34
Izotópkutató Inté Magyar Tudmányos Akadémia Atomerőműtől a fúziós Atomerőműtől a fúziós erőműig. erőműig. Veres Árpád PhD, DSc, ny. ig.,tudományos tanácsadó, MTA Izotópkutató Intézet 1525 Bp. Pf. 77 e-mail: [email protected]

Atomerőműtől a fúziós erőműig

  • Upload
    hunter

  • View
    23

  • Download
    0

Embed Size (px)

DESCRIPTION

Atomerőműtől a fúziós erőműig. Veres Árpád PhD, DSc, ny. ig.,tudományos tanácsadó, MTA Izotópkutató Intézet 1525 Bp. Pf. 77 e-mail: [email protected]. Az előadás vázlata. Bevezetés (energiahordozók a világ teljes és a hazai villamos-energia felhasználásban). - PowerPoint PPT Presentation

Citation preview

Page 1: Atomerőműtől a fúziós erőműig

Iz

otó

pku

tató

Inté

zet

Mag

yar

Tu

dm

ányo

s A

kad

émia

Mag

yar

Tu

dm

ányo

s A

kad

émia

Atomerőműtől a fúziós Atomerőműtől a fúziós erőműig. erőműig.

Veres Árpád PhD, DSc, ny. ig.,tudományos tanácsadó,

MTA Izotópkutató Intézet 1525 Bp. Pf. 77 e-mail: [email protected]

Page 2: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

1. Bevezetés (energiahordozók a világ teljes és a hazai villamos-energia felhasználásban).

2. Atommaghasadással működő erőművek. 2.1. Kritikus üzemmódú, atomerőművek. 2.2. Gyorsítóval hajtott szubkritikus üzemű

atomerőművek, nukleáris hulladékelégetés.3. Atommagok fúzióján alapuló erőművek. 3.1. Mágneses plazmabezárás. 2.2. Az inerciális plazmabezárás.4. Összefoglalás.

Az előadás vázlata

Page 3: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

1. BevezetésA különböző energiahordozók részvétele a hazai villamos és a világ teljes

energia felhasználásában

szén 24,4 %; földgáz 35,1 %; olaj 2,2 %; megújuló 2,3 %; vízi 0,5 %; nukleáris 35,3 %, (2020-ra 60 %).

olaj 35 %; szén 25,3 %; földgáz 20,7 %; biomassza 10 %; vízi 2,2 % és egyéb 0,5 %; nukleáris 6,3 % (a villamos-áram arányában 15,3 %);

Page 4: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

A föld népesség és energiaigénye alakulásaÉv Népesség

(milliárd fő)Energiaigény

(Gigatonna per év )Megjegyzés, E-ekvivalens

2001 6 10 (olaj)* *1 Gt olaj ~ 125 erőmű (GW)

2011 7 12 (olaj)* Az energiaigény, becslés

2070 9** (csúcs) 15 (olaj)* **2100-ra 8,4 Mrd fő

2007, ENSZ 191 tagállam. 31-ben 439 atomerőmű üzemelt. A termelt villamos áram: 2,6×1012 kWh; (371,7 GW, benne Paks: 1,86 GW), ami a világ villamos-áram termelésének a 15,1 %-a (IAEA PRIS adatai). Német GBR (Bundesanstalt für Geowissenschaften und Rohstoffe) becslés: Az energiahordozó ásványi-anyagok „statikus élettartama” (készletek/éves termelés) 2004. év végén: Kőolaj 43 év, földgáz 64 év, kőszén és lignit >200 év, urán > 40 év (az urán élettartama, a feldolgozásnál visszanyert értékkel növelhető).A lakossági félelmek, a környezetvédelemi aggályok (atombomba, Csernobil, nukleáris hulladék,) a mai kritikus atomerőművek mellett új szubkritikus és fúziós atomerőművek kifejlesztésére serkentették a szakembereket.

Page 5: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

2. Atommaghasadással működő atomerőművek

1942, december 2, az első önfenntartó láncreakció, Chicagói Egyetem atom-máglya (Enrico Fermi, Szilárd Leó). 1946, aug. 6 és 9, atombomba.

1954 június 27, első atomerőmű, (5 MW) látképe, Obnyinszk, SZU.Sugárzó anyagok felhasználása: 1946, USA; 1950, SzU; 1954, M.O.

Az U atommagok neutron-befogásos hasadását 1939-ben (Hahn és Strassmann, német kutatók) fedezték fel

Page 6: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

235U92+n →137Cs55+ 96Rb37 +3n (1 láncreakciótag)

A 90-s és 150-s tömegszámok körül sok más variáció fordulhat elő.

235U

235U

96Rb37

137Cs55

n

Page 7: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

2.1. Kritikus üzemmódú atomerőművek

Kritikus az állapot, ha az önfenntartó láncreakció külső n-forrás nélkül valósul meg. Ez egy igen szűk neutron-intenzitás tartomány. A n-intenzitás tartomány alsó határa alatt a reakció leáll, a felső határt meghaladva, pedig veszélyesen megszalad (Csernobil). Ezért a láncreakciónak egy kritikus intenzitás-tartományon belül tartását szabályozó rudakkal kell biztosítani.A nukleáris ipar alapproblémái: a biztonság, a nukleáris hulladékok, a proliferáció-állóság és költségek kérdése.1.Generáció: 1954-60-s évek prototípus erőművei, 1954, SzU (5MW); 1956, UK (50 MW, majd 200 MW);, 1957, USA (60 MW). Ezek ma már szinte nem üzemelnek. 2.Generáció: 1970-80-s évek erőmű típusai (200-1000 MW). Ebbe a kategóriába tartozik mai atomerőművek többsége.3.Generáció: Az 1980-as évek után épült könnyű-, forró- és nyomott-vizes reaktorok (ABWR, EPR, APWR, AP1000, AES-2006, ACR-1000 és a paksi VVER-400-as).

Page 8: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

2.1. Kritikus üzemmódú atomerőművek folytatás

4. Generáció: (GFR) gyorsreaktort nagyobb biztonságúnak tartják. A nukleáris üzemanyagláncot ezek a reaktorok bezárnák (a kiégett fűtőelemeket reprocesszáló üzemekben dolgoznák fel, a kivont uránból és plutóniumból újra fűtőelemeket gyártanának, így a hulladékprobléma, az üzemanyag-ellátás is megoldódna). A forró hőmérséklet hasznosítható lenne hidrogéntermelésre.Megjelenését 2040. év körülire becsülik. Az eddigi tapasztalatok, de a költségesség okán is nehezen hihető, hogy ezen rendszerek széles körben elérhetővé válnának.

A 3. generációs erőművek jelene, meghosszításának, bővítésének és nukleáris hulladékénak a helyzete:

4. Generáció: (GFR) gyorsreaktort nagyobb biztonságúnak tartják. A nukleáris üzemanyagláncot ezek a reaktorok bezárnák (a kiégett fűtőelemeket reprocesszáló üzemekben dolgoznák fel, a kivont uránból és plutóniumból újra fűtőelemeket gyártanának, így a hulladékprobléma, az üzemanyag-ellátás is megoldódna). A forró hőmérséklet hasznosítható lenne hidrogéntermelésre.Megjelenését 2040. év körülire becsülik. Az eddigi tapasztalatok, de a költségesség okán is nehezen hihető, hogy ezen rendszerek széles körben elérhetővé válnának.

A 3. generációs erőművek jelene, meghosszításának, bővítésének és nukleáris hulladékénak a helyzete:

Page 9: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

A paksi atomerőmű blokkok, reaktortest és zóna látképe.

Zóna felülnézet

1 reaktorban: 42 tonna urán, 360 kötegben. 1 köteg: 126 pálca. A 4 reaktor: 1860 MW, (13,4 TWó, 37.6 %). Egy g 235U: 23 MWterm.

