46
AUDICIÓN

Audición

Embed Size (px)

DESCRIPTION

Hay muchas otras cosas porque no lo hicimos nosotros.

Citation preview

Page 1: Audición

AUDICIÓN

Page 2: Audición

Oído Sonido:

Propagaciones alternativas de compresiones y rarefacciones que viajan a través de un medio elástico, el aire.

Los sonidos transportan energía por el aire a una velocidad de alrededor de 340 m/s.

Para oir el oído debe :Captar esta energía mecánica (Oído

Externo) Transmitirla al órgano receptor (Oído Medio)Transformarla en señales eléctricas (Oído

Interno).

Page 3: Audición

Oído

OIDO EXTERNO Oreja: actúa como reflector para captar eficazmente el

sonido y enfocarlo hacia el conducto auditivo externo . Tímpano: fino diafragma de 9 mm de diam.

OIDO MEDIO Cámara ocupada por aire Se abre a la faringe por la Trompa de Eustaquio La Energía Mecánica es transportada por el

movimiento de los tres Huesecillos:Martillo – Yunque – Estribo

El pie del Estribo se inserta en la Ventana Oval

Page 4: Audición

Oído

Page 5: Audición

Oído Interno

Caracol (Cóclea)

Tres vueltas de diámetro progresivamente menor dentro de una estructura cónica dentro del hueso temporal.

Tres tubos llenos de Endolinfa que giran de forma helicoidal alrededor de un núcleo óseo cónico, el modiolo.

Page 6: Audición

Escala Vestibular: Porción superior. Su base es la Ventana Oval. Escala Timpánica: Porción inferior. Su base es la Ventana Redonda. Escala Media: o conducto coclear.

La M. Vestibular ( M. De Reissner) separa la E. media de la E. Vestibular.

La M. Basilar separa la E. Media de la E Timpánica. Estructura compleja donde se realiza transformación auditiva.

La Escala Vestibular y Timpánica se comunican entre si en el Helicotrema, en el vértice del caracol.

Page 7: Audición
Page 8: Audición

Oído Interno

Page 9: Audición

Captación de Energía Sonora

Los aumentos o disminuciones de la presión de aire causados por los sonidos empujan y traccionan eficazmente el tímpano, desplazándolo hacia dentro y hacia fuera.

Los movimientos timpánicos desplazan el martillo fijado a su superficie internas.

Los movimientos de los huesecillos son complejos y dependen de la frecuencia y de la intensidad del sonido.

Page 10: Audición

El impulso del Yunque desplaza el estribo, empujándolo o retirándolo de la M. Oval, lo que empuja y atrae de forma cíclica el liquido de la escala vestibular

Los cambios de presión que se propagan en el liquido de la

E. Vestibular lo hacen a la velocidad del sonido.

El Liquido choca contra el tabique coclear, lo que aumenta la presión de la E. Timpánica, causando un desplazamiento de la masa liquida y abombamiento de la M. Redonda.

Page 11: Audición

Captación de Energía Sonora

El desplazamiento de la M. Basilar permite la percepción del movimiento.

Cada uno de los estímulos sonoros, provoca movimientos de un volumen minúsculo de líquido en cada una de las 3 cámaras.

Page 12: Audición

Membrana Basilar

Analizador mecánico de la frecuencia de los sonidos.

Sus propiedades mecánicas no son uniformes, sino que cambian de manera continua a través de ella.

En su extremo apical la amplitud es cinco veces mayor que en la base.

A medida que las cámaras del caracol se van haciendo mayores desde el vértice a la base la membrana basal disminuye de grosor.

Es fina y flácida en el vértice y gruesa tensa en la base.

Page 13: Audición

Membrana Basilar

Page 14: Audición

El patrón global de movimiento de la membrana es una onda que se desplaza

Cada onda alcanza su amplitud máxima en la posición aproximada de la frecuencia de estimulación, para después disminuir rápidamente de tamaño a medida que progresa hacia el vertice del caracol.

Page 15: Audición

La membrana basilar de los mamíferos esta sintonizada para una serie de frecuencias a lo largo de su trayecto.

El vértice para frecuencias mas bajas (20 Hz) y en la base hasta 20 KHz.

Esta disposición es un Mapa Tonotópico. Sonidos complejos, más de un componente, son desglosados y cada

uno es analizado por separado.

Page 16: Audición
Page 17: Audición

Órgano de Corti

Órgano Receptor del Oído Interno

Células Ciliadas y diversos tipos de Células de Sostén.

Reborde epitelial que se extiende a lo largo de la membrana basilar.

Las 16.000 cel ciliadas de cada caracol están inervadas por 30.000 fibras nerviosas aferentes.

Las células ciliadas y las fibras del nervio auditivo están organizadas tonotópicamente.

Page 18: Audición

Órgano de Corti

Células Ciliadas Internas (CCI) :Fila única .

Células Ciliadas Externas (CCE): A partir del vértice se encuentran tres filas .

Células Falángicas (de Deiters): Se encuentran en la base de las CCE, a las que sostienen.

Células Pilares: Delimitan y sostienen el espacio entre las CCE y CCI.

