37
ASTE搭載用 多色連続波カメラの開発 国立天文台チリ観測所 竹腰達哉

ASTE搭載用 多色連続波カメラの開発 - Nobeyama radio ...danwa/html/2015/nro_seminar_20150520...‐ 8.5m illumination, -4dB edge level • z offset = ±0.7mm で残差最小(Band1,

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • ASTE搭載用多色連続波カメラの開発

    国立天文台チリ観測所

    竹腰達哉

  • Outline

    • 科学目標

    • カメラの概要

    • ASTE望遠鏡への搭載試験

    • データ解析の現状

    • 今後の計画

    • まとめ

    2

  • 科学目標:サブミリ波銀河

    • 初期宇宙の爆発的星形成銀河(サブミリ波銀河)探査– 我々の銀河系の100-1000倍の星形成率

    – 構造形成、銀河形成・星形成史を理解するうえで重要な天体

    – 約30Kの熱放射が卓越し、ミリ波サブミリ波で明るい– AzTEC/ASTE(2007-2008)で1000個以上発見

    3

    Y Tamura et al. Nature 459, 61-63 (2009)

  • 科学目標:サブミリ波銀河

    • 連続波カメラの広域マッピングにより検出

    – AzTEC/ASTEなどで実現(~1平方度)

    – 10—1000平方度級の広域観測も重要

    • 赤方偏移の推定

    – 3次元分布を明らかにする

    ➡多波長の連続波観測が必要!

    4Wavelength (mm)

    Bri

    ghtn

    ess

    of

    gala

    xy (

    mJy

    )

    1.1mm

    850μm450μm

    新しい多色連続波カメラを用いた大規模なサーベイ観測の実施

  • 近傍銀河の観測

    • 近傍銀河でのダスト連続波観測

    – 低温ダストの観測• ダスト質量の大部分を占める

    • 150~300μm程度にピーク(20~30 K)

    • 光学的に薄い⇔密度構造をよくトレース

    • COよりも金属量・輻射依存性が小さい

    ➡化学進化プロセス・進化段階に強い

    • 質量・温度の推定

    ガス質量: gas-to-dust ratio Rを仮定

    NGC1512 Liu+2010

    Hubble

    AzTEC

  • AzTEC/ASTE M33

    6

    • Komugi+ 2011

    • On source: 30 hrs

    • 30’x30’,2領域

    • GMCの低温ダスト成分(~20K)をトレース

  • 直接検出器による連続波観測の3つの利点

    1. 光子直接検出– 量子雑音限界がない(ヘテロダイン観測との違い)– 大気放射起源のフォトンノイズが支配

    2. 超広帯域観測– 帯域幅は大気の窓で制限(~50GHz)– ヘテロダインでは≲10GHz

    3. 多素子化– 検出器や読み出しがシンプル– 100—10000素子– 広視野光学系(e.g. 可視光観測)

    最も効率の良い低温天体のサーベイ手法!➡ ASTE搭載用多色連続波カメラの開発

  • TESCAM collaboration• 国立天文台

    – 大島泰、竹腰達哉、荒井均、大田原一成、廣田晶彦、佐藤立博、岩下浩幸、前川淳、南谷哲宏、松尾宏、川辺良平

    • 北海道大学

    – 中坪俊一、森章一、香内晃、徂徠和夫

    • 東京大学

    – 泉拓磨、石井峻、田村陽一、河野孝太郎

    • Univ. of California, Berkeley

    – B. Westbrook, A. Suzuki, A. T. Lee

    • McGill Univ.: M. Dobbs

    • Cardiff Univ.: C. Tucker, P.A.R. Ade

    • Chinese Univ. of Hong Kong

    – Robin Lee, Hua-bai Li

    9

  • ASTE TES bolometer camera

    10

    開発フェイズ I II

    時期 2012—2016 2017 —

    観測バンド数 2 2 (or 6 by multi-chroic TES)

    観測周波数 270/350 GHz 350/670 GHz (or 150—670GHz)

    観測波長 1100/850 μm 850/450 μm

    バンド幅 50/35 GHz 35/80 GHz

    ピクセル数 169/271 271/919 (or 91x3/271x3)

    ビームサイズ 28/22” 22”/11”

    サイドローブレベル -15 dB -15 dB

    視野角 7.5’ 7.5’

    搭載オプションMulti-choric TESポラリメータ(A-pol)

  • 観測バンドMatsushita +1999

    バンド 周波数 波長 バンド幅 レンジ

    Band1 270GHz 1.1mm 50GHz 244—294GHz

    Band2(1st) 350GHz 850μm 35GHz 330.5—365.5GHz

    Band2(2nd) 670GHz 450μm 80GHz 630—710GHz

  • 12

    System Overview

    0.25K4K

    4K300K

    Cold

    optics

    cryostat

    Warm

    optics

    TES

    bolometer

    array

    He3 cooler

    PulseTube cooler

    LAN

    SQUID

    controller

    Cryogenics

    control

    Antenna

    control

    computer

    Receiver

    control

    computer

    DATADfMUX

    backend

    SQUID

    ASTE(10m)

