used to provide evidence on the radiograph that the required coverage of the object being examined has been obtained, and that overlap is evident, especially during radiography of weld-

    ments and castings. 须提供足量标记,以使在射线胶片上能证实已经获得受检测物项体所需之涵盖范围,并

    且是明显地交迭,特别是在焊接件和铸件之射线照相期间。

    19.2.4 Parts that must be identifieded permanently may have the serial numbers or section numbers, or both, stamped or written upon them with a marking pen with a special indelible ink, engraved, die stamped, or etched. In any case, the part should be marked in an area not to be removed in subsequent fabrication. If die stamps are used, caution is required to prevent breakage or future fatigue failure. The lowest stressed surface of the part should be used for this stamping. Where marking or stamping of the part is not permitted for some reason, a marked reference

    drawing or shooting sketch is recommended. 用于需永久性标识符别之物项采序列号、物项号或两者进行标

    记,其标记方式可采特殊的、不可擦除的标记笔或戳印,也可用冲压或蚀刻。在任何情况下,物项应在随

    后的制造中不被移除的区域中标记。如果采用钢印戳记时,需注意防止破损或以后的疲劳失效。钢印戳宜

    打在具有最低应力之物项表面处。如果由于某些原因而不允许对物项进行标记或冲压时,则建议采用参考

    图或拍摄草图方式做出标记。

    20. Storage of Film 胶片贮存

    20.1 Unexposed films should be stored in such a manner that they are protected from the effects of light, pres-sure, excessive heat, excessive humidity, damaging fumes or vapors, or penetrating radiation. Film manufacturers

  • should be consulted for detailed recommendations on film storage. Storage of film should be on a “first in,” “first

    out” basis. 未曝光胶片应以能避免光照、压力、过热、过湿、有害烟尘、蒸气或穿透性辐射的方式予以贮

    存。应查看胶片制造商以了解有关胶片贮存上的详细建议。胶片贮存应采用 “先进先出” 原则。

    20.2 More detailed information on film storage is provided in Guide E1254. 有关胶片贮存的更多详细信息,请参阅 E1254指南。

    21. Safelight Test 滤光灯检测

    21.1 Films should be handled under safelight conditions in accordance with the film manufacturer’s recommen-dations. ANSI PH2.22 can be used to determine the adequacy of safelight conditions in a darkroom. 胶片应在滤光

    灯条件下按照胶片制造商之建议处理。 ANSI PH2.22可用于确定暗室中滤光灯条件的充分性。

    22. Cleanliness and Film Handling 清洁和胶片处理

    22.1 Cleanliness is one of the most important requirements for good radiography. Cassettes and screens must be kept clean, not only because dirt retained may cause exposure or processing artifacts in the radiographs, but because

    such dirt may also be transferred to the loading bench, and subsequently to other film or screens.清洁度是良好射

    线照相中最重要因素之一。暗盒和增感屏必须保持清洁,不仅因为所黏附之灰尘可能导致在射线胶片曝光

    或处理过程产生伪影,且因这种污垢也可能被传送到装片台中,随后又被传送到其它胶片或增感屏上。

    22.2 The surface of the loading bench must be kept clean. Where manual processing is used cleanliness will be promoted by arranging the darkroom with processing facilities on one side and film-handling facilities on the other. The darkroom will then have a wet side and a dry side and the chance of chemical contamination of the loading

    bench will be relatively slight. 装片台表面须保持清洁。当采手工处理时,可藉由在暗室之一侧配置处理设备

    而在另一侧配置胶片处理设施来提高清洁度,如此, 暗室中的湿侧和干侧便彼此分开了,并且化学药品对

    装载台造成污染的机会也将相对更少了。

    22.3 Films should be handled only at their edges, and with dry, clean hands to avoid finger marks on film sur-faces. 仅能在胶片边缘处以干燥干净的手拿来处理,以避免在胶片表面上产生指痕。

    22.4 Sharp bending, excessive pressure, and rough handling of any kind must be avoided. 须避免尖锐的弯曲,过度加压和任何类型的粗糙处理。

    23. Film Processing, General 胶片处理,通则

    23.1 To produce a satisfactory radiograph, the care used in making the exposure must be followed by equal care in processing. The most careful radiographic techniques can be nullified by incorrect or improper darkroom proce-

    dures. 为了产生符合要求的射线胶片,曝光和处理过程须采用同样的监督措施。在小心的放射照相技术也

    可能因不正确或不适当的暗室活动而判废。

    23.2 Sections 24-26 provide general information for film processing. Detailed information on film processing is provided in Guide E999.第 24-26节提供了胶片处理的一般信息。有关胶片处理的详细信息,请参阅指南

    E999。

    24. Automatic Processing 自动处理

    24.1 Automatic Processing—The essence of the automatic processing system is control. The processor maintains the chemical solutions at the proper temperature, agitates and replenishes the solutions automatically, and transports the films mechanically at a carefully controlled speed throughout the processing cycle. Film characteristics must be compatible with processing conditions. It is, therefore, essential that the recommendations of the film, processor,

    and chemical manufacturers be followed. 自动处理 自动处理系统主要要素就是控制。处理器将化学溶液保持

  • 在合适的温度下,自动搅拌和辅助溶液,并在整个处理循环中以仔细控制的速度机械地输送胶片。胶片特

    性必须与处理条件相适应。因此,必须遵循胶片、处理器和化学品制造商的建议。

    24.2 Automatic Processing, Dry—The essence of dry automatic processing is the precise control of development time and temperature which results in reproducibility of radiographic density. Film characteristics must be compati-ble with processing conditions. It is, therefore, essential that the recommendations of the film and processor manu-

    facturers be followed. 干式自动处理 干式自动处理的精髓是精确控制显影时间和温度,从而导致射线照相黑度的重现性。胶片特性必须与处条件相适应。因此,必须遵循胶片和处理器制造商的建议。

    25. Manual Processing 手工处理

    25.1 Film and chemical manufacturers should be consulted for detailed recommendations on manual film pro-cessing. This section outlines the steps for one acceptable method of manual processing.胶片以手工处理时,可查

    看胶片和化学品制造商所建议之处理细则。在本节中概述了一种可接受的手工处理方法的步骤。

    25.2 Preparation—No more film should be processed than can be accommodated with a minimum separation of 1/2 in. (12.7 mm). Hangers are loaded and solutions stirred before starting development. 准备 胶片在处理时,胶片之间的间隔至少保持在 1/2 in. (12.7 mm),绝不可多放,将胶片装到挂片夹上并在开始显影之前搅动溶

    液。

    25.3 Start of Development—Start the timer and place the films into the developer tank. Separate to a minimum distance of 1/2 in. (12.7 mm) and agitate in two directions for about 15 s. 开始显影 启动定时器,将胶片放入显影槽。胶片与胶片间之最小间隔距离为 1/2 in. (12.7 mm),并在两个方向上来回搅拌约 15秒。

    25.4 Development—Normal development is 5 to 8 min at 68°F (20°C). Longer development time generally yields faster film speed slightly more contrast is usually used for lower speed indexand and slightly improved con-trast. The manufacturer’s recommendation should be followed in choosing a development time. When the tempera-ture is higher or lower, development time must be changed. Again, consult manufacturer recommended develop-

    ment time versus temperature charts. 显影 在 68°F (20°C)下正常显影时间为 5至 8分钟。较长的显影时间通常用于较低的速度胶片指数上并可稍微提高对比度度。在选择开发时间时应遵循制造商的建议。当温度较高

    或较低时,显影时间须相应改变。同样,请查看制造商所推荐之显影时间与温度图表。

    Other recommendations of the manufacturer to be followed are replenishment rates, renewal of solutions, and

    other specific instructions. 其它要遵循制造商建议的是辅助率、溶液的更新和其它具体说明。

    25.5 Agitation—Shake the film horizontally and vertically, ideally for a few seconds each minute during devel-opment. This will help film develop evenly. 搅拌 水平和垂直摇晃胶片,理想情况下,在显影过程中每分钟振

    动几秒钟,这将有助于胶片产生较为均匀的显影效果。

    25.6 Stop Bath or Rinse—After development is complete, the activity of developer remaining in the emulsion should be neutralized by an acid stop bath or, if this is not possible, by rinsing with vigorous agitation in clear wa-ter. Follow the film manufacturer’s recommendation of stop bath composition (or length of alternative rinse), time

    immersed, and life of bath. 停显或清洗 显影完成后,残留在乳胶中的活性显影剂应通过酸浴中和,如酸浴不可行,则在清水中强力搅动来进行清洗。按照胶片制造商的建议,停显液的成分(以水清洗时的替代时

