Bài giảng kỹ thuật cảm biến phần 4 : Cảm biến nhiệt độ

Embed Size (px)

DESCRIPTION

Bài giảng kỹ thuật cảm biến phần 4 : Cảm biến nhiệt độBài giảng kỹ thuật cảm biến phần 4 : Cảm biến nhiệt độ

Citation preview

  • Bi ging

    K Thut Cm Bin (sensors)

    1

    Hoang Si Hong

    ----2011----

    Faculty of Electrical Eng., Hanoi Univ. of Science and Technology (HUST),

    Hanoi, VietNam

    Hoang Si Hong-HUST

    3

  • Ngun tham kho

    Note: Bi ging mn hc ny c tham kho, trch dn v lc dch t cc ngun sau:

    Sch

    - K thut o lng cc i lng in tp 1, 2- Phm Thng Hn, Nguyn Trng Qu.

    - Cc b cm bin trong o lng-L Vn Doanh

    - Cc b cm bin-Nguyn Tng Ph

    - o lng in v cc b cm bin: Ng.V.Ho v Hong S Hng

    - Sensor technology handbook (edited by JON WILSON)

    - Elements of Electronic Instrumentation and Measurement (Prentice-Hall Company)

    - Sch gii thch n v o lng hp php ca Vit Nam

    Bi ging v website:

    - Bi ging k thut cm bin-Hong S Hng-BKHN(2005)

    - Bi ging Cm bin v k thut o:P.T.N.Yn, Ng.T.L.Hng BKHN (2010)

    - Bi ging MEMs ITIMS BKHN

    - Mt s bi ging v cm bin v o lng t cc trng i hc KT khc Vit Nam

    - Website: sciendirect/sensors and actuators A and B

    Hoang Si Hong-HUST 2

  • Ni dung mn hc v mc ch

    Ni dung Chapter 1: Khi nim chung v Cm bin (2b)

    Chapter 2: Cm bin in tr (2b)

    Chng 3: Cm bin o nhit (2b)

    Chng 4: Cm bin quang (2b)

    Chng 5: Cm bin tnh in (2b)

    Chng 6: Cm bin Hall v ho in

    Chng 6: Cm bin v PLC(1b)

    Mc ch: nm c cu to, nguyn l hot ng v ng dng ca

    cc loi cm bin thng dng trong cng nghip v i sng. Nm

    c xu th pht trin chung ca cng ngh cm bin trn th gii.

    Hoang Si Hong-HUST 3

  • Hoang Si Hong-HUST 4

    Chng 3: Cm bin o nhit

    Ni dung Khi nim chung

    Nhit k gin n

    Cm bin cp nhit in (Thermocouple)

    Cm bin nhit in tr (RTD)

    Cm bin nhit da trn tnh cht ca diot v tranzito

    Ho k

    Surface acoustic wave (SAW) v dao ng thch anh

    Bao nhiu ?

  • Hoang Si Hong-HUST 5

    Khi nim

  • Hoang Si Hong-HUST 6

    Khi nim

  • Hoang Si Hong-HUST 7

    Nhit k gin n dng cht rn

  • Hoang Si Hong-HUST 8

    Nhit k gin n dng cht lng

  • Hoang Si Hong-HUST 9

    Cm bin cp nhit in

    Nguyn l:

    - Hiu ng thomson: vi vt liu ng nht A, trn n c hai im phn bit

    khc nhau l M v N c nhit tng ng l t1 v t2, th gia chng s

    xut hin mt sut in ng emn = tch phn (t t1->t2) ca dt, trong

    l h s vt liu thomson cho trc

    - Hiu ng Peltier: hai vt liu Av B khc nhau tip xc vi nhau ti mtim no th xut hin mt sut in ng eAB(t)

    M

    (t1)

    N

    (t2)A

    A Bt

  • Hoang Si Hong-HUST 10

    Cm bin cp nhit in

    Nguyn l:

    - Hiu ng seebeck: kt hp hai hiu ng ni trn -> xut hin sut in ng

    nhit in eT(t) = tch phn t t1 n t2 ca (A B) dt + eKM(t) eJN(t)

    - Trong A , B l h s vt liu thomson ca hai vt liu A, B tng ng.

    t1 < t2 l nhit tng ng ti hai im khc nhau.

    - Nu gi nhit mt u khng i bng khng C (0oC) (nhit u t

    do) th xut hin sut in ng ra mt chiu u cn li (u lm vic,

    nhit t) t l vi nhit : ET (t) = f(t) t1

    M K

    N J

    t2

  • Hoang Si Hong-HUST 11

    Vt liu ch to

  • Hoang Si Hong-HUST 12

    Cu to

    (hn im v cch li hnh vy c)

  • Hoang Si Hong-HUST 13

    Cu to

  • Hoang Si Hong-HUST 14

    Chng loi

  • Hoang Si Hong-HUST 15

    Chng loi

  • Hoang Si Hong-HUST16

    c tnh

  • Hoang Si Hong-HUST 17

    Cc nguyn nhn gy sai s

    - Sai s do nhit u t do thay i. Khi khc , u t do c t mi

    trng khng C, nhng trong thc t nhit u t do khc khng C

    - Sai s do s thay i in tr ng dy, cp nhit hoc ch th

    - Sai s do t khng ng v tr, hng hoc din tch tip xc qu b. Thng

    thng ngi ta a chiu su ca cp nhit vo mi trng cn o khong

    t5-10 ln so vi ng knh dy ca cp nhit.

    - Hai dy cp nhit b m c th gy ra sai s ti 20% v in p ra tng gp 10

    ln. Nu dy dn khng c v bc chng nhiu v t cm bin trong in

    trng ca ng dy cao th (1-5 kV) th n s chu nh hng ca nhiu in

    dung v sai s ln n vi %. Chm mt vo ngun 220 VAC sai s c th ln

    n 10%.

    - Can nhit b t mi hn cng gy ra sai s.

    - Chn dy b sai cng c th gy sai s

    - ng dng: o nhit , o dng tn s cao, hng chuyn ng, lu tc, p

    sut nh..

  • Hoang Si Hong-HUST 18

    Mch o

  • Hoang Si Hong-HUST 19

    Mch o

  • Hoang Si Hong-HUST 20

    Mch o

  • Hoang Si Hong-HUST 21

    B nhit u t do

  • Hoang Si Hong-HUST 22

    B nhit u t do

  • Hoang Si Hong-HUST 23

    nh hng ca in tr mch o

  • Hoang Si Hong-HUST 24

    nh hng ca in tr mch o

  • Hoang Si Hong-HUST 25

    Cm bin nhit in tr

    /N: l chuyn i c in tr thay i theo s thay i nhit ca n.

  • Hoang Si Hong-HUST 26

    Nhit in tr kim loi

    Nhit in tr dy kim loi: thng c ch to t ng,platin v niken vi ng knh dy t 0.02-0.06 mm.

  • Hoang Si Hong-HUST 27

    Nhit in tr kim loi

    Nhit in tr dy kim loi: thng c ch to t ng,platin v niken vi ng knh dy t 0.02-0.06 mm.

  • Hoang Si Hong-HUST 28

    Nhit in tr kim loi

  • Hoang Si Hong-HUST 29

    c tnh

    - The accuracy of an RTD is significantly better than that of a thermocouple within an RTDs normal

    temperature range of 184.44C (300F) to 648.88C (1200F).

    Cu tuyn tnh nhng s dng nhit thp

    Platinum is the best metal for RTD elements for three reasons.It follows a very linear resistance-to temperature relationship;

    it follows its resistance-to-temperature relationship in a highly

    repeatable

    manner over its temperature range; and it has the widesttemperature range among the metals used to

    make RTDs. Platinum is not the most sensitive metal;however, it is the metal that offers the best longterm stability.

  • Hoang Si Hong-HUST 30

    Pt100

    S khc nhau gia Pt100 (100 , ti 0oC), 500 v Pt1000 ?

    The most common type (PT100) has a resistance of 100ohms at 0 C and 138.4 ohms at 100 C. There are also

    PT1000 sensors that have a resistance of 1000 ohms at 0 C

    and 1385 ohms ti 100C.

    Ti sao Platinum c s dng ch yu ch to RTD: biv n c th hot ng n nh trong thi gian di ti mi

    trng c nhit cao. Hn na Pt l s la chn tt hn so

    vi Cu hoc Ni bi v s tr v mt ho hc ca n v c

    kh nng chng li s xi ho .

    Mch o c th dng ngun dng, mch cu hoc time 555

  • Hoang Si Hong-HUST 31

    Cu to

    The Standard Platinum Resistance

    Thermometer is fragile and used

    only in laboratory environments

  • Hoang Si Hong-HUST 32

    Mt s kiu nhit in tr

    There are three main classes of Platinum Resistance Thermometers (PRTs): Standard

    Platinum Resistance Thermometers (SPRTs), Secondary Standard Platinum Resistance

    Thermometers (Secondary SPRTs), and Industrial Platinum Resistance Thermometers

    (IPRTs). Table 32.6 presents information about each. (Rugged :chc chn, Fragile: d

    gy)

  • Hoang Si Hong-HUST 33

    RTD kiu mng mng

    The temperature range of thin film platinum elements is 50C (58F) to 400C (752F);

    accuracy is from 0.5C (0.9F) to 2.0C (3.6F). The most common thin-film element has

    a 100-W ice point resistance and a temperature coefficient of 0.00385C.

  • Hoang Si Hong-HUST 34

    Cng ngh sn xut RTD mng mng

  • Hoang Si Hong-HUST 35

    Nhit in tr bn dn (NTC-PTC)

    large negative temperature coefficient of resistance (NTC)

    large positive temperature coefficient of resistance (PTC)

    A- hng s ph thuc vo

    tnh cht vt l ca bn

    dn, kch thc v hnh

    dng ca in tr.

    - hng s ph thuc vo

    tnh cht vt l ca bn

    dn

    T- nhit tuyt i

    e- c s lgarit t nhin

    h s nhit ln hn

    RTD nhng c tnh phi

    tuyn

  • Hoang Si Hong-HUST 36

    Cu to nhit in tr bn dn (NTC-PTC)

  • Hoang Si Hong-HUST 37

    Sai s v ng dng

    Sai s ca nhit k in tr ch yu l do s thay i in trng dy khi nhit mi trng thay i.

    in tr ng dy c th t ti 5 trong khi in tr cachuyn i t vi trm .

    Ngoi ra dng in chy qua in tr gy nng cng lm cho intr tng v gy ra sai s. Thng chn dng khong vi mA .

    ng dng ca RTD,NTD.. ch yu o nhit , o cc i lngkhng in nh o di chuyn, p sut, nng mt s cht kh..

  • Hoang Si Hong-HUST 38

    Mch o v chng sai s

    B in tr dy khi s dng ngun p

    B in tr dy khi s dng ngun dng

    Ti sao l nhit in tr 2, 3 v 4 dy ?

  • Hoang Si Hong-HUST 39

    Mch o kiu timer 555

    Chu k T ca nhp xung ng ra ca time t l vi s bin i R1 (Rx) khi nhit thay i

  • Hoang Si Hong-HUST 40

    Mch o dng ngun dng

  • Hoang Si Hong-HUST 41

    Cm bin nhit da trn tnh cht bn dn

    ca it v tranzito

    c tnh ca it ph thuc vo nhit . Da trn c tnh ngi ta onhit hoc s thay i nhit ca mt i tng no . Tuy nhin s

    ph thuc ny khng tuyn tnh v khng tin cy, do vy ngi ta s

    dng tnh cht ph thuc in p gia bazo-emito ca mt tranzito vo

    nhit khi duy tr dng in colecto (Ic) khng i.

  • Hoang Si Hong-HUST 42

    Nguyn l

  • Hoang Si Hong-HUST 43

    Nguyn l

  • Hoang Si Hong-HUST 44

    B phi tuyn

  • Hoang Si Hong-HUST 45

    IC LM35 hoc LM335

  • Hoang Si Hong-HUST 46

    AD590 (Tham kho: bai giang N.N. Tan v Ng.V.Ky)

  • Hoang Si Hong-HUST 47

    Ho quang k bc x ton phn

  • Hoang Si Hong-HUST 48

    Ho quang k bc x ton phn

  • Hoang Si Hong-HUST 49

    Ho quang k bc x ton phn

  • Hoang Si Hong-HUST 50

    Ho quang k bc x ton phn

  • Hoang Si Hong-HUST 51

    Ho k quang in

  • Hoang Si Hong-HUST 52

    Ho k quang in

  • Hoang Si Hong-HUST 53

    Ho k quang in

  • Hoang Si Hong-HUST 54

    Ho k mu sc

  • Hoang Si Hong-HUST 55

    o nhit vi cm bin sng m b mt

    (SAW-surface acoustic wave)

    Content Piezoelectric behavior can be manifested in two distinct ways. Direct piezoelectric effect occurs when a piezoelectric material becomes

    electrically charged when subjected to a mechanical stress and conversion ofmechanical energy to electrical energy.

    Converse piezoelectric effect occurs when the piezoelectric material becomesstrained when placed in an electric field and conversion of electrical energy tomechanical energy

  • Hoang Si Hong-HUST56

    o nhit vi cm bin sng m b mt

    (SAW-surface acoustic wave)

    BWnull

    0 dB

    M Hz

    insertion loss

    center frequency (f0)

    BW3dB

    3dB

    Frequency Response

    Fig. 7. Temperature dependence of the center frequency of two-port SAW

    resonators using AlN/3C-SiC and AlN/Si structures.

  • Hoang Si Hong-HUST57

    o nhit vi cm bin sng m b mt

    (SAW-surface acoustic wave)

    BWnull

    0 dB

    M Hz

    insertion loss

    center frequency (f0)

    BW3dB

    3dB

    Frequency Response

    Fig. 7. Temperature dependence of the center frequency of two-port SAW

    resonators using AlN/3C-SiC and AlN/Si structures.

  • Wireless SAW temperature sensor

    Hoang Si Hong-HUST 58

    Principle

    - Depending on changes in temperature, the shifts (time

    position and phase angle) of the reflection peaks were

    modulated.

    - The phase angle shift was used to evaluate the sensitivity

    because it provides a much higher resolution than the

    time shift of the reflection peak.

    - All three reflectors showed the same sign of the phase

    shifts because the temperature effects are equal on all

    the reflectors

    Relation between phase different () and temperature (T)

    time

    2-1

    TDC: the temperature coefficient of delay of piezoelectric material

    T: measurement temperature

    Tref: reference temperature

  • Cm bin nhit thch anh

    Hoang Si Hong-HUST 59

  • Cu hi v Lu

    Hoang Si Hong-HUST 60

    -Nguyn l?

    - ng dng?

    - B sai s?

    - Tnh ton thit k mch o?