214
It d ti t A Pl Introduction t o Aspen Plus Short Courses on Computer Applications for ChE Students Speaker: JianKai Cheng(程建凱) [email protected] PSE Laboratory Department of Chemical Engineering Department of Chemical Engineering Nation Taiwan University

Aspen Plus

  • Upload
    li-tin

  • View
    115

  • Download
    6

Embed Size (px)

Citation preview

Page 1: Aspen Plus

I t d ti t A PlIntroduction to Aspen PlusShort Courses on Computer Applications for ChE Students

Speaker: JianKai Cheng (程建凱)p g (程建凱)[email protected]

PSE LaboratoryDepartment of Chemical EngineeringDepartment of Chemical Engineering

Nation Taiwan University

Page 2: Aspen Plus

What is Aspen PlusWhat is Aspen PlusWhat is Aspen PlusWhat is Aspen Plus

• Aspen Plus is a market‐leading process modeling tool for conceptual design, optimization, and performance monitoring for the chemical, polymer, specialty chemical, metals and minerals, and coal power industries.

2Ref: http://www.aspentech.com/products/aspen-plus.cfm

Page 3: Aspen Plus

What Aspen Plus providesWhat Aspen Plus providesWhat Aspen Plus providesWhat Aspen Plus provides

• Physical Property Models– World’s largest database of pure component and phase equilibrium 

data for conventional chemicals electrolytes solids and polymersdata for conventional chemicals, electrolytes, solids, and polymers– Regularly updated with data from U. S. National Institute of Standards 

and Technology (NIST)

• Comprehensive Library of Unit Operation Models– Addresses a wide range of solid, liquid, and gas processing equipment

d d l d l f f d– Extends steady‐state simulation to dynamic simulation for safety and controllability studies, sizing relief valves, and optimizing transition, startup, and shutdown policies

– Enables you build your own libraries using Aspen Custom Modeler  or programming languages (User‐defined models)

Ref: Aspen Plus® Product Brochure3

Page 4: Aspen Plus

More DetailedMore DetailedMore DetailedMore Detailed

• Properties analysis– Properties of pure component and mixtures (Enthalpy, density, viscosity, heat capacity,…etc)

– Phase equilibrium (VLE, VLLE, azeotrope calculation…etc)– Parameters estimation for properties models (UNIFAC method for binary parameters, Joback method for boiling points etc)points…etc)

– Data regression from experimental deta

P i l ti• Process simulation– pump, compressor, valve, tank, heat exchanger, CSTR, PFR, di till ti l t ti l b b filtdistillation column, extraction column, absorber, filter, crystallizer…etc 4

Page 5: Aspen Plus

What course Aspen Plus What course Aspen Plus can be employed forcan be employed for

• MASS AND ENERGY BALANCES• PHYSICAL CHEMISTRY• CHEMICAL ENGINEERING THERMODYNAMICS • CHEMICAL REACTION ENGINEERING• CHEMICAL REACTION ENGINEERING• UNIT OPERATIONS• PROCESS DESIGN• PROCESS CONTROL

5

Page 6: Aspen Plus

Lesson ObjectivesLesson ObjectivesLesson ObjectivesLesson Objectives

• Familiar with the interface of Aspen Plus• Learn how to use properties analysis• Learn how to setup a basic process simulation

6

Page 7: Aspen Plus

Problem Formulation 1: Calculation Problem Formulation 1: Calculation the mixing properties of two stream the mixing properties of two stream 

1 2 3 4Mole Flow kmol/hr

WATER 10 0 ? ?BUOH 0 9 ? ?BUAC 0 6 ? ?

Total Flow kmol/hr 10 15 ? ?C 0 80 ? ?

Mass Balance

E B lTemperature C 50 80 ? ?Pressure bar 1 1 1 10

Enthalpy kcal/mol ? ? ? ?E t l/ l K ? ? ? ?

Energy BalanceEnthalpyEntropy…

Entropy cal/mol-K ? ? ? ?Density kmol/cum ? ? ? ?

7

Page 8: Aspen Plus

Problem Formulation 2: Problem Formulation 2: Flash SeparationFlash Separation

120T

115

T-x T-y

Saturated Feed

T=105 CP=1atm

105

110

T (o C

)

P=1atmF=100 kmol/hrzwater=0.5 0.0 0.2 0.4 0.6 0.8 1.0

100

105

waterzHAc=0.5

What are flowrates and compositions of the two outlets?

xWater and yWater

What are flowrates and compositions of the two outlets?

Page 9: Aspen Plus

Problem Formulation 3: Dehydration of Problem Formulation 3: Dehydration of Acetic Acid by Distillation Column Acetic Acid by Distillation Column 

(Optional)(Optional)

1 0

( p )( p )

0.8

1.0

Reflux

0.4

0.6

y Wat

er

ratio ?

0 0

0.2Duty ?

0.0 0.2 0.4 0.6 0.8 1.00.0

xWater

Page 10: Aspen Plus

OutlineOutlineOutlineOutline

• Startup in Aspen Plus (Basic Input) (45 min)– User Interface– Basic Input: Setup, Components, Properties.

• Properties Analysis (1 hour)– Pure Component– Mixtures (phase equilibrium)

• Running Simulation (1 hour)– Blocks (Unit Operations)– Streams (flow streams)– Results

10

Page 11: Aspen Plus

Introduction to Aspen Plus – Part 1Startup in Aspen Plus

11

Page 12: Aspen Plus

Start with Aspen PlusStart with Aspen PlusStart with Aspen PlusStart with Aspen Plus

A Pl U I t fAspen Plus User Interface

12

Page 13: Aspen Plus

Aspen Plus StartupAspen Plus StartupAspen Plus StartupAspen Plus Startup

13

Page 14: Aspen Plus

Interface of Aspen PlusInterface of Aspen PlusInterface of Aspen PlusInterface of Aspen Plus

Process Flowsheet WindowsProcess Flowsheet Windows

Model Library (View| Model Library )Model Library (View| Model Library )y ( | y )

Stream

y ( | y )

Status message14

Page 15: Aspen Plus

More InformationMore InformationMore InformationMore Information

Help for Commands for Controlling Simulations 15

Page 16: Aspen Plus

Data BrowserData BrowserData BrowserData Browser

• The Data Browser is a sheet and form viewer with a hierarchical tree view of the available simulation input, results, and objects that have been defined

16

Page 17: Aspen Plus

Status IndicatorsStatus IndicatorsStatus IndicatorsStatus Indicators

17

Page 18: Aspen Plus

Basic InputBasic InputBasic InputBasic Input

• The minimum required inputs to run a simulation are:– Setup– Components Property Analysis

– Properties– Streams

Process Simulation– Blocks

Process Simulation

18

Page 19: Aspen Plus

SetupSetup –– SpecificationSpecificationSetup  Setup  –– SpecificationSpecificationRun TypeRun Type

Input mode

19

Page 20: Aspen Plus

SetupSetup –– Run TypeRun TypeSetup  Setup  –– Run TypeRun TypeRun Type Description Use to

A t d l d t A l d t h d t t tAssay Data Analysis A standalone assay data analysis/pseudocomponents generation run

Analyze assay data when you do not want to perform a flowsheet simulation in the same run. 

D t R iA standalone data regression run. Can contain 

t t t ti ti d t l i

Fit physical property model parameters required by Aspen Plus to measured pure component, VLE LLE d th i t d t A PlData Regression property constant estimation and property analysis 

calculations.VLE, LLE and other mixture data. Aspen Plus cannot perform data regression in a Flowsheet run. Prepare a property package for use with Aspen C M d l i h hi d i l

Properties Plus A Properties Plus setup runCustom Modeler, with third party commercial engineering programs, or with your company's in house programs. You must be licensed to use Properties Plus.P f l i b i bl

Property AnalysisA standalone property analysis run. Can contain property constant estimation and assay data analysis calculations.