    间),浸泡时间和停显液的有效期。

    25.7 Fixing—The films must not touch one another in the fixer. Agitate the hangers vertically for about 10 s and again at the end of the first minute, to ensure uniform and rapid fixation. Keep them in the fixer until fixation is complete (that is, at least twice the clearing time), but not more than 15 min in relatively fresh fixer. Frequent agita-

    tion will shorten the time of fixation. 定影 胶片在定影剂中不能相互接触。刚开始时先垂直抖动吊挂架约 10秒,并在第一分钟结束时再次抖动,以确保均匀又快速地定影。将他们保持在定影剂中,直到定影完成

    (即,至少为清洗时间的两倍),但在新制定影剂中不可停留超过 15分钟。频繁的抖动可缩短定影时间。

    25.8 Fixer Neutralizing—The use of a hypo eliminator or fixer neutralizer between fixation and washing may be

  • advantageous. These materials permit a reduction of both time and amount of water necessary for adequate wash-ing. The recommendations of the manufacturers as to preparation, use, and useful life of the baths should be ob-

    served rigorously.定影剂中和 在定影和清洗之间采用"海波"净化剂或定影剂中和剂可能是有利的。这些材料

    可降低充分清洗所需的时间和水量。应严格遵守制造商所建议之准备措施,采用和采用有效期。

    25.9 Washing—The washing efficiency is a function of wash water, its temperature, and flow, and the film being washed. Generally, washing is very slow below 60°F (16°C). When washing at temperatures above 85°F (30°C), care should be exercised not to leave films in the water too long. The films should be washed in batches without contamination from new film brought over from the fixer. If pressed for capacity, as more films are put in the wash,

    partially washed film should be moved in the direction of the inlet. 清洗 清洗效率是清洗水温度、流速所要清洗之胶片所做出的综合表现。通常,在低于 60°F (16°C)下清洗是非常缓慢的,但,当在高于 85°F (30°C)温度

    下进行清洗时,应注意不要让胶片在水中停留太久。胶片应分批行清洗,以不让新胶片因所带来的定影剂

    而造成污染。如容量有限,随着更多的胶片被放入清洗槽,应把部分已清洗好之胶片沿着入口方向移动。

    25.9.1 The cascade method of washing uses less water and gives better washing for the same length of time. Divide the wash tank into two sections (may be two tanks). Put the films from the fixer in the outlet section. After

    partial washing, move the batch of film to the inlet section. This completes the wash in fresh water. 布帘式清洗法

    可采用较少的水,并在相同的时间范围内可提供更好的清洗效果。将清洗槽分为两个部分(可能是两个

    筒),并将胶片固定架放在出口处,并把部分已清洗好之胶片移至出口处,如此便完成在淡水中的清洗作业

    了。

    25.9.2 For specific washing recommendations, consult the film manufacturer. 有关特定清洗建议,请查看

    胶片制造商所提供之信息。

    25.10 Wetting Agent—Dip the film for approximately 30 s in a wetting agent. This makes water drain evenly off film which facilitates quick, even drying.润湿剂 将胶片浸泡在润湿剂中约 30秒,并使水均匀地排出胶片,如此将有助于获得既快速又均匀的干燥效果。

    25.10.1 Residual Fixer Concentrations— If the fixing chemicals are not removed adequately from the film, they will in time cause staining or fading of the developed image. Residual fixer concentrations permissible depend upon whether the films are to be kept for commercial purposes (3 to 10 years) or must be of archival quality. Ar-chival quality processing is desirable for all radiographs whenever average relative humidity and temperature are likely to be excessive, as is the case in tropical and subtropical climates. The method of determining residual fixer

    concentrations may be ascertained by reference to ANSI PH4.8, PH1.28, and PH1.41. 残留定影液浓度 如定影化学品没有充分从胶片中除去,将及时引起显影图像的污染或褪色。残留定影剂之允许浓度取决于胶片的保