Reaktortest oldalnézet

reaktorzóna

köteg

Page 10: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

A hazai atomerőmű bővítés helyzete 2009, április 30, az országgyűlés (330 igen, 6 nem, 10 tartózkodás)

hozzájárul új atomerőműi blokkok paksi építéséhez.

A bővítésre javasolt négy blokktípus közül a VVER 91/90 (víz-vizes energetikai reaktor) és az EPR (Európai nyomott-vizes reaktor) mellett több szakmai előnyt találtak a szakértők.

Page 11: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

A bővítésre szánt blokkok paksi telephelyi elhelyezése, (A. Cserháti, ETE konferencia, Siófok, 2009. június 3-4).

Page 12: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

Radioaktív hulladék problémák 2015-ig várhatóan 260 000 t nukleáris hulladék keletkezik.

Eloszlása: Transzurán (TrU) és hasadási (Ht) termékek.• ~ 70000 t. >500 t. Pu USA.• > (1/3) Oroszország, ill. régi SZU. • < (1/3) Európa, Távol kelet, stb. 1 tonna (33 MWd/kg kiégett) fűtőelem TrU és Ht tartalma:

TrU T1/2 (év) (g/t)239Pu 24 400 5450*237Np 2 100 000 450243Am 7 400 100245Cm 8 500 1,2 * Össz. Pu : 9 700

Ht. T1/2 (év) (g/t)

99Tc 210 000 810135Cs 2 300 000 360129I 16 000 000 170

Ezeknek a hulladékoknak a biztonságos tárolására. átalakítására számos erőfeszítés történt, különös tekintettel a lakossági félelmekre is.

Page 13: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

Radiotracer Studies of interfaces, ELSEVIER, Amsterdam, 2004, ed. G. Horanyi.

Chapter 10.2, Á. Veres, Environ-mental problems.

• A mélygeológiai hulladék-tárolás nyomjelzés-technikai vizsgálatai.

• Határfelületek közötti izotóp-csere. Piro-kémiai elválasztás.

• Nukleáris hulladékégetés spallációs magreakcióval 359-444 old.

A szubkritikus atomerőművek helyzete:

Page 14: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

2.2. Gyorsítóval hajtott szubkritikus atomerőmű, (spallációs magreakció, külső neutronforrás)

GeV

p

target atommag

atommagon belüli kaszkádok

atommagok közötti kaszkádok

erősen gerjesztett atommag

hasadás,

részecske emisszió

Kaszkád képződm., p, n, stb.

proton

neutron

n

maradék magelpárolgás

Page 15: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

Gyorsító séma (spallációs neutronforrás) a szubkritikus üzemű atomerőművek hajtására.

Injektor 300 MHz 600 MHz

RFQ DTL (CCL = Coupled Cavity Linac)

80 keV 7 MeV 100 MeV 2300 egy-üreges rezonátor 1000 MeV

|------ 15 m -------|-------- 60 m ---------|--------------------------------- 530 m ---------------------------------|

Az 1 GeV, 100 mA nyalábáramú protongyorsító blokkdiagramja

Egy ilyen gyorsítóval hajtott, 2×500 MWt-os erőműben, évenként 400 kg 39Pu és 100 kg aktinoida (TrU) alakítható át (égethető el).

Page 16: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

Egy gyorsítóval hajtott szubkritikus atomerőmű japán koncepciója [Takizuka, JAERI-Conf. 99-003, 150, 1999]

Szupravezető lineáris protongyorsító Protonnyaláb

1 GeV - 33 mA CW 100 MWe Gőzgenerátor Hálózatra 230 MWe 820 MWt Nyalábablak gőzturbina

Spallációs target Váltóáramú generátor Szubkritikus zóna Szekunder Na pumpa Primer Na pumpa Keff = 0,95

Page 17: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

USA 70000 tonna kiégett fűtőelem elválasztása. Az alsókeretben az ATW égető (középkör)

67000 t. uránium Kiégett fűtőelem szétváasztása 70000 t. 2400 t. hasadási termék 299 t. 600 t. TrU <1 t. TrU

2999 t. <1 t. TrU

APT Gyorsító egység 10 % Tároló Újra 560 GW-év hálózati energia feldolg. Protonnyaláb ATW égető Hőcserélő Tip E: 1-3 GWt gőzhajtású E. termelés kb 40 % Pumpa Nyalábvezető

Folyékony Spallációs ólomhűtés neutronforrás

Transzm. tartomány

1. 70000 t szétválasztása: 67000 tonna urán, 600 tonna TrU és 2400 tonna hasadási termék.

2. A 67000 t U feldolgozása új fűtőelemmé. Ez a tekintélyes mennyiség növeli az alap-anyag tartalékot.

3. 600 t TrU és 2400 t hasadási termék a szubkritikus erőmű fűtőeleme. Ez 300 tonnára, 1/10-ére csökken.

4. ATW áramtermelése: 560 GW-év + 10 % APT gyorsító üzemeltetés. (Paksi termelés: 1,6 GW-év ennek kb. a 350-ed része).

Page 18: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

Az USA programja a 2100-ig felgyülemlő kiégett-fűtőelemek feldolgozására és hasznosítására.

Beller et al, Nucl. Instr. Meth. A463, 468, (2001)

0

20000

40000

60000

80000

100000

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Év

Kiég

ett f

.e. (

t, m

3)

0

200

400

600

800

1000

Int.

ener

gia

(GW

év)

t m3 m3 GWév

2036-ig a kiégett fűtőelem mennyisége: 86317 tonnára nő, amelyben transzuránokon kívül 93 t 99Tc és 20 t 129I a hasadási termék. Az 560 GW-év 800 GW-év lesz 2100-ra.

Page 19: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

3. Atommagok fúzióján alapuló erőművek

Ahhoz, hogy két könnyű atommag egyesülhessen nagy sűrűségű és forró (DT fúzió küszöbenergia 77 MC°) plazmaállapotba kell hozni a gázkeveréket. Az atommagok halmazállapotai:

Szilárd Folyékony Gáz Plazma*

*Plazma-állapotban a részecskék mozgási energiája sokkal nagyobb az atomi kötésnél. Az ütközéseknél az atommagról leszakadnak az elektronok és atommagok gázkeveréket alkotnak.

Page 20: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

Fúziós-plazma bezárási modellek

1. Gravitációs bezárás – asztrofizikai környezet.2. Mágneses bezárás (Tokamak). A külső mágnes-tekercsek és

plazmaáram belső mágneses tereinek eredője képezik az összetartó mágneses teret. Itt a külső mágnestér gátja miatt a kialakuló forró plazma részecskesűrűsége igen kicsi: 1012-1016 cm-3, és a lineáris mérete, pedig rendkívül nagy: 10-1000 cm.

3. Inerciális bezárás (Lézer). Nincs mágnes-gát, semmi sem gátolja a forró plazma kialakulását. A bezárási idő és a részecske tehetetlenségi (inercia) ideje azonos, innen az elnevezés is. A részecskesűrűség igen nagy: 1025-1027 cm-3 és a lineáris méret, pedig igen kicsi: 1-100 μm.

Page 21: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

A deutérium és a trícium fúziójának a szemléltető ábrája.

Pozitív töltésű atommagok erősen akadályozzák a fúziót (Coulomb gát*). Ez a gát a D és T fúziónál 77 millió C° (küszöb-energia). Mágneses bezárásnál a plazma kialakulás és fennmaradás fel-tétele: az n részecskesűrűség és a t élettartam szorzata az nagyobb kell, hogy legyen a Lewson kritikus értéknél:

n·t > 1014 s·cm-3

*

Page 22: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

Mágneses, lézeres plazmaméretek és a fúzió

A Tokamak alapvető részei: tórusz alakú vákuumkamra, toroidális tekercs, transzformátor és további kiegészítő tekercsek.

Nagy plazmaméret: 01-10 m.