Perform property analysis by generating tables of physical property values when you do not want to perform a flowsheet simulation in the same runE i h d

Property Estimation A standalone property constant estimation runEstimate property parameters when you do not want to perform a flowsheet simulation in the same run. 

A Flowsheet run (including sensitivity studies and 

Flowsheet

( g yoptimization). also include the following calculations: Property estimation, Assay data analysis and Property analysis

Perform process simulations

20

Page 21: Aspen Plus

ComponentsComponents –– SpecificationSpecificationComponents  Components  –– SpecificationSpecification

I t tInput componentswith Component name or Formula

21

Page 22: Aspen Plus

Input componentsInput componentsInput componentsInput components

Remark: If available, are

22

Page 23: Aspen Plus

SpecificationSpecificationSpecificationSpecification

To do this Click this buttonFind components in the databanks FindDefine a custom component that is not in a databank

User Defined

Generate electrolyte components and reactions from components you entered

Elec Wizard

Reorder the components you have specified

Reorder

Review databank data for components you have specified (Retrieved physical property parameters from databanks )

Review

property parameters from databanks.)

23

Page 24: Aspen Plus

Find ComponentsFind ComponentsFind ComponentsFind Components

Click “Find”

24

Page 25: Aspen Plus

Find Components (cont’d)Find Components (cont’d)Find Components (cont d)Find Components (cont d)Input Component name or Formula or CAS numberp p

25

Page 26: Aspen Plus

NIST ChemistryNIST Chemistry WebBookWebBookNIST Chemistry NIST Chemistry WebBookWebBook

26

Page 27: Aspen Plus

PropertiesPropertiesPropertiesProperties

Process type(narrow the number ofProcess type(narrow the number ofmethods available)

Base method: IDEAL NRTL UNIQAC UNIFACBase method: IDEAL, NRTL, UNIQAC, UNIFAC…

27

Page 28: Aspen Plus

Property Method SelectionProperty Method Selection –– AssistantAssistantProperty Method Selection  Property Method Selection  –– AssistantAssistant

Interactive help in choosing a property method

28

Page 29: Aspen Plus

Assistant WizardAssistant WizardAssistant WizardAssistant Wizard

Specify Component typeChemical Systems

Is the system at high pressure?(NO)

Two liquid phases

29

Page 30: Aspen Plus

30Reference: http://www.et.byu.edu/groups/uolab/files/aspentech/

Page 31: Aspen Plus

Thermodynamic ModelThermodynamic Model –– NRTLNRTLThermodynamic Model Thermodynamic Model –– NRTLNRTL

Vapor EOS

NRTL Liquid gammaLiquid enthalpyLiquid volumeLiquid volume

31

Page 32: Aspen Plus

Modify Property ModelModify Property ModelModify Property ModelModify Property Model

Check “Modify Property Model”y p y

Specify New Method Namep y

32

Page 33: Aspen Plus

NRTLNRTL –– Binary ParametersBinary ParametersNRTL NRTL –– Binary ParametersBinary Parameters

Cli k “NRTL” d th b ilt i bi tClick “NRTL” and then built-in binary parameters appear automatically if available.

33

Page 34: Aspen Plus

Access Properties Models and Access Properties Models and ParametersParameters

Review Databank Data

34

Page 35: Aspen Plus

Review Databank DataReview Databank DataReview Databank DataReview Databank DataIncluding:Ideal gas heat of formation at 298.15 KgIdeal gas Gibbs free energy of formation at 298.15 KHeat of vaporization at TBNormal boiling pointStandard liquid volume at 60°FStandard liquid volume at 60 F….

Description of each parameter35

Page 36: Aspen Plus

Pure Component Databank ParametersPure Component Databank ParametersPure Component Databank ParametersPure Component Databank Parameters

Help for Pure Component Databank Parameters 36

Page 37: Aspen Plus

Pure Component Pure Component TemperatureTemperature‐‐Dependent PropertiesDependent Properties

CPIGDP‐1 ideal gas heat capacity

CPSDIP‐1 Solid heat capacity

DNLDIP‐1 Liquid density

DHVLDP‐1 Heat of vaporization 

PLXANT 1 Extended Antoine EquationPLXANT‐1 Extended Antoine Equation

MULDIP Liquid viscosity

KLDIP Liquid thermal conductivityq y

SIGDIP Liquid surface tension

UFGRP UNIFAC functional group

37

Page 38: Aspen Plus

Example: PLXANTExample: PLXANT‐‐1 1 (Extended Antoine Equation)(Extended Antoine Equation)

Corresponding Model

?

Click “↖?” and then click where you don’t know

?

38

Page 39: Aspen Plus

Example: CPIGDPExample: CPIGDP‐‐1 1 (Ideal Gas Heat Capacity Equation)(Ideal Gas Heat Capacity Equation)

Corresponding Model

??

39

Page 40: Aspen Plus

SummarySummarySummarySummary

So far, we have finished the basic settings including setup, components, and properties.This is enough to perform properties

l ianalysis.

40

Page 41: Aspen Plus

File Formats in Aspen PlusFile Formats in Aspen PlusFile Formats in Aspen PlusFile Formats in Aspen Plus

File Type Extension Format Description

Document *.apw Binary File containing simulation input and results andi t di t i f tiintermediate convergence information

Backup *.bkp ASCII Archive file containing simulation input andresults

History *.his Text Detailed calculation history and diagnosticmessages

Problem * appdf Binary File containing arrays and intermediate

41

Problem Description

.appdf Binary File containing arrays and intermediateconvergence information used in the simulationcalculations

Page 42: Aspen Plus

File Type CharacteristicsFile Type CharacteristicsFile Type CharacteristicsFile Type Characteristicsf l• Binary files

– Operating system and version specific– Not readable not printableNot readable, not printable

• ASCII files– Transferable between operating systems– Upwardly compatible– Contain no control characters, “readable”

N i d d b i d– Not intended to be printed• Text files

– Transferable between operating systemsTransferable between operating systems– Upwardly compatible– Readable, can be edited– Intended to be printed

42

Page 43: Aspen Plus

Introduction to Aspen Plus – Part 2Properties Analysis in Aspen Plus

43

Page 44: Aspen Plus

Overview of Property AnalysisOverview of Property AnalysisOverview of Property AnalysisOverview of Property AnalysisUse this form To generateUse this form To generate

Pure Tables and plots of pure component properties as a function of temperature and pressure

Binary Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue Residue curve maps

Ternary maps showing phase envelope tie lines and azeotropes of ternaryTernary Ternary maps showing phase envelope, tie lines, and azeotropes of ternary systems

Azeotrope This feature locates all the azeotropes that exist among a specified set of componentscomponents. 

Ternary MapsTernary diagrams in Aspen Distillation Synthesis feature: Azeotropes, Distillation boundary, Residue curves or distillation curves, Isovolatility curves, Ti li V B ili iTie lines, Vapor curve, Boiling point

Generic

Tables and plots of properties of either multi‐phase mixtures (for example, VLE, VLLE, LLE) resulting from flash calculations, or single‐phase mixtures 

(Generic without flash calculations. Properties analysis of multi‐components  (more than three) is  also included.