    存要求是,即是否达到商业保存目的(3至 10年)还是须具有存盘质量。当平均相对湿度和温度可能过高

    时,所有射线胶片都需子存盘质量处理,如在热带和亚热带气候情况下。至于如何确定残留固定剂浓度之

    方法可参考 ANSI PH4.8、PH1.28和 PH1.41。

    25.10.2 Drying—Drying is a function of (1) film (base and emulsion); (2) processing (hardness of emulsion after washing, use of wetting agent); and (3) drying air (temperature, humidity, flow). Manual drying can vary from still air drying at ambient temperature to as high as 140°F (60°C) with air circulated by a fan. Film manufacturers should again be contacted for recommended drying conditions. Take precaution to tighten film on hangers, so that it cannot touch in the dryer. Too hot a drying temperature at low humidity can result in uneven drying and should be

    avoided. 干燥 干燥是(1)胶片(片基和乳胶)、(2)处理(清洗后乳胶的残留量,由于采用润湿剂),和(3)干燥空

    气(温度、湿度和流速)所做出的综合表现。 手工干燥可从环境温度下的静止空气干燥转变到空气温度高达

    40°F (60°C)的风扇循环。 干燥条件亦应参照胶片制造商所推荐的要求。应注意在吊挂架上需绷紧胶片,

    使其不会接触到烘干机。低湿度下过高的干燥温度会导致干燥不均匀,是以应避免。

    26. Testing Developer 显影液检测

    26.1 It is desirable to monitor the activity of the radiographic developing solution. This can be done by periodic development of film strips exposed under carefully controlled conditions, to a graded series of radiation intensities

    or time, or by using a commercially available strip carefully controlled for film speed and latent image fading. 有必

  • 要监测射线照相显影液活性。为此,可定期在严格控管条件下逐渐递增射线曝光强度或时间来进行胶片的

    显影,采用严格控管用的市售胶片进行速度和潜像褪色检测。

    27. Viewing Radiographs 观察射线胶片

    27.1 Guide E1390 provides detailed information on requirements for illuminators. The following sections pro-vide general information to be considered for use of illuminators. 有观片灯要求可参照指南 E1390所提供之详细

    信息。采用观片灯所要考虑的一般信息在下列段落中做出。

    27.2 Transmission—The illuminator must provide light of an intensity that will illuminate the average density areas of the radiographs without glare and it must diffuse the light evenly over the viewing area. Commercial fluo-rescent illuminators are satisfactory for radiographs of moderate density; however, high light intensity illuminators are available for densities up to 3.5 or 4.0. Masks should be available to exclude any extraneous light from the eyes

    of the viewer when viewing radiographs smaller than the viewing port or to cover low-density areas. 透射 - 观片灯

    必须提供足够的光照强度,以不产生眩光方式照射射线胶片之平均黑度区域,并且必须均匀地漫射在观察

    区域上。对于中等黑度之射线胶片可采用商业用日光灯,其校果就以达到符合要求的光照程度;然而,对

    于高达 3.5或 4.0黑度之胶片则须采用高强观片灯。当观察小于观察口之射线胶片或覆盖低黑度区域时,遮

    光装置应可排除观察者视线以外的无关光线。

    27.3 Reflection—Radiographs on a translucent or opaque backing may be viewed by reflected light. It is recom-mended that the radiograph be viewed under diffuse lighting conditions to prevent excess glare. Optical magnifica-

    tion can be used in certain instances to enhance the interpretation of the image. 2 反射光 放在半透明或不透明背

    景上之射线胶片可通过反射光进行观察。建议在漫射光照条件下观察射线胶片,以防止过度眩光。在某些

    情况下可采用光学放大以增强图像解释。28. 28.1

    28. Viewing Room 观片室

    28.1 Subdued lighting, rather than total darkness, is preferable in the viewing room. The brightness of the sur-roundings should be about the same as the area of interest in the radiograph. Room illumination must be so arranged

    that there are no reflections from the surface of the film under examination. 在观片室中,优选柔和的照明,而不

    是完全的黑暗。周围亮度应与射线胶片中受检测区域大致相同。室内照明之布置,须使受检查胶片表面上

    不会产生反射光。

    29. Storage of Processed Radiographs 已处理好之射线胶片贮存

    29.1 Guide E1254 provides detailed information on controls and maintenance for storage of radiographs and unexposed film. The following sections provide general information for storage of radiographs. 指南 E1254提供了

    有关存放射线胶片和未曝光胶片之管控和维护的详细信息。以下段落提供了贮存射线胶片的一般信息。

    29.2 Envelopes having an edge seam, rather than a center seam, and joined with a nonhygroscopic adhesive, are preferred, since occasional staining and fading of the image is caused by certain adhesives used in the manufacture

    of envelopes (see ANSI PH1.53). 具有非吸湿性粘着剂之边缘接缝而非中心接缝的信封带是优选的,因制造

    信封带之某些粘着剂成分偶尔会引起图像的污染和褪色(参见 ANSI PH1.53)。

    30. Records 记录

    30.1 It is recommended that an inspection log (a log may consist of a card file, punched card system, a book, or other record) constituting a record of each job performed, be maintained. This record should comprise, initially, a job number (which should appear also on the films), the identification of the parts, material or area radiographed, the date the films are exposed, and a complete record of the radiographic procedure, in sufficient detail so that any radiographic techniques may be duplicated readily. If calibration data, or other records such as card files or proce-