Células Interdentales:Sostienen a la Membrana Tectoria

Page 19: Audición

Órgano de Corti

Membrana Tectoria:Reborde epitelial adyacente al Órgano de Corti. Lamina gelatinosa voladiza.

Los Estereocilios mas largos de las C. Ciliadas Externas se encuentran íntimamente unidos a la superficie inferior de la Membrana.

Page 20: Audición

Órgano de Corti

Debido a que la M. Basilar y M. Tectoria se mueven alrededor de puntos de inserción distintos, sus desplazamientos oscilatorios van acompañados de movimientos de cizallamiento de atrás a adelante entre la superficie superior del Órgano de Corti y la superficie inferior de la M Tectoria .

El desplazamiento de los haces de Cilios es el estimulo que excita a la Célula Ciliada, lo que se traduce en un Potencial de Receptor.

Por su disposición tonotopica cada célula ciliar es mas sensible a la estimulación en una frecuencia especifica.

Page 21: Audición

Órgano de Corti

Page 22: Audición

Caracol como amplificador

Una gran proporción de la E del estímulo se ocupa para superar la amortiguación de los líquidos.

El Caracol tendría un sistema de amplificación.

Las Células Ciliadas Externas potenciarían la sensibilidad coclear y la selectividad de las frecuencias.

Estas células sólo dan ocasionales proyecciones aferentes, pero reciben múltiples eferentes, cuya activación disminuye la sensibilidad coclear y la discriminación de las frecuencias

Page 23: Audición

Transformación sensitiva en el oído

Page 24: Audición

Células Ciliadas

Las Células Ciliadas perciben el sonido y equilibrio.

La estimulación mecánica abre los canales iónicos .

La corriente que fluye altera el potencial de membrana lo que regula la liberación del transmisor sináptico.

La Fibra nerviosa aferente es excitada por este NT, disparando un patrón de potenciales de acción que codifican las características del estimulo como intensidad, su evolución temporal y su frecuencia.

.

Page 25: Audición

Células Ciliadas Haz de Cilios , cuya

longitud varia.

Cada Estereocilio es un cilindro rígido con un citoesqueleto.

Cinetocilio es el más alto. Actúa como palanca que transmite las fuerzas del estimulo a los estereocilios que son sensibles a los estímulos mecánicos.

Page 26: Audición

Transformación de Energía

Estimulo + : Hacia su extremo mas alto. Abre canales adicionales y el flujo de entrada de Cationes resultante despolariza a la célula.

Estimulo - : Hacia extremo corto.Cierra los Canales de Transformación que estaban abiertos en reposo e Hiperpolariza a la célula.

Page 27: Audición

Los canales de las Células Ciliadas responden a la tensión mecánica.

El Canal tiene una puerta molecular controlada por la tensión de un elemento

elástico llamado Muelle de Regulación, sensible al desplazamiento del haz de cilios.

Muelle de Regulación:

Unión de extremo. Fibra fina, formada por 2 bandas moleculares

Page 28: Audición

Cuando los cilios se desvían se produce una corriente eléctrica similar a la producida al estimular eléctricamente la célula

La desviación + de los cilios produce despolarización por entrada de K

La despolarización abre los canales de Ca sensibles a voltaje aumentando la despolarización

El aumento de Ca, estimula canales de K sensibles a Ca, produciendo salida de K y repolarización de la célula

El Ca es secuestrado y bombeado fuera de la célula

Page 29: Audición

Las Células Ciliadas reciben impulsos eferentes desde neuronas del tronco.

Forma típica de las sinapsis periféricas.

El principal NT es la ACh.

También hay péptido del gen relacionado con la Calcitonina (CGRP).

Hiperpolariza a la Célula Ciliada.

Page 30: Audición

Células Ganglionares La información se transmite desde las

células ciliadas a las neuronas cuyos cuerpos se encuentran en el Ganglio Coclear. (Ganglio Espiral)

Transmisión química.

El 90% de las células ganglionares termina en las CCI.

Cada axón inerva una sola célula ciliada.

Cada CCI dirige sus aferencias a varias fibras nerviosas. (X 10)

La información nerviosa de la audición procede casi por completo de las CCI.

Page 31: Audición

Células Ganglionares

Las aferencias de cada CCI son recogidas por muchas fibras nerviosas que codifican de forma independiente la información sobre la frecuencia y la intensidad de los sonidos.

Cada CCI lleva hacia el encéfalo una información de naturaleza algo distinta a través de axones diferentes.

En cualquier punto del caracol las neuronas responden mejor a la estimulación por la frecuencia característica de las células ciliadas contiguas.

Page 32: Audición

Células Ganglionares

Cada célula Ganglionar inerva a multiples CCE.

Se ignora si contribuyen a al análisis del sonido en el Encéfalo

Las CCI reciben escasa información aferente, pero sobre estas existen contactos eferentes con aferentes.

La CCE establecen amplias conexiones con los nervios eferentes

Page 33: Audición

Núcleos Cocleares

Se encuentran en la unión Bulbo-Protuberancia medial al Pedúnculo Cerebeloso Inferior.