44

Page 45: Aspen Plus

RemindingRemindingRemindingReminding

• When you start properties analysis, you MUST specify components , properties model, and p y p p pcorresponding model parameters. (Refer to Part I)Part I)

45

Page 46: Aspen Plus

Properties AnalysisProperties Analysis –– Pure ComponentPure ComponentProperties Analysis Properties Analysis –– Pure Component Pure Component Use this form To generate

Pure Tables and plots of pure component properties as a function of temperature and pressure

Binary Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue Residue curve maps

Ternary Ternary maps showing phase envelope, tie lines, and azeotropes of ternary systemsy systems

Azeotrope This feature locates all the azeotropes that exist among a specified set of components. 

Ternary MapsTernary diagrams in Aspen Distillation Synthesis feature: Azeotropes, Distillation boundary, Residue curves or distillation curves, Isovolatility curves, Tie lines, Vapor curve, Boiling point

Generic

Tables and plots of properties of either multi‐phase mixtures (for example, VLE, VLLE, LLE) resulting from flash calculations, or single‐phase mixtures without flash calculations. Properties analysis of multi‐components  (more than three) is  also included.

46

Page 47: Aspen Plus

Properties AnalysisProperties Analysis –– Pure ComponentPure ComponentProperties Analysis Properties Analysis –– Pure Component Pure Component 

47

Page 48: Aspen Plus

Available PropertiesAvailable PropertiesAvailable PropertiesAvailable PropertiesProperty (thermodynamic) Property (transport)

Availability Free energy Thermal conductivityConstant pressureConstant pressure heat capacity Enthalpy Surface tension

Heat capacity ratio Fugacity coefficient ViscosityConstant volume heat Fugacity coefficientConstant volume heat 

capacityFugacity coefficient pressure correction

Free energy departure Vapor pressure Free energy departure pressure correction Density

Enthalpy departure EntropyEnthalpy departure pressure correction Volume

Enthalpy of  Sonic velocitypyvaporization  Sonic velocity

Entropy departure 48

Page 49: Aspen Plus

Example1: CP (Heat Capacity)Example1: CP (Heat Capacity)Example1: CP (Heat Capacity)Example1: CP (Heat Capacity)

1. Select property (CP)

4. Specify range of temperature

2. Select phase

p y g p

5 S if5. Specify pressureAdd “N-butyl-acetate”

3. Select component 6. Select property method

7. click Go to generate the results49

Page 50: Aspen Plus

Example1: Calculation Results of CPExample1: Calculation Results of CPExample1: Calculation Results of CPExample1: Calculation Results of CP

Data results 50

Page 51: Aspen Plus

Example2: H (Enthalpy)Example2: H (Enthalpy)Example2: H (Enthalpy)Example2: H (Enthalpy)

1. Select property (H)4. Specify range of temperature

2. Select phase

5. Specify pressure

3. Select component6 S l t t th d6. Select property method

7. click Go to generate the results51

Page 52: Aspen Plus

Example: Calculation Results of HExample: Calculation Results of HExample: Calculation Results of HExample: Calculation Results of H

Data results

52

Page 53: Aspen Plus

Properties AnalysisProperties Analysis –– Binary ComponentsBinary ComponentsProperties Analysis Properties Analysis –– Binary ComponentsBinary ComponentsUse this form To generate

Pure Tables and plots of pure component properties as a function of temperature and pressure

Binary Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue Residue curve maps

Ternary Ternary maps showing phase envelope, tie lines, and azeotropes of ternary systemsy systems

Azeotrope This feature locates all the azeotropes that exist among a specified set of components. 

Ternary MapsTernary diagrams in Aspen Distillation Synthesis feature: Azeotropes, Distillation boundary, Residue curves or distillation curves, Isovolatility curves, Tie lines, Vapor curve, Boiling point

Generic

Tables and plots of properties of either multi‐phase mixtures (for example, VLE, VLLE, LLE) resulting from flash calculations, or single‐phase mixtures without flash calculations. Properties analysis of multi‐components  (more than three) is  also included.

53

Page 54: Aspen Plus

Properties AnalysisProperties Analysis –– Binary ComponentsBinary ComponentsProperties Analysis Properties Analysis –– Binary ComponentsBinary Components

Page 55: Aspen Plus

Binary Component Properties AnalysisBinary Component Properties AnalysisBinary Component Properties AnalysisBinary Component Properties Analysis

Use this Analysis type To generate

Txy Temperature‐compositions diagram at constant pressure

Pxy Pressure‐compositions diagram at Pxy constant temperatureGibbs energy of mixing diagram as a function of liquid compositions. The A Ph i l P S hiGibbs energy of mixing Aspen Physical Property System uses this diagram to determine whether the binary system will form two liquid phases at a given temperature and pressureat a given temperature and pressure.

Page 56: Aspen Plus

Example: TExample: T XYXYExample: TExample: T‐‐XYXY1. Select analysis type (Txy) 2. Select phase (VLE, VLLE)y yp ( y)

2. Select two component 5. Specify pressure

3. Select compositions basis

6 Select property method4. Specify composition range

6. Select property method

7. click Go to generate the results

Page 57: Aspen Plus

Example: calculation result of TExample: calculation result of T XYXYExample: calculation result of TExample: calculation result of T‐‐XYXY

Data results

Page 58: Aspen Plus

Example: Generate XY plotExample: Generate XY plotExample: Generate XY plotExample: Generate XY plot

Click “plot wizard” to generate XY plot

Page 59: Aspen Plus

Example: Generate XY plot (cont’d)Example: Generate XY plot (cont’d)Example: Generate XY plot (cont d)Example: Generate XY plot (cont d)

Page 60: Aspen Plus

Shortcoming of Binary AnalysisShortcoming of Binary AnalysisShortcoming of Binary AnalysisShortcoming of Binary Analysis

120Water-BuOH

100

110

90

100

T (o C

)

?0.0 0.2 0.4 0.6 0.8 1.0

70

80 ?

Bi A l i t t LLE d t b l t

Mole Fraction (Water)

Binary Analysis cannot generate LLE data below azeotrope.

Page 61: Aspen Plus

Property AnalysisProperty Analysis –– GenericGenericProperty Analysis Property Analysis –– GenericGenericUse this form To generate

Pure Tables and plots of pure component properties as a function of temperature and pressure

Binary Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue Residue curve maps

Ternary Ternary maps showing phase envelope, tie lines, and azeotropes of ternary systemsy systems

Azeotrope This feature locates all the azeotropes that exist among a specified set of components. 

Ternary MapsTernary diagrams in Aspen Distillation Synthesis feature: Azeotropes, Distillation boundary, Residue curves or distillation curves, Isovolatility curves, Tie lines, Vapor curve, Boiling point

Generic

Tables and plots of properties of either multi‐phase mixtures (for example, VLE, VLLE, LLE) resulting from flash calculations, or single‐phase mixtures without flash calculations. Properties analysis of multi‐components  (more than three) is  also included.

61

Page 62: Aspen Plus

Properties AnalysisProperties Analysis –– TernaryTernaryProperties Analysis Properties Analysis –– TernaryTernary

Page 63: Aspen Plus

Ternary MapTernary MapTernary MapTernary Map

1 Select three component4. Select phase (VLE, LLE)

1. Select three component

5. Specify pressure2. Specify number of tie line

3. Select property method6. Specify temperature

(if LLE is slected)

7. click Go to generate the results

Page 64: Aspen Plus

Calculation Result of Ternary Map (LLE)Calculation Result of Ternary Map (LLE)Calculation Result of Ternary Map (LLE)Calculation Result of Ternary Map (LLE)

D t ltData results

Page 65: Aspen Plus

Property AnalysisProperty Analysis –– GenericGenericProperty Analysis Property Analysis –– GenericGenericUse this form To generate

Pure Tables and plots of pure component properties as a function of temperature and pressure

Binary Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue Residue curve maps

Ternary Ternary maps showing phase envelope, tie lines, and azeotropes of ternary systemsy systems

Azeotrope This feature locates all the azeotropes that exist among a specified set of components. 

Ternary MapsTernary diagrams in Aspen Distillation Synthesis feature: Azeotropes, Distillation boundary, Residue curves or distillation curves, Isovolatility curves, Tie lines, Vapor curve, Boiling point

Generic

Tables and plots of properties of either multi‐phase mixtures (for example, VLE, VLLE, LLE) resulting from flash calculations, or single‐phase mixtures without flash calculations. Properties analysis of multi‐components  (more than three) is  also included.

Generic analysis is used if properties analysis of mixture is performed.65

Page 66: Aspen Plus

When to Use Generic AnalysisWhen to Use Generic AnalysisWhen to Use Generic Analysis When to Use Generic Analysis 

Enthalpy of Mixtures?Water-BuOH

100

110

120

80

90

100

T (o C

)

LLE? Specific composition?660.0 0.2 0.4 0.6 0.8 1.0

70

80

Mole Fraction (Water)

LLE? Specific composition?

Page 67: Aspen Plus

Property AnalysisProperty Analysis –– GenericGenericProperty Analysis Property Analysis –– GenericGeneric

Select Property analysis

67

Page 68: Aspen Plus

Add New AnalysisAdd New AnalysisAdd New AnalysisAdd New Analysis

Select Generic

68

Page 69: Aspen Plus

Specification of SystemSpecification of SystemSpecification of SystemSpecification of System

. Select “flash calculation” or not 3. Specify component flow

2. Select phase (VLE, LLE)

4 S if th di iti4. Specify the corresponding composition

69

Page 70: Aspen Plus

Determine Adjusted VariablesDetermine Adjusted VariablesDetermine Adjusted VariablesDetermine Adjusted Variables

Specify feed condition

TemperaturePressureVapor fractionVapor fractionMole flowMass flowStdVol flowMole fractionMass fractionStdVol fraction

Specify range of adjusted variables70

Page 71: Aspen Plus

Specify PropertySpecify Property‐‐Sets for Sets for Calculation ResultsCalculation Results

71

Page 72: Aspen Plus

Add New PropertyAdd New Property Set (UserSet (User Defined)Defined)Add New PropertyAdd New Property‐‐Set (UserSet (User‐‐Defined)Defined)

Select Physical Property

Description72

Page 73: Aspen Plus

Add New PropertyAdd New Property Set (cont’d)Set (cont’d)Add New PropertyAdd New Property‐‐Set (cont d)Set (cont d)If the system requires VLLE calculationIf the system requires VLLE calculation…

Select “Vapor” “1st liquid” “2nd liquid”

73

Page 74: Aspen Plus

Specify PropertySpecify Property SetsSetsSpecify PropertySpecify Property‐‐SetsSets

74

Page 75: Aspen Plus

Run Properties AnalysisRun Properties AnalysisRun Properties AnalysisRun Properties Analysis

Click ► to generate the resultsClick ► to generate the results

Check “simulation status”“Results Available” means convergency“Results Available” means convergency.

75

Page 76: Aspen Plus

Example1: Calculation of Enthalpy Example1: Calculation of Enthalpy Change Change for binary mixturesfor binary mixtures

-60000 Molar ratio of Butanol/Water=1:1

-56000Temperature = 50oC

66000

-64000

-62000

/mol

)

Liquid Vapor

-64000-62000-60000-58000

mol

)

Liquid Vapor

-70000

-68000

-66000

Ent

halp

y (c

al/

-72000-70000-68000-66000

Ent

halp

y (c

al/m

40 50 60 70 80 90 100-74000

-72000

0.0 0.2 0.4 0.6 0.8 1.0-78000-76000-74000

ETemperature (oC) Mole fraction of Water in BuOH and Water

76

Page 77: Aspen Plus

Search Physical Properties for Search Physical Properties for Enthalpy of Mixtures (HMX) Enthalpy of Mixtures (HMX) 

Select HMX. Others are optimal.

Add Property-Set

77

Page 78: Aspen Plus

Calculate Calculate of Enthalpy Change As of Enthalpy Change As Temperature Temperature VariesVaries

21 2

3

4

78

Page 79: Aspen Plus

ReadRead Calculation ResultsCalculation ResultsRead Read Calculation ResultsCalculation Results

79

Page 80: Aspen Plus

ExerciseExerciseExerciseExercise

-58000-56000

Temperature = 50oC

-66000-64000-62000-60000

cal/m

ol)

Liquid Vapor

-74000-72000-70000-68000

Ent

halp

y (c

0.0 0.2 0.4 0.6 0.8 1.0-78000-76000

Mole fraction of Water in BuOH and Water

80

Page 81: Aspen Plus

Example 2: Example 2: Calculation of Calculation of LLE LLE for for Binary systemBinary system

120Water-BuOH

100

110

90

100

T (o C

)

80

0.0 0.2 0.4 0.6 0.8 1.070

Mole Fraction (Water)

81

Page 82: Aspen Plus

Add New PropertyAdd New Property Set (cont’d)Set (cont’d)Add New PropertyAdd New Property‐‐Set (cont d)Set (cont d)

Select “Vapor” “1st liquid” “2nd liquid”

Page 83: Aspen Plus

Specify System Variable and PropertySpecify System Variable and Property SetSetSpecify System, Variable and PropertySpecify System, Variable and Property‐‐SetSet1 2

Select Vapor-liquid-liquid

3

4

Page 84: Aspen Plus

Calculation ResultsCalculation ResultsCalculation ResultsCalculation Results

110

120Water-BuOH

90

100

110

T (o C

)

0.0 0.2 0.4 0.6 0.8 1.070

80

Mole Fraction (Water)

Page 85: Aspen Plus

Property AnalysisProperty Analysis –– Conceptual DesignConceptual DesignProperty Analysis Property Analysis –– Conceptual DesignConceptual DesignUse this form To generate

(Optional)

Pure Tables and plots of pure component properties as a function of temperature and pressure

Binary Txy Pxy or Gibbs energy of mixing curves for a binary systemBinary Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue Residue curve maps

Ternary Ternary maps showing phase envelope, tie lines, and azeotropes of ternary Ternary y p g p p , , p ysystems

Azeotrope This feature locates all the azeotropes that exist among a specified set of components. p

Ternary MapsTernary diagrams in Aspen Distillation Synthesis feature: Azeotropes, Distillation boundary, Residue curves or distillation curves, Isovolatility curves, Tie lines Vapor curve Boiling pointTie lines, Vapor curve, Boiling point

Generic

Tables and plots of properties of either multi‐phase mixtures (for example, VLE, VLLE, LLE) resulting from flash calculations, or single‐phase mixtures without flash calculations Properties analysis of multi‐components (morewithout flash calculations. Properties analysis of multi‐components  (more than three) is  also included.