  • dures, are used to determine the procedure, the log need refer only to the appropriate data or other record. Subse-quently, the interpreter’s findings and disposition (acceptance or rejection), if any, and his initials, should also be

    entered for each job. 建议保留构成每一作业所记录之检测日志(日志可以是卡片,打卡系统,笔记本或其他

    记录所组成)。这个记录之开头应包括射线照相作业工作号(它也应出现在胶片上)、物项标识符、射线照相

    材料或区域、胶片曝光日期以及射线照相规程的完整记录以使任何射线照相技术可容易地重复。如果采用

    校准数位或其他记录(例如卡片或过程)来确定过程,则日志仅需要参考适当的数位或其他记录即可。随

    后,还应为解释人员输入每一作业中所发现之缺陷和处置(接受或拒绝)(如果有的话)以及其签名(可为其姓

    名之首字母缩写)。

    punched card

    31. Reports 报告

    31.1 When written reports of radiographic examinations are required, they should include the following, plus such other items as may be agreed upon: 当需要有放射照相检测之书面报告时,应包括以下内容,以及其他所

    商定之项目:

    31.1.1 Identification of parts, material, or area. 物项、材料或区域的标识符。

    31.1.2 Radiographic job number. 射线照相作业工号。

    31.1.3 Findings and disposition, if any. This information can be obtained directly from the log. 所发现之缺

    陷和处置(如果有)。此信息可以直接从日志中获得。

    32. Identification of Completed Work 完成作业之标识符

    32.1 Whenever radiography is an inspective (rather than investigative) operation whereby material is accepted or rejected, all parts and material that have been accepted should be marked permanently, if possible, with a charac-teristic identifying symbol which will indicate to subsequent or final examiners the fact of radiographic acceptance.

    每当射线照相当作是一种对材料被接受或拒绝检测作业(而不是系统本身之校准)时,所有被接受的物项和

    材料应尽可能用一种特征识别符号来作为永久标记,使下到工序或最终解释人员能辨别出在实质上已被接

    受之射线检测。

    32.2 Whenever possible, the completed radiographs should be kept on file for reference. The custody of radio-graphs and the length of time they are preserved should be agreed upon between the contracting parties.如有可能,

  • 应将完整的射线胶片保存备查。射线胶片之保管以及保存期限应由缔约双方商定。

    33. Keywords 关键词

    33.1 exposure calculations; film system; gamma-ray; image quality indicator (IQI); radiograph; radiographic examination; radiographic quality level; technique file; X-ray 曝光计算;胶片系统;伽马射线;像质计(IQI);

    射线照相射线检测;射线照相质量水平;技术文件; 射线照相

    APPENDIX 附录 (Nonmandatory Information 非强制性信息)

    X1. USE OF FLUORESCENT SCREENS 荧光增感屏的采用

    X1.1 Description—Fluorescent intensifying screens have a cardboard or plastic support coated with a uniform layer of inorganic phosphor (crystalline substance). The support and phosphor are held together by a radiotranspar-ent binding material. Fluorescent screens derive their name from the fact that their phosphor crystals “fluoresce” (emit visible light) when struck by X or gamma radiation. Some phosphors like calcium tungstate (CaWO4) give off

    blue light while others known as rare earth emit light green. 描述 荧光增感屏具有有无机磷光体涂覆(结晶物质)

    的均匀层的纸板或塑料基板。基板和磷光体藉由放射性可透过之粘着剂粘合在一起。荧光增感屏鉴于荧光

    晶体在被 X或γ射线照射时会“发出荧光”(发射可见光)的事实而以此名称称之。一些磷酸盐如钨酸钙

    (CaWO4)会发出蓝光,而其他则被称为发浅绿色光稀土

    X1.2 Purpose and Film Types—Fluorescent screen exposures are usually much shorter than those made without screens or with lead intensifying screens, because radiographic films generally are more responsive to visible light

    than to direct X-radiation, gamma radiation, and electrons. 目的和胶片类型 荧光增感屏曝光通常比不用增感屏