Tres componentes principales:Núcleo Coclear Dorsal (NCD)Núcleo Coclear Antero-ventral (NCAV)Núcleo Coclear Póstero-ventral (NCPV)

Todas las fibras del n. auditivo se dividen en 2 ramas cuando penetran al tronco: La rama ascendente termina en el NCAV La rama descendente inerva a NCD y NCPV

La organización de los núcleos es tonotópica. Las células con frecuencias características cada vez mayores se disponen en una progresión ordenada.

Page 34: Audición

Núcleos Intermedios del Tronco

Los axones de varios tipos de células de los n. cocleares se proyectan hacia varios núcleos situados en niveles mas altos del tronco.

La información acústica se procesa en vías paralelas, cada una de las cuales esta dedicada al análisis de una característica concreta de la información auditiva.

Los diversos tipos de células de los núcleos cocleares se proyectan a núcleos intermedios específicos de forma que la separación de los flujos de información comienza ya en los núcleos cocleares.

Page 35: Audición

Núcleos Intermedios del Tronco

Existen amplias interacciones entre las estructuras auditivas de ambos lados del tronco, por tanto, para lograr una excitación óptima, muchas neuronas responden a la estimulación de cada oído y algunas requieren patrones concretos de estimulación en ambos oídos.

Como consecuencia las lesiones unilaterales afecta a ambos oídos.

Page 36: Audición

Núcleos Intermedios del Tronco

El NCAV contribuye con axones al Cuerpo Trapezoide que se extiende en la Protuberancia a tres núcleos del Complejo Superior de la Oliva:

Olivas Superior Lateral

Olivas Superior Medial

Núcleo del Cuerpo Trapezoide.

NCPV aporta axones al Cuerpo Trapezoide y proporciona impulsos aferentes a la Oliva Superior Lateral a través de la estria acustica intermedia.

NCD no emite proyecciones a la protuberancia.

Page 37: Audición

Nucleos Intermedios del Tronco

La Oliva Superior Medial localiza la fuente de sonido a lo largo del eje horizontal.

El sonido que procede de una fuente llega antes al oído mas cercano que al opuesto.

La Oliva Superior Lateral también interviene en la localización del sonido pero utiliza la información sobre la intensidad para calcular el lugar de procedencia.

Page 38: Audición

Nucleos Intermedios del Tronco

Lemnisco Externo:

Complejo Olivar Superior

+

NCD contralateral (estría acustica)

Algunos axones terminan en su núcleo pero la mayoria se

extiende al Tuberculo Cuadrigemino Inferior del Mesencefalo.

Page 39: Audición

Nucleos Intermedios del Tronco

TUBERCULO CUADRIGEMINO INFERIOR Dos componentes importantes:

Dorsal y Central

La parte Dorsal tiene cuatro capas de neuronas que reciben aferencias tanto auditivas como sómato-sensitivas.

La parte Central tiene distribución tonotópica. Estructura muy compleja.

También interviene en la localización de sonidos

Page 40: Audición

Núcleos Intermedios del TroncoNUCLEO GENICULADO MEDIAL

Paso Intermedio talámico del sistema auditivo

Consta de al menos tres subdivisiones, la mejor conocida es el Núcleo Principal.

La neuronas del Núcleo Central del TCI se proyectan al Núcleo Principal del Núcleo Geniculado Medial a través del brazo del TCI.

El Núcleo Principal del NGM presenta una organización tonotópica

Page 41: Audición

Corteza Cerebral

Existen varias áreas auditivas distintas situadas en la superficie dorsal del Lóbulo Temporal.

La proyección mas importante (Núcleo Principal) se extiende por la Corteza Auditiva Primaria (área A1 o

areas 41 y 42 de Brodmann) en la Circunvolucion Transversal de Heschl.

Page 42: Audición

Corteza Cerebral

Representación tonotópica de las frecuencias características.

Responde a estimulación de ambos oídos pero su sensibilidad no es idéntica. Columnas de sumación: se + “más” con la aferencia

contralateral Columnas de supresión: se + con las aferencias unilaterales,

pero se – con la aferencia contralateral.

Las columnas de sumación y supresión se extienden formando ángulos rectos con el eje de la representación tonotópica.

Page 43: Audición

PROCESAMIENTO CORTICAL

En la Circunvolución Transversa se mantiene una distribución Tonotópica de las frecuencias acústicas

Page 44: Audición

PROCESAMIENTO CORTICAL

Page 45: Audición

PERCEPCION AUDITIVA EN PRIMATES

EL PROCESAMIENTO DE LOS ESTIMULOS AUDITIVOS SE EFECTUA PROGRESIVAMENTE EN LAS REGIONES DEL NUCLEO (CORE), CINTURON (BELT) Y PERI-CINTURON (PARABELT). DESDE ALLI LA ACTIVACION VIAJA HACIA LA CORTEZA FRONTAL Y HACIA LA REGION PARIETAL.

Page 46: Audición

Mecanismos del QUE y DONDE

El área temporal superior posterior, en conjunto con el área parietal inferior, se activa con estímulos visuales y auditivos en movimiento, actuando en la localización de objetos sonoros que se desplazan en el espacio.