Több szimmetrikus kisenergiás lézer lökéshullámai a 2 mm Ø gömb T+D keverék (20 K°) sűrűségét össze-nyomja (100x-os) néhány mikronra. Egy erős lézer gyújt: Belövés → kompresszió → gyújtás → fúzió

Page 23: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

Kapszula (hohlraum) és a DT gömb a gyújtáshoz. (UCRL-5200-01-11, December 30, 2001)

Indirekt fúzió, kapszulafűtés több millió hőfokra, ion és nehézion nyalábbal. Probléma a kis hatásfok.

Direkt fúzió: Fókuszált lézer gyújtja a reakciót. Gyors direkt fúzió: Az összenyomás kis E.-ás lézerekkel történik.

Page 24: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

Indirekt gyújtás, (a göböcske kapszulában)

NIF target-kamraØ:10 m, 192 lézer nyaláb

Nova lézer target-kamra Ø: 4,5 m, 10 lézer nyaláb

Page 25: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

Lézer (inerciális) és mágnes bezárásos reaktormodulok

Tokamak fejlesztés 30 év ~10 Mrd Є.ITER 2005, világ legnagyobb mágneses fúziós berendezése (Cadarache Fr. O.). 500 MW energiát állít elő 10 percig. 4.7 Mrd Є kerül. 20 évi üzem ktg. ~ 5 Mrd $.

A KOYO-F lézerrel hajtott erőmű gyors-gyújtású reaktormodul keresztmetszeti nézete. 32 összenyomó lézernyaláb, egy gyújtólézer és két target belövő vezeték. A TD gömb (középen) 150×-s nagyítású.

Page 26: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

Japán KOYO-F gyors fúziós-erőmű látképe, főbb adatai, bal alsó sarokban a reaktor.

vErőmű net teljesítm.

4×300 MW

32 léz. Öny. 1köt. Gyújt.

1,1 MJ 0,1 MJ

Fúzió E/imp 200 MJ

Reaktor ism 4 Hz

Lézer ism 16 Hz

Burok E.× 1,2

Wel/Wth hf. 41,5 %

Recirk. E 240MW

Gekko XII 2001 gyf.

Japán- Brit kcs

Page 27: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

A 2007-ben indult EU: HiPER gyorsfúziós berendezés látképe és alapadatai.

UK. Rutherford Appleton Labor.• Konstrukciós fázis: 2011/12.•Kamra Ø: 10 m.•40 db össze-nyomó lézer 200 kJ.•Gyújtó lézer 70 kJ.•Sűrűség igény: 300-400 g/cm3.

Page 28: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

High Average Power Laser Program (HAPL) USA. (8 labor, 4 egyetem, 6 vállalat)

Page 29: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

A HAPL program folyamatának és fázisainak leírása

Indult 2001-ben, a kritikus részek (targetgyártás, belövés, optika és fúziós kamra) kutatás-fejlesztésével.

• I. fázis. Komponensek egységekké fejlesztése (2006).• II. fázis. A működésképesség demonstrálása, erőmű üzemelési

körülmények között (2006-2012).• III. fázis. Folyamatos termonukleáris égést produkáló eszköz

tesztje. 300 µm Ø, 1000 gcm-3 20 °K labdacs. Fúzió ~ 10 M°C. 2020. év.

• Alapadatok: 1750 MW, 5 Hz; Kamra Ø: 11 m; a belső falvastagság: 3,5 mm; Belépő folyékony lítium: 405 C°, a kilépő hőmérséklet:575 C°. Az áramlási sebesség: külső 3,7 m/s; belső: 0,15 m/s. A wolframburkolat maximális hőmérséklete <2400 C° lehet.

Page 30: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

1 GW teljesítményű erőmű által 1 év alatt termelt energia.E1 = 109×365×86400 s = 3,15×1016 J

Egy molekula) DT fúziójánál 17,6 MeV energia keletkezik, ami = 17,6×106×1,6×10-19 =2,8×10-12 J. 1 mol (6×1023 db).

E2 = 2,8×10-12×6×1023 =1,68×1012 J.

E1/E2 ≈ 2·104 mol 40 kg D és 60 kg T.Az USA-ban 1955-1996 között 226 kg tríciumot termeltek. Egy 600 MW erőmű primer hűtőköri lítiumból 16,9 kg T/év termelhető (önköltségi ár: 4 500 000 $/kg). A 60 kg T ára: 270 millió dollár, ez 1 kWó áram költségében ~ 3 cent~ 6 Ft (Paks 11,16 Ft/kWó). A deutérium vízben: 1/6000, korlátlan mennyiségben áll rendelkezésre, költsége a tríciumhoz képest minimális.

•A fúziós erőmű T és D üzemanyag igénye

Page 31: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

A fúzió másodlagos folyamatai33H(H(22H,nH,nγγ))44He reakció sémája He reakció sémája (VÁ, Japán ea., részlet, 1977)(VÁ, Japán ea., részlet, 1977)

44HeHe55HeHe

MeV MeV n,14, 1 MeV n,14, 1 MeV

TD; 17,6 MeV TD; 17,6 MeV

-0,9 MeV-0,9 MeV

//nn= 5,6×10= 5,6×10-5-5

αα3,5 MeV3,5 MeV

• Az 1000 MW energiát 3×1020 fúzió/s állítja elő. A fúziót kísérő n és hozambecslések:

• Neutron: ~ 3×1020 n/s.• *: 3×1020×5,6×10-5 ~

1,7×1016 /s.• A Li, C, stb. hűtőközeg

(n,), Ekin+Eköt >10 MeV **: ~ 3×1016 /s.

• Össz-: ~ 4,7×1016/s.• A 10 MeV feletti -k a

védőközegben (,n)-el foto-neutront keltenek.

• Foto-neutron hozam: 1012n/s.

• Az 1000 MW energiát 3×1020 fúzió/s állítja elő. A fúziót kísérő n és hozambecslések:

• Neutron: ~ 3×1020 n/s.• *: 3×1020×5,6×10-5 ~

1,7×1016 /s.• A Li, C, stb. hűtőközeg

(n,), Ekin+Eköt >10 MeV **: ~ 3×1016 /s.

• Össz-: ~ 4,7×1016/s.• A 10 MeV feletti -k a

védőközegben (,n)-el foto-neutront keltenek.

• Foto-neutron hozam: 1012n/s.

Page 32: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

1. A kritikus üzemmódú 3. generációs atomerőmű-blokkok 20-40 éves hazai meghosszabbítása várható.

2. 4. generáció, zárt üzemanyaglánc (kiégett fűtőelem újra feldolgozása, a kivont U és Pu új fűtőelemként felhasználása). Sok a tisztázatlan kérdés. Úgy véljük, hogy érdemben nem tudják befolyásolni a nukleáris energetika jövőjének alakulását.

3. A szubkritikus, gyorsítóval hajtott atomerőművek piaci elterjedése a 2050-s évekre várható. Előnyei: Lekapcsolhatók, a veszélyes nukleáris hulladékok rövid életűekké átalakíthatók, (elégethetők).

4. Összefoglalás

Page 33: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

4. ITER (mágnes bezárás) fúziós berendezés. Elektromos energia termelésre nem alkalmas és tríciumból sem lesz önfenntartó. Tesztelhetnek vele: trícium-termelési eljárásokat, alfarészecske fűtőhatást plazmára, stb.

5. Lézerhajtású (inerciális) fúziós erőművek: KOYO-F, HiPER, HAPL, a tapasztalatok rendkívül biztatóak, erőműként megjelenése a 2030-as évekre tehető.

A jövő atomerőművének gondolom.

4. Összefoglalás folytatása

Page 34: Atomerőműtől a fúziós erőműig

Izo

tóp

ku

tató

Inté

zet

Mag

yar

Tu

do

mán

yos

Aka

dém

ia M

agya

r T

ud

om

ányo

s A

kad

émia

2011. Február 3, MiskolcOMBKE BHSz, 2011. évi rendezvényprogram

Köszönöm a figyelmet!

www.iki.kfki.hu