85

Page 86: Aspen Plus

Conceptual DesignConceptual DesignConceptual DesignConceptual Design

Page 87: Aspen Plus

Conceptual DesignConceptual DesignConceptual DesignConceptual Design

• Conceptual design enables the user to:1. Locate all the azeotropes (homogeneous and 

heterogeneous) present in any multicomponent mixture2. Automatically compute distillation boundaries and 

id f t i tresidue curve maps for ternary mixtures3. Compute multiple liquid phase envelopes (liquid‐liquid 

and vapor liquid liquid) for ternary mixturesand vapor‐liquid‐liquid) for ternary mixtures4. Determine the feasibility of splits for distillation columns

Page 88: Aspen Plus

Azeotrope AnalysisAzeotrope AnalysisAzeotrope AnalysisAzeotrope Analysis

Page 89: Aspen Plus

Azeotrope AnalysisAzeotrope AnalysisAzeotrope AnalysisAzeotrope Analysis

1. Select components (at least two) 2. Specify pressure

3. Select property method

4 Select phase (VLE LLE)

6. click Report to generate the results

4. Select phase (VLE, LLE)

5. Select report Unit

Page 90: Aspen Plus

Error MessageError MessageError MessageError Message

Close analysis input dialog box (pure or binary analysis)

Page 91: Aspen Plus

Azeotrope Analysis ReportAzeotrope Analysis ReportAzeotrope Analysis ReportAzeotrope Analysis Report

Page 92: Aspen Plus

Ternary MapsTernary MapsTernary MapsTernary Maps

Page 93: Aspen Plus

Ternary MapsTernary MapsTernary MapsTernary Maps3 Select property method4. Select phase (VLE, LLE)1. Select three components3. Select property method

2. Specify pressure 5. Select report Unit

6. Click Ternary Plot to generate the results

6. Specify temperature of LLE (If liquid-liquid envelope is selected)

Page 94: Aspen Plus

Ternary MapsTernary MapsTernary MapsTernary MapsChange pressure or temperaturetemperature

Ternary Plot Toolbar:Add Tie line, Curve, , ,Marker…

Page 95: Aspen Plus

Introduction to Aspen Plus – Part 3 Running Simulation in Aspen Plus

95

Page 96: Aspen Plus

Example 1: Calculate the mixing Example 1: Calculate the mixing properties of two stream properties of two stream 

1 2 3 4Mole Flow kmol/hr

WATER 10 0 ? ?BUOH 0 9 ? ?BUAC 0 6 ? ?

Total Flow kmol/hr 10 15 ? ?C 0 80 ? ?Temperature C 50 80 ? ?

Pressure bar 1 1 1 10Enthalpy kcal/mol ? ? ? ?E t l/ l K ? ? ? ?Entropy cal/mol-K ? ? ? ?Density kmol/cum ? ? ? ?

96

Page 97: Aspen Plus

Example 2: Flash SeparationExample 2: Flash SeparationExample 2: Flash SeparationExample 2: Flash Separation

120T

115

T-x T-y

Saturated Feed

T=105 CP=1atm

105

110

T (o C

)

P=1atmF=100 kmol/hrzwater=0.5 0.0 0.2 0.4 0.6 0.8 1.0

100

105

waterzHAc=0.5

What are flowrates and compositions of the two outlets?

xWater and yWater

What are flowrates and compositions of the two outlets?

Page 98: Aspen Plus

Example 3: Dehydration of Acetic Example 3: Dehydration of Acetic Acid by Distillation Column Acid by Distillation Column (Optional)(Optional)

1 0

0.8

1.0

Reflux

0.4

0.6

y Wat

er

ratio ?

0 0

0.2Duty ?

0.0 0.2 0.4 0.6 0.8 1.00.0

xWater

Page 99: Aspen Plus

SetupSetup –– SpecificationSpecificationSetup  Setup  –– SpecificationSpecification

Select Flowsheet

99

Page 100: Aspen Plus

Reveal Model LibraryReveal Model LibraryReveal Model LibraryReveal Model Library

View|| Model LibraryView|| Model Libraryor press F10

100

Page 101: Aspen Plus

Model Library: Mixer/SplitterModel Library: Mixer/SplitterModel Library: Mixer/SplitterModel Library: Mixer/Splitter

Model Description Purpose Use for

Mixer Stream mixer Combines multiple streams into one stream

Mixing tees. Stream mixing operations. g pAdding heat streams. Adding work streams

FSplit Stream splitter Divides feed based on splits Stream splitters BleedFSplit Stream splitter Divides feed based on splits specified for outlet streams

Stream splitters. Bleed valves

SSplit Substream splitter Divides feed based on splits Stream splitters PerfectSSplit Substream splitter Divides feed based on splits specified for each substream

Stream splitters. Perfect fluid‐solid separators

101

Page 102: Aspen Plus

Model Library: Pressure ChangersModel Library: Pressure ChangersModel Library: Pressure ChangersModel Library: Pressure Changers

102

Page 103: Aspen Plus

Model Description Purpose Use forP h d li Ch t h th P d h d liPump Pump or hydraulic turbine

Changes stream pressure when the power requirement is needed or known

Pumps and hydraulic turbines

C Ch t h P l t iCompr Compressor or turbine

Changes stream pressure when power requirement is needed or known

Polytropic compressors, polytropic positive displacement compressors, isentropic compressorsisentropic compressors, isentropic turbines

Mcompr Multistage compressor or

Changes stream pressure across multiple stages with intercoolers

Multistage polytropiccompressors polytropiccompressor or 

turbinemultiple stages with intercoolers. Allows for liquid knockout streams from intercoolers

compressors, polytropicpositive displacement compressors, isentropic compressors isentropiccompressors, isentropic turbines

Valve Valve pressure drop

Models pressure drop through a valve

Control valves and pressure changersdrop valve changers

Pipe Single segment pipe

Models pressure drop through a single segment of pipe

Pipe with constant diameter (may include fittings)

Pipeline Multiple segment Models pressure drop through a Pipeline with multiplePipeline Multiple segment pipeline

Models pressure drop through a pipe or annular space

Pipeline with multiple lengths of different diameter or elevation103

Page 104: Aspen Plus

Adding a MixerAdding a MixerAdding a MixerAdding a Mixer

Click “one of icons” d th li k i th fl h t i dand then click again on the flowsheet window

Remark: The shape of the icons are meaningless

104

Page 105: Aspen Plus

Adding Material StreamsAdding Material StreamsAdding Material StreamsAdding Material Streams

Click “Materials” and then click again on the flowsheet windowagain on the flowsheet window

105

Page 106: Aspen Plus

Adding Material Streams (cont’d)Adding Material Streams (cont’d)Adding Material Streams (cont d)Adding Material Streams (cont d)

When clicking the mouse on the flowsheet windowWhen clicking the mouse on the flowsheet window,arrows (blue and red) appear.

106

Page 107: Aspen Plus

Adding Material Streams (cont’d)Adding Material Streams (cont’d)Adding Material Streams (cont d)Adding Material Streams (cont d)

When moving the mouse on the arrows, some description appears.

Blue arrow: Water decant for Free water of dirty water

Red arrow(Left) Feed (Required; one ore more if mixing material

Red arrow(Right): Product (Required; if mixing material streams)of dirty water. if mixing material

streams)mixing material streams)

107

Page 108: Aspen Plus

Adding Material Streams (cont’d)Adding Material Streams (cont’d)Adding Material Streams (cont d)Adding Material Streams (cont d)

After selecting “Material Streams”, click and pull a stream line.Repeat it three times to generate three stream linesRepeat it three times to generate three stream lines.

108

Page 109: Aspen Plus

Reconnecting Material Streams Reconnecting Material Streams (Feed Stream)(Feed Stream)

Right Click on the stream and select Reconnect Destination

109

Page 110: Aspen Plus

Reconnecting Material Streams Reconnecting Material Streams (Product Stream)(Product Stream)

Right Click on the stream and select Reconnect Sourceselect Reconnect Source

B1

1

2

3

110

Page 111: Aspen Plus

Specifying Feed ConditionSpecifying Feed ConditionSpecifying Feed ConditionSpecifying Feed Condition

Right Click on the stream and select Inputand select Input

111

Page 112: Aspen Plus

Specifying Feed ConditionSpecifying Feed ConditionSpecifying Feed ConditionSpecifying Feed Condition

You must specify two of the following conditions:TemperaturepPressureVapor fraction

You can enter stream composition in terms of component flows, fractions, or concentrations.

If you specify component fractions, you must specify the total mole, If you specify component fractions, you must specify the total mole, mass, or standard liquid volume flow.

112

Page 113: Aspen Plus

Specifying Feed Condition (cont’d)Specifying Feed Condition (cont’d)Specifying Feed Condition (cont d)Specifying Feed Condition (cont d)

1 2

113

Page 114: Aspen Plus

Specifying Input of MixerSpecifying Input of MixerSpecifying Input of MixerSpecifying Input of Mixer

Right Click on the block and select Input

114

Page 115: Aspen Plus

Specifying Input of Mixer (cont’d)Specifying Input of Mixer (cont’d)Specifying Input of Mixer (cont d)Specifying Input of Mixer (cont d)

Specify Pressure and valid phase

The corresponding description about this blank:Outlet pressure if value > 0Pressure drop if value ≦ 0

115

Page 116: Aspen Plus

Run SimulationRun SimulationRun SimulationRun Simulation

Click ► to run the simulation

Run Start or continue calculations

Step Step through the flowsheet one block at a time

Stop Pause simulation calculations

Reinitialize Purge simulation results

Check “simulation status”“Required Input Complete” means the input is ready to run simualtionq p p p y

116

Page 117: Aspen Plus

Status of Simulation ResultsStatus of Simulation ResultsStatus of Simulation Results Status of Simulation Results 

Message Means

Results available The run has completed normally, and results are presentpresent.

Results with warnings 

Results for the run are present. Warning messages were generated during the l l i Vi h C l P l Hiesu ts t a gs calculations. View the Control Panel or History 

for messages. 

Results for the run are present. Error messages Results with errors  were generated during the calculations. View the 

Control Panel or History for messages.

Results for the run are present, but you have 

Input Changed

p , ychanged the input since the results were generated. The results may be inconsistent with the current input.

117

Page 118: Aspen Plus

Control PannelControl PannelControl PannelControl Pannel

Click here

1.A message window showing the progress of the simulation by displaying the most recent messages from the calculationsrecent messages from the calculations

2.A status area showing the hierarchy and order of simulation blocks and convergenceorder of simulation blocks and convergence loops executed

118

Page 119: Aspen Plus

Stream ResultsStream ResultsStream ResultsStream Results

Right Click on the block andRight Click on the block and select Stream Results

119

Page 120: Aspen Plus

1 2 3Substream: MIXEDMole Flow kmol/hr

WATER 10 0 10BUOH 0 9 9BUOH 0 9 9BUAC 0 6 6

Total Flow kmol/hr 10 15 25Total Flow kg/hr 180.1528 1364.066 1544.218Total Flow cum/hr 0.18582 1.74021 1.870509Temperature C 50 80 70.08758Pressure bar 2 1 1V F 0 0 0Vapor Frac 0 0 0Liquid Frac 1 1 1Solid Frac 0 0 0

Enthalpy kcal/mol ‐67.81 ‐94.3726 ‐83.7476Pull down the list and select Enthalpy kcal/mol 67.81 94.3726 83.7476Enthalpy kcal/kg ‐3764.03 ‐1037.77 ‐1355.82Enthalpy Gcal/hr ‐0.6781 ‐1.41559 ‐2.09369Entropy cal/mol‐K ‐37.5007 ‐134.947 ‐95.6176

Pull down the list and select “Full” to show more properties results.

Entropy cal/gm‐K ‐2.0816 ‐1.48395 ‐1.54799Density kmol/cum 53.81564 8.619647 13.36534Density kg/cum 969.5038 783.851 825.5604Average MW 18 01528 90 93771 61 76874Average MW 18.01528 90.93771 61.76874

Liq Vol 60F cum/hr 0.1805 1.617386 1.797886120

Enthalpy and Entropy

Page 121: Aspen Plus

Change Units of Calculation ResultsChange Units of Calculation ResultsChange Units of Calculation ResultsChange Units of Calculation Results

121

Page 122: Aspen Plus

SetupSetup –– Defining Your Own Units SetDefining Your Own Units SetSetup Setup –– Defining Your Own Units Set Defining Your Own Units Set 

122

Page 123: Aspen Plus

SetupSetup –– Report OptionsReport OptionsSetup Setup –– Report OptionsReport Options

123

Page 124: Aspen Plus

Stream Results with Format of Stream Results with Format of Mole FractionMole Fraction

124

Page 125: Aspen Plus

Add Pump BlockAdd Pump BlockAdd Pump BlockAdd Pump Block

125

Page 126: Aspen Plus

Add A Material StreamAdd A Material StreamAdd A Material StreamAdd A Material Stream

126

Page 127: Aspen Plus

Connect StreamsConnect StreamsConnect StreamsConnect Streams

127

Page 128: Aspen Plus

PumpPump –– SpecificationSpecificationPump Pump –– Specification Specification 

2. Specify pump outlet specificati

1. Select “Pump” or “turbine”

(pressure, power)

3. Efficiencies (Default: 1)

128

Page 129: Aspen Plus

Run SimulationRun SimulationRun SimulationRun Simulation

Click ► to generate the resultsClick ► to generate the results

Check “simulation status”“Required Input Complete” q p p

129

Page 130: Aspen Plus

Block Results (Pump)Block Results (Pump)Block Results (Pump)Block Results (Pump)

Right Click on the block and select Results

130

Page 131: Aspen Plus

131

Page 132: Aspen Plus

Streams ResultsStreams ResultsStreams ResultsStreams Results

132

Page 133: Aspen Plus

Calculation Results Calculation Results (Mass and Energy Balances)(Mass and Energy Balances)

1 2 3 4Mole Flow kmol/hr

WATER 10 0 10 10BUOH 0 9 9 9BUAC 0 6 6 6

Total Flow kmol/hr 10 15 25 25C 0 80 0 09 1 20Temperature C 50 80 70.09 71.20

Pressure bar 1 1 1 10Enthalpy kcal/mol -67.81 -94.37 -83.75 -83.69 E t l/ l K 37 50 134 95 95 62 95 46Entropy cal/mol-K -37.50 -134.95 -95.62 -95.46 Density kmol/cum 969.50 783.85 825.56 824.29

133

Page 134: Aspen Plus

ExerciseExerciseExerciseExercise

1 2 3 4 5 6Mole Flow kmol/hrMole Flow kmol/hr

Water 10 0 0 ? ? ?Ethanol 0 5 0 ? ? ?

Methanol 0 0 15 ? ? ?Methanol 0 0 15 ? ? ?Total Flow kmol/hr 10 15 15 ? ? ?

Temperature C 50 70 40 ? ? ?Pressure bar 1 1 1 1 4 2essu e ba

Enthalpy kcal/mol ? ? ? ? ? ?Entropy cal/mol-K ? ? ? ? ? ?Density kmol/cum ? ? ? ? ? ?y

134Please use Peng-Robinson EOS to solve this problem.

Page 135: Aspen Plus

Example 2: Flash SeparationExample 2: Flash SeparationExample 2: Flash SeparationExample 2: Flash Separation

120T

115

T-x T-y

Saturated Feed

T=105 CP=1atm

105

110

T (o C

)

P=1atmF=100 kmol/hrzwater=0.5 0.0 0.2 0.4 0.6 0.8 1.0

100

105

waterzHAc=0.5

What are flowrates and compositions of the two outlets?

xWater and yWater

What are flowrates and compositions of the two outlets?