  • Sept. 13, 2014 2014年日本天文学会秋季年会 13

    • 設置場所:

    チリ共和国アタカマ砂漠(標高4800m)

    • 主鏡直径: 10m

    • 鏡面精度: 19mm rms

    • 主ビーム能率:0.6-0.7 @850mm

    • ポインティング精度: 2” rms

    • ビームサイズ: 22” @850mm

    ASTE望遠鏡

  • Alignment in ASTE Cabin

    1.8m

    To Sub-reflector

    3rd mirror

    2.2m

    1.9m

    Camera Dewar

    Entrance

    Backend

  • • 検出器

    – 超伝導遷移端センサ(TES)ボロメータ

    • 読み出し

    – SQUID/DfMUX(FPGA)

    – 8TES/1SQUID

    • 冷却系(closed cycle)

    – パルスチューブ冷凍機• 50K, 4K stage

    – 吸着式冷凍機(He-10)• 1K, 350mK, 250mK stage

    • 保持時間: 48 hours (運用時)

    カメラシステム概要

  • Cold stop+ Dichroic filter

    HDPE lens

    2K

    350mK

    Focal Plane(250mK)

    17

    Band2350GHz850um

    Band1270GHz1.1mm

    Cold optics

  • ボロメータの原理

    1.吸収体で光子を吸収2.吸収体の温度上昇を温度計で測定3.吸収体の温度はC/G (~1msec)の時定数でT0まで徐々に減少

    Heat sink T0

    Absorber C

    Thermal link G

    thermometerphoton

    “Cryogenic Particle Detection” Enss, 2005.

    Photon input

  • Transition Edge Sensor

    • Wafer (350GHz)

    85mm

    Absorber 1275μm

    Bling

    360μm

    TES

    Thermal link

  • Readout

    • ΔT(temp.)→ ΔR(resistance)→ ΔI(current)→ ΔΦ(mag. flux) – Constant voltage biasing by shunt resistor

    • Φ read out by SQUID/DfMUX– DfMUX(Frequency Domain Multiplexing)

    • 8 TESs readout by 1 SQUID

  • Frequency comb

    21

    Inductor(8)

    Capacitor(8)

    8 combs per SQUID

    Frequency[kHz]

  • これまでの試験

    • Phase I– 望遠鏡組み込み試験(2012/4-6)

    • Phase II (2013/11-2014/1)– 試験観測(悪天候)

    • Phase II+(2014/3-4)– 好条件下の試験観測

    – ビームマップ観測➡光学系試験

    – キャリブレーション試験観測(skydip観測)

    – Astronomical targetの観測星形成領域、銀河中心領域、ブランクフィールド

    24

    η Carinae@350GHz

  • Installation to ASTE RX cabin

    25

  • Installation to ASTE RX cabin

    26

  • NGC6334I

    Band1 (270GHz) Band2 (350GHz)

    27

    date:2014/04/9-12Integration time:20 min x 4Map size: 14’ x 14’Scan method: lissajous 300”/s

    28” 22”

  • Galactic Center

    Band1(270GHz)

    Band2(350GHz)

    Galactic Longitude

    Gal

    acti

    c La

    titu

    de

    SgrB2 SgrB1 SgrASgrC

    SgrB2 SgrB1 SgrASgrC

    Data: 2014/4/8-12Scan: Lissajous Vpeak=600”/s, 4 patchesObs. Area: 1.56° × 0.5° = 0.78 sq. deg.Obs. Time: 29 scans x 28.5min= 13.8 hours

    SCUBA 850μm (Pierce-Price et al. 2000)

  • Beam profileBand1 (270GHz)

    • Median FWHM: 31.9”x27.8”• Median ellipticity: 1.14

    Band2 (350GHz)• Median FWHM: 26.6”x22.7”• Median ellipticity: 1.17

    30

    -25

    -20

    -15

    -10

    -5

    0

    -80 -60 -40 -20 0 20 40 60 80

    Po

    wer

    (dB

    )

    offset from peak (arcsec)

    Band1 (270GHz) ch.001

    Az

    El

    -25

    -20

    -15

    -10

    -5

    0

    -80 -60 -40 -20 0 20 40 60 80P

    ow

    er (d

    B)

    offset from peak (arcsec)

    Band2 (350GHz) ch.139

    Az

    El

    • やや楕円形状のビーム• 短軸側は回折限界を達成• サイドローブレベルが高い (典型的に約-10 dB)