    或用铅屏的曝光时间短得多,因为射线照相胶片通常比可直接对 X射线,γ辐射和电子更灵敏。

    X1.2.1 Films fall into one of two categories: non-screen type film having moderate light response, and screen type film specifically sensitized to have a very high blue or green light response. Fluorescent screens can reduce

    conventional exposures by as much as 150 times, depending on film type. 胶片属于两种类型之一:具有中度光

    感应度(灵敏度)的非增感型胶片和特别敏化以具有非常高的蓝色或绿色光感应的增感型胶片。根据胶片类

    型,荧光增感屏可以将惯用曝光时间减少 150倍之多。

    X1.3 Image Quality and Use—The image quality associated with fluorescent screen exposures is a function of sharpness, mottle, and contrast. Screen sharpness depends on phosphor crystal size, thickness of the crystal layer, and the reflective base coating. Each crystal emits light relative to its size and in all directions thus producing a rela-tive degree of image unsharpness. To minimize this unsharpness, screen to film contact should be as intimate as possible. Mottle adversely affects image quality in two ways. First, a “quantum” mottle is dependent upon the amount of X or gamma radiation actually absorbed by the fluorescent screen, that is, faster screen/film systems lead to greater mottle and poorer image quality. A“ structural” mottle, which is a function of crystal size, crystal uni-formity, and layer thickness, is minimized by using screens having small, evenly spaced crystals in a thin crystalline layer. Fluorescent screens are highly sensitive to longer wavelength scattered radiation. Consequently, to maximize contrast when this non-image forming radiation is excessive, fluorometallic intensifying screens or fluorescent screens backed by lead screens of appropriate thickness are recommended. Screen technology has seen significant advances in recent years, and today’s fluorescent screens have smaller crystal size, more uniform crystal packing, and reduced phosphor thickness. This translates into greater screen/film speed with reduced unsharpness and mottle . These improvements can represent some meaningful benefits for industrial radiography, as indicated by the three

    examples as follows: 图像质量和采用 与荧光增感屏曝光相关的图像质量是清晰度、灵敏度和对比度的综合

    表现。增感屏灵敏度取决于磷光体晶体尺寸、晶体层厚度和反射性基底涂层。每个晶体像个方向发出与其

    尺寸成正比的光线,从而产生相对程度不一的图像模糊度,为使这种模糊度最小化,增感屏与胶片应尽可

  • 能的紧密接触。清晰度以两种方式对图像质量造成不利地影响。首先是取决于荧光增感屏吸收X或γ射线

    实际量的“量子” 斑点,即,更快的增感屏/胶片系统将导致更大的斑点和更差的图像质量。首先是取决于

    荧光增感屏吸收 X或γ射线实际量的“量子” 斑点,即,更快的增感屏/胶片系统将导致更大的斑点和更

    差的图像质量。“结构”斑点是晶体尺寸、晶体均匀性和层厚度所做出的综合表现,为使“结构”斑点最

    小化可藉由在薄结晶层中采用具有小的、均匀间隔晶体的增感屏。荧光增感屏对较长波长的散射射线具有

    较高的敏感度。因此,对于非成像射线过量时使对比度最大化,推荐采用荧光金属增感屏或具有适当厚度

    之铅增感屏做衬垫的荧光增感屏。增感屏技术近年来已经取得了显着的进步,并且现今的荧光增感屏具有

    更小的晶体尺寸、更均匀的晶体覆层和磷光体厚度更薄。此技术提升为增感屏/胶片提供了更快的速率,减

    少模糊度和斑点。这些改进可为工业用射线照相提供了一些有意义的好处,如以下三个例子所示:

    X1.3.1 Reduced Exposure (Increased Productivity)—There are instances when prohibitively long exposure times make conventional radiography impractical. An example is the inspection of thick, high atomic number mate-rials with low curie isotopes. Depending on many variables, exposure time may be reduced by factors ranging from

    2× to 105× when the appropriate fluorescent screen/film combination is used. 降低曝光时间(提高生产力) - 长的

    曝光时间对惯用射线成像是不切实际的,其中一个例子对具有高原子序数和低居里同位素之厚材料所进行

    检测,根据多数变数,当采用适当的荧光增感屏/胶片组合时,曝光时间可从 2x低至 105x

    X1.3.2 Improved Safety Conditions (Field Sites)—Because fluorescent screens provide reduced exposure, the length of time that non-radiation workers must evacuate a radiographic inspection site can be reduced signifi-

    cantly. 改