Page 136: Aspen Plus

Input ComponentsInput ComponentsInput ComponentsInput Components

Page 137: Aspen Plus

Thermodynamic Model: NRTLThermodynamic Model: NRTL HOCHOCThermodynamic Model: NRTLThermodynamic Model: NRTL‐‐HOCHOC

Vapor ESHOCLiquid gammaq gLiquid enthalpyLiquid volume

Page 138: Aspen Plus

Check Binary ParametersCheck Binary ParametersCheck Binary ParametersCheck Binary Parameters

Page 139: Aspen Plus

Association parameters of HOCAssociation parameters of HOCAssociation parameters of HOCAssociation parameters of HOC

Page 140: Aspen Plus

Binary Parameters of NRTLBinary Parameters of NRTLBinary Parameters of NRTLBinary Parameters of NRTL

Page 141: Aspen Plus

Binary AnalysisBinary AnalysisBinary AnalysisBinary Analysis

Page 142: Aspen Plus

TT xyxy plotplotTT‐‐xyxy plotplot

1. Select analysis type (Txy) 2. Select phase (VLE, VLLE)p ( , )

2. Select two component 5. Specify pressure

3 Select compositions basis 6. Select property method3. Select compositions basis

4. Specify composition range

7. click Go to generate the results

Page 143: Aspen Plus

Calculation Result of TCalculation Result of T xyxyCalculation Result of TCalculation Result of T‐‐xyxy

Data results

Page 144: Aspen Plus

GenerateGenerate xyxy plotplotGenerate Generate xyxy plotplot

Page 145: Aspen Plus

GenerateGenerate xyxy plot (cont’d)plot (cont’d)Generate Generate xyxy plot (cont d)plot (cont d)

Page 146: Aspen Plus

Flash SeparationFlash SeparationFlash SeparationFlash Separation

120T

115

T-x T-y

Saturated Feed

T=105 CP=1atm

105

110

T (o C

)

P=1atmF=100 kmol/hrzwater=0.5 0.0 0.2 0.4 0.6 0.8 1.0

100

105

waterzHAc=0.5

What are flowrates and compositions of the two outlets?

xWater and yWater

What are flowrates and compositions of the two outlets?

Page 147: Aspen Plus

Add Block: Flash2Add Block: Flash2Add Block: Flash2Add Block: Flash2

Page 148: Aspen Plus

Add Material StreamAdd Material StreamAdd Material StreamAdd Material Stream

Page 149: Aspen Plus

Specify Feed ConditionSpecify Feed ConditionSpecify Feed ConditionSpecify Feed Condition

Saturated Feed(Vapor fraction=0)

P=1atmF=100 kmol/hrzwater=0.5zHAc=0.5

Page 150: Aspen Plus

Block Input: Flash2Block Input: Flash2Block Input: Flash2Block Input: Flash2

Page 151: Aspen Plus

Flash2: SpecificationFlash2: SpecificationFlash2: SpecificationFlash2: Specification

T=105 CP 1 tP=1atm

Page 152: Aspen Plus

Required Input IncompleteRequired Input IncompleteRequired Input IncompleteRequired Input Incomplete

Connot click ► to run simulationConnot click ► to run simulation

Close binary analysis window

Page 153: Aspen Plus

Required Input CompleteRequired Input CompleteRequired Input CompleteRequired Input Complete

Click ► to run simulationClick ► to run simulation

Page 154: Aspen Plus

Stream ResultsStream ResultsStream ResultsStream Results

Page 155: Aspen Plus

Stream Results (cont’d)Stream Results (cont’d)Stream Results (cont d)Stream Results (cont d)

42.658 kmol/hrzwater=0.501waterzHAc=0.409

T=105 CSaturated FeedP=1atmF=100 kmol/hr

P=1atm

F=100 kmol/hrzwater=0.5zHAc=0.5

57.342 kmol/hrzwater=0.432waterzHAc=0.568

Page 156: Aspen Plus

Review Distillation SeparationReview Distillation SeparationReview Distillation SeparationReview Distillation Separation

1

McCabe- Thiele Graphical Method

RL D

Rectifying section: 0.8

1R

n n DR R

y x xV V

Stripping section:

0.6

y

1S

n n BS S

L By x xV V

pp g

0 2

0.4

0 0 2 0 4 0 6 0 8 10

0.2

0 0.2 0.4 0.6 0.8 1x

Page 157: Aspen Plus

TradeTrade‐‐off Between off Between Capital Cost and Operating CostCapital Cost and Operating Cost

Shortcut Design:RR≈1.2×RRminNT ≈ 2×NTmin

Page 158: Aspen Plus

Distillation SeparationDistillation SeparationDistillation SeparationDistillation Separation

• There are two degrees of freedom to manipulate d ll ddistillate composition and bottoms composition to manipulate the distillate andRR ? manipulate the distillate and bottoms compositions. 

• If the feed condition and theIf the feed condition and the number of stages are given, how much of RR and QR are QR ?required to achieve the specification. 

Page 159: Aspen Plus

Add Block:Add Block: RadfracRadfracAdd Block: Add Block: RadfracRadfrac

Page 160: Aspen Plus

Add Material StreamAdd Material StreamAdd Material StreamAdd Material Stream

Page 161: Aspen Plus

FlowsheetFlowsheet Connectivity forConnectivity for RadFracRadFracFlowsheetFlowsheet Connectivity for Connectivity for RadFracRadFrac

RadFrac numbers stages from the top down, starting with the condenser (or starting with the top stage if there is no condenser).

Page 162: Aspen Plus

Connect Material StreamConnect Material StreamConnect Material StreamConnect Material Stream

Page 163: Aspen Plus

Specify Feed ConditionSpecify Feed ConditionSpecify Feed ConditionSpecify Feed Condition

Saturated Feed(Vapor fraction=0)

P=1.2atmF=100 kmol/hrzwater=0.5zHAc=0.5

Page 164: Aspen Plus

Block Input:Block Input: RadfracRadfracBlock Input: Block Input: RadfracRadfrac

Page 165: Aspen Plus

RadfracRadfrac: Configuration: ConfigurationRadfracRadfrac: Configuration: Configuration

Page 166: Aspen Plus

RadfracRadfrac: Streams (Feed Location): Streams (Feed Location)RadfracRadfrac: Streams (Feed Location): Streams (Feed Location)

Page 167: Aspen Plus

Types of Feed StageTypes of Feed StageTypes of Feed StageTypes of Feed Stage

Use this convention To introduce a feedAbove‐stage Between stages, above the designated stageg g , g gOn‐stage On the designated stage

On‐stage‐liquid On the designated stage, all‐liquid feed On stage liquid which is never flashed

On‐stage‐vapor On the designated stage, all‐vapor feed which is never flashedg p which is never flashed

Decanter To the decanter attached to the designated stagestage

Page 168: Aspen Plus

RadfracRadfrac: Column Pressure: Column PressureRadfracRadfrac: Column Pressure: Column Pressure

Page 169: Aspen Plus

Run SimulationRun SimulationRun SimulationRun Simulation

Click ► to run simulation

Page 170: Aspen Plus

Check Convergence StatusCheck Convergence StatusCheck Convergence StatusCheck Convergence Status

Page 171: Aspen Plus

Stream ResultsStream ResultsStream ResultsStream Results

Page 172: Aspen Plus

D B

Page 173: Aspen Plus

Change Reflux RatioChange Reflux RatioChange Reflux RatioChange Reflux Ratio

Click ► to run simulation

Increase RR from 2 to 2.5

Page 174: Aspen Plus

D B

Page 175: Aspen Plus

AgainAgainAgain…Again…

You can iterate RR until the specification is achievedYou can iterate RR until the specification is achieved.

Page 176: Aspen Plus

Smarter WaySmarter WaySmarter WaySmarter Way

Aspen Plus provides a convenient function (Design Specs/Vary) which can iterate operating variables to meet the specification.

Page 177: Aspen Plus

Add New Design SpecsAdd New Design SpecsAdd New Design SpecsAdd New Design Specs

Page 178: Aspen Plus

Design Specs: SpecificationDesign Specs: SpecificationDesign Specs: SpecificationDesign Specs: Specification

Input current mole purity first

Page 179: Aspen Plus

Design Specs: ComponentsDesign Specs: ComponentsDesign Specs: ComponentsDesign Specs: Components

Page 180: Aspen Plus

Design Specs: Feed/Product StreamsDesign Specs: Feed/Product StreamsDesign Specs: Feed/Product StreamsDesign Specs: Feed/Product Streams

Page 181: Aspen Plus

Add New VeryAdd New VeryAdd New VeryAdd New Very

Page 182: Aspen Plus

Very: SpecificationsVery: SpecificationsVery: SpecificationsVery: Specifications

Not all variables cane be selected

Specify the range of the adjusted variable

Not all variables cane be selected.In this case, only reflux ratio and reboiler duty can be used.

Page 183: Aspen Plus

Selection of Adjusted VariablesSelection of Adjusted VariablesSelection of Adjusted VariablesSelection of Adjusted Variables

The options of adjusted variables mustThe options of adjusted variables must correspond to the operating specification.

Page 184: Aspen Plus

Run SimulationRun SimulationRun SimulationRun Simulation

Click ► to run simulationClick ► to run simulation

Page 185: Aspen Plus

Check Convergence StatusCheck Convergence StatusCheck Convergence StatusCheck Convergence Status

Page 186: Aspen Plus

Change Target of Mole PurityChange Target of Mole PurityChange Target of Mole PurityChange Target of Mole Purity

Click ► to run simulation

Increase Target from 0.95229424 to 0.99

Page 187: Aspen Plus

Check Convergence StatusCheck Convergence StatusCheck Convergence StatusCheck Convergence Status

Page 188: Aspen Plus

D B

Page 189: Aspen Plus

Column Performance SummaryColumn Performance SummaryColumn Performance SummaryColumn Performance Summary

Page 190: Aspen Plus

Summary of CondenserSummary of CondenserSummary of CondenserSummary of Condenser

I l d d d t di till t t fl t fl tiInclude condenser duty, distillate rate, reflux rate, reflux ratio

Page 191: Aspen Plus

Summary ofSummary of ReboilerReboilerSummary of Summary of ReboilerReboiler

I l d b il d t b tt t b il t b il tiInclude reboiler duty, bottoms rate, boilup rate, boilup ratio

Page 192: Aspen Plus

Column Profile: TPFQColumn Profile: TPFQColumn Profile: TPFQColumn Profile: TPFQ

Page 193: Aspen Plus

Column Profile: Vapor CompositionColumn Profile: Vapor CompositionColumn Profile: Vapor CompositionColumn Profile: Vapor Composition

Page 194: Aspen Plus

Column Profile: Liquid CompositionColumn Profile: Liquid CompositionColumn Profile: Liquid CompositionColumn Profile: Liquid Composition

Page 195: Aspen Plus

Plot Wizard for Column ProfilePlot Wizard for Column ProfilePlot Wizard for Column ProfilePlot Wizard for Column Profile

Page 196: Aspen Plus

Plot Wizard for Column Profile (cont’d)Plot Wizard for Column Profile (cont’d)Plot Wizard for Column Profile (cont d)Plot Wizard for Column Profile (cont d)

After entering the block, “Plot” appears.g , pp

Page 197: Aspen Plus

Plot WizardPlot WizardPlot WizardPlot Wizard

Page 198: Aspen Plus

Plot TypesPlot TypesPlot TypesPlot Types

Page 199: Aspen Plus

Steps for Composition PlotSteps for Composition PlotSteps for Composition PlotSteps for Composition Plot

Page 200: Aspen Plus

Composition ProfilesComposition ProfilesComposition ProfilesComposition Profiles

Page 201: Aspen Plus

Temperature ProfilesTemperature ProfilesTemperature ProfilesTemperature Profiles

Page 202: Aspen Plus

INTRODUCTION TO ASPEN PLUSINTRODUCTION TO ASPEN PLUSSome Tips and Others

202

Page 203: Aspen Plus

Tips: NextTips: NextTips: NextTips: Next

Invokes the Aspen Plus expert system. Guides you through the steps required to complete your simulation.p q p y

Status message MeaningFlowsheet Not Complete

Flowsheet connectivity is incomplete. To find out why, click the Next button in the toolbar.

Required Input Not C l

Input specifications for the run are incomplete. Click Next h lb fi d h l h iComplete on the toolbar to find out how to complete the input 

specifications, and to go to sheets that are incomplete.

203

Page 204: Aspen Plus

Example: “NEXT”Example: “NEXT”Example:  NEXTExample:  NEXT

204

Page 205: Aspen Plus

Tips: “What’s this”Tips: “What’s this”Tips:  What s thisTips:  What s this

Cli k “↖?” d th li k h d ’t kClick “↖?” and then click where you don’t know

?

205

Page 206: Aspen Plus

Tips: “What’s this”Tips: “What’s this”Tips:  What s thisTips:  What s this

?

206

Page 207: Aspen Plus

Tips: WindowTips: WindowTips: WindowTips: Window

If you are using You shouldWorkbook mode Click the Process Flowsheet tabFlowsheet as Wallpaper Click the flowsheet in the backgroundp p gNormal View Select the Process Flowsheet window

207

Page 208: Aspen Plus

Help TopicsHelp TopicsHelp TopicsHelp Topics

Go to “Help”pSelect “Help Topics”

208

Page 209: Aspen Plus

Help TopicsHelp TopicsHelp TopicsHelp Topics

U it O ti M d l R f M lUnit Operation Model Reference ManualPhysical Property Methods and ModelsPhysical Property Data Reference Manual

209

Page 210: Aspen Plus

Help TopicsHelp TopicsHelp TopicsHelp TopicsCalculation of Properties Using an Equation-of-State Property Method

210

Page 211: Aspen Plus

File Formats in Aspen PlusFile Formats in Aspen PlusFile Formats in Aspen PlusFile Formats in Aspen Plus

File Type Extension Format Description

Document *.apw Binary File containing simulation input and results andi t di t i f tiintermediate convergence information

Backup *.bkp ASCII Archive file containing simulation input andresults

History *.his Text Detailed calculation history and diagnosticmessages

Problem * appdf Binary File containing arrays and intermediate

211

Problem Description

.appdf Binary File containing arrays and intermediateconvergence information used in the simulationcalculations

Page 212: Aspen Plus

File Type CharacteristicsFile Type CharacteristicsFile Type CharacteristicsFile Type Characteristicsf l• Binary files

– Operating system and version specific– Not readable not printableNot readable, not printable

• ASCII files– Transferable between operating systems– Upwardly compatible– Contain no control characters, “readable”

N i d d b i d– Not intended to be printed• Text files

– Transferable between operating systemsTransferable between operating systems– Upwardly compatible– Readable, can be edited– Intended to be printed

212

Page 213: Aspen Plus

Access Aspen Plus SoftwareAccess Aspen Plus SoftwareAccess Aspen Plus SoftwareAccess Aspen Plus Software

• Please contact  PC Teaching Assistant:Name: 侯冠宇

Phone: 02‐3366‐3005Email: chemeng@ntu edu twEmail: [email protected]: 101 電腦教室

213

Page 214: Aspen Plus

如何進入講義下載及填寫問卷如何進入講義下載及填寫問卷如何進入講義下載及填寫問卷如何進入講義下載及填寫問卷