  • Subref. defocus• 高いサイドローブレベル(約-10dB)の原因?• Axial/lateral defocusを考慮したFar-field patternの解析モデルでフィット

    ‐ 8.5m illumination, -4dB edge level

    • z offset = ±0.7mm で残差最小(Band1, band2とも)• モデルフィットでの副鏡axial focusの最適化手法を確立

    31

    Band1

    縦軸:Axial focus offset横軸:Lateral focus offset

    観測 モデル 残差

  • 時刻同期

    Time offsetなし Time offset: ~ -90msec

    37

    • PhaseII+での時刻付け方法アンテナ時刻ログ ➡ GPS信号ボロメータ時刻ログ➡ NTP

    • 高速スキャン時に、顕著な画像のゆがみ(原因)アンテナ時刻ログとボロメータデータ時刻ログのタイムスタンプのジッタ―(対策)ボロメータ時刻ログをGPS信号でトリガーして時刻付け

    SgrB2 リサージュスキャン v=600”/s,

  • Sgr B2 Lucky image

    Band2 (20140408122144) LABOCA ATLASGAL

    38

    アンテナ、ボロメータログ時刻間のジッタ―が少ない➡Wpeakが見えている

    22”

  • Phase IIIに向けて:• 高いサイドローブレベル

    (原因)副鏡位置の追い込み不足が原因➡ モデルフィットによる副鏡調整手法を確立した

    • ノイズ高速スキャン時のマップクオリティー(原因1)アンテナログ時刻とDfMAXログ時刻間のジッター➡ ボロメータ時刻ログをアンテナログと同じGPS信号で時刻付け(原因2)アンテナログのサンプリング不足➡ 望遠鏡を急加速しない。スプライン補間する。

    • ボロメータ読み出しのYield (約7割)(原因) Inductor chipの歩留り➡ 新Inductor waferの製作

    40

  • データ解析の現状

    • データ解析プロセスの確立– Opacity, flux calibration, pointing …

    • データ解析ソフトBoA–データ形式: MBFITSに準拠

    – APEXの標準解析ソフトウェア

    – Python2.3ベース

    ➡基本的なノイズ除去・マップメイキングに利用可

    • 先進的な相関ノイズ除去手法の検討も重要–相関雑音のモデル化

    –効果的なスキャンメソッド42

  • 相関ノイズの除去手法– ボロメータの信号は大気からの熱放射が支配的

    – 大気成分の除去手法• 大気放射成分はピクセル間の相関が非常に良い

    • 主成分分析などを使って相関成分を探す

    • 相関成分を生データから除去する

    Before

    After

    Correlation noise 田村, 2011

  • FFT of time stream data

    44

    White noise

    Frequency (Hz)

    Pow

    er (

    a.u

    .)

    Frequency (Hz)10-4 10-3 10-2 0.1 1 10 102

    Mars Raster Scan

    n Hz periodic noise

    高速スキャンによる周波数変調

  • Data Evaluation Start

    Flux Calibration Table Array Pattern (RCP) Opacity Table

    Beam Profile

    Flag Table

    Pointings

    Flux Calibration Accuracy

    Beam maps Skydips

    Pointing Accuracy Calibration Database

    Pointing Table

    Data Evaluation End

    Parity Table

    Data Evaluation Flow Observation DataEvaluation Table

    Evaluation Result

    Not established

    Established

  • カメラ開発の将来計画Apol(ASTE Polarimeter)

    Multichoric TES

    48

  • 49

    APol: ASTE polarimeter

    • PI: Robin Lee&Hua-bai Li (香港中文大学)

    • 直線偏波観測の実現

    ➡分子雲コア・フィラメントの磁場推定

    • 前置光学系として設置可能

  • 50

    • 6色同時観測可能➡より精密な物理量の決定

    • 現在の2焦点面を使用– 低周波側: 150, 220, 270GHz

    – 高周波側: 350, 450, 670GHz

    • 素子数:1086 pixel– 低周波側: 91×3=273 pixel

    – 高周波側: 271×3=813 pixel

    • ACT-pol/POLARBEAR2など

    • 高周波側は新規開発

    Multichroic TES bolometer

    A. Suzuki et al. 2012

  • まとめ

    • ASTE搭載用多色連続波カメラ– 星形成銀河やGMCを効率的に探査– 270GHz, 350GHzの同時観測が可能な連続波観測システム

    • ASTEへの搭載試験– 2014/4にGalactic sourcesの観測に成功– 光学系は大きな問題はなし

    • 2016年の科学運用に向けての開発– スキャン方法の検討、アンテナログ– 振動対策– Bolometer, Inductorの再作成➡歩留まり向上– データ解析の確立

    • 将来計画– Polarimeter搭載(2017年?)– 第2世代(multi-chroic TES bolometer)に向けた開発

    51