Basic Math in Economics - เอกสารประกอบการสอนวิชา คณิตเศรษฐศาสตร์เบื้องต้น

Embed Size (px)

DESCRIPTION

Basic mathematics used in Econometric

Citation preview

  • .320

    (Introductory Mathematical Economics) ( 2/50)

    1

    .

    255

    1

  • 1 ........................................................................................................................................62.1

    2.1.2 (MEMBERSHIP IN A SET)............................................................................................. 9

    2.2 (RELATION AND FUNCTION) ...........................................................9 2.2.1 (ORDERD PAIRS AND CARTESIAN PRODUCT) ...................... 10

    2.3

    2.3.3 (EXPONENTIAL LOGARITHM FUNCTION) .............................. 36

    3.1

    3

    3.1.3. : 1 .................................................. 51 4 BASIC MATRIX ALGEBRA MATRIX ALGEBRA

    ..104

    5.1.1 (SLOPE) ........................................................................................... 104 5.2DERIVATIVE.....................................................................................................................................106

    5.2.1 (CONTINUITY) ....................................................................................................... 106

    2 .........................................................................7 (THE CONCEPT OF SETS)..........................................................................8 2.1.1 (SETS)..................................................................................................................................... 8

    2.1.3 (RELATIONSHIPS BETWEEN SETS) ............................................................. 9

    2.2.2 (FUNCTION)...................................................................................................................... 12 (FUNCTION AND TYPES OF FUNCTION) ...........................32 2.3.1 (CONSTANT FUNCTION) ........................................................................................ 32 2.3.2 (POLYNOMIAL FUNCTION) ............................................................................. 32

    2.3.4 ..................................................................................................................... 40 2.4. (INVERSE FUNCTION)..............................................................................40

    3 (STATIC EQUILIBRIUM ANALYSIS) ...................................42 .....................................................................................43 3.1.1 (A SIMPLE MACRO ECONOMIC MODEL)............................. 43.1.2. IS-LM ...................................................................................................................... 48

    ............................................................................................................................................................66

    5 ..............103 5.1 N (POLYNOMIAL OF DEGREE N) ..............................................

    (DIFFERENTIATION / DERIVATION) / PROCESS OF OBTAINING THE

    2

  • 5.2.1 SMOOTH FUNCTION .................................................................................................................... 107

    5.3

    LOBAL OCAL EXTREMUM CONCEPT..................................................................................5.3.2 1 (FIRST-DERIVATIVE TEST) ................................................. 116

    7.1

    7.3

    7.4

    7.4.2 DIFFERENTIAL............................................................................................................ 159

    CONVEXITY AND CONCAVITY , MAXIMA AND MINIMA ..................................................115

    5.3.1 G V.S. L 115

    5.3.3 2 (SECOND-DERIVATIVE TEST) ............................................. 119 5.3.3 (CURVATURE OF A GRAPH) ............................................................................... 120

    6 ().....1236.1 ()............124

    6.1.1 ................................................................................................... 124 6.1.2 ...................................................................................... 129

    6.2 ..............................................................................131 6.2.1 (COMPETITIVE MARKET)............................................................................. 131 6.2.2 (MARKET POWER: MONOPOLY) .............................................................................. 134 7 1 .............143 FUNCTIONS BETWEEN EUCLIDIAN SPACES .......................................................................144

    7.1.1 (GEOMETRIC REPRESENTATION OF FUNCTION) ......................... 145 7.1.2 GEOMETRIC REPRESENTATIONS OF FUNCTIONS OF SEVERAL VARIABLES......................................... 146 7.1.3 LEVEL CURVES FOR Z = F(X,Y)..................................................................................................... 147

    7.2 PARTIAL DERIVATIVE .............................................................................................................149

    7.2.1 (ECONOMIC INTERPRETATION)........................................................ 151 THE CHAIN RULE ....................................................................................................................152

    THE TOTAL DIFFERENTIAL OF A FUNCTION OF SEVERAL VARIABLES ........................157

    7.4.1 TOTAL DIFFERENTIALS.................................................................................................................. 158

    7.4.2 THE TOTAL DERIVATIVES ............................................................................................................. 160

    7.5 IMPLICIT FUNCTIONS.............................................................................................................163

    3

  • 1 )....

    8.2

    8.3

    (COMPETITIVE IRM INPUT HOICES 6

    )....

    10

    8 (......................................................................................................................................................164

    8.1 THE DIFFERENTIAL (OPTIMIZATION CONDITION) .......................165 8.1.1 / (EXTREME VALUE OF A FUNCTION OF TWO VARIABLES) ........................................................................................................................................... 166

    QUADRATIC FORMS...............................................................................................................169

    ............................182 8.3.1 PRICE DISCRIMINATION................................................................................................................. 182 8.3.2 F C :COBB-DOUGLAS TECHNOLOGY)............................................................................................................. 188.3.3 1 (PROBLEM OF A MULTIPRODUCT FIRM)........... 188 8.3.4 1 (MULTIPLANT FIRM PROBLEM) ............. 191 9 ( 1 ......................................................................................................................................................195

    9.1 ( 1 )......196 9.1.1 2 1 : OPTIMIZATION WITH EQUALITY CONSTRAINTS :TWO VARIABLES AND ONE EQUALITY CONSTRAINT ................................................................................ 197

    9.2 .......................................207 9.3 ( MINIMIZE TOTAL EXPENDITURE UNDER THE LEVEL OF UTILITY) .......................................................................211

    9.4 .........................................................................2129.5 (LEAST COST COMBINATION OF INPUTS) (CONDITIONAL INPUT DEMAND) .............215 9.6 (PROFIT MAXIMIZATION)

    (UNCONDITIONAL INPUT DEMAND) ............................................................................218 10 INTEGRATION INTEGRATION ...................225.1 (INDEFINITE INTEGRALS)...................................226 10.1.1 (ANTIDERIVATIVE) (INTEGRATION) ...................................... 226 10.1.2 BASIC RULE OF INTEGRATION..................................................................................................... 226 10.1.2 INITIAL-VALUE PROBLEMS.......................................................................................................... 230

    4

  • 10.2 (DEFINITE INTEGRALS) ..........................................231 10.2.1 A DEFINITE INTEGRAL AS AN AREA UNDER THE CURVE ............................................................... 232 10.2.2 (SOME PROPERTIES OF DEFINITE INTEGRAL)........ 234.3 IMPROPER INTEGRAL

    10

    10

    ONSUMER AND PRODUCER SURPLUS10.4.6. FIRST DEGREE PRICE DISCRIMINATION PERFECT PRICE DISCRIMINATION .............................. 242 10.4.7. ............................................................................................................... 243 10.4.8 : (RANDOM VARIABLES)........................ 244

    ........................................................................236

    .4 INTEGRATION ..............................................23810.4.1. (RECOVERING TOTAL COST FROM MARGINAL COST).................................................................................................................................. 238 10.4.2. (TOTAL PROFIT FUNCTION) (MARGINAL PROFIT FUNCTION) ........................................................................................................................................... 238 10.4.3. ........................................................................ 239 10.4.4. ........................................ 240 10.4.5. (C ) .............. 240

    5

  • 1

    6

  • 2

    unctions)

    (Non-linear Function) ion)

    (Exponential and Logarithm Functions) (Inverse Function)

    : 1 (Relations and F- - - (Linear Function) - - (Polynomial Funct- - -

    7

  • 2.1 (The Concept of Sets) 2.1.1 (Sets) A set is simply a collection of distinct objects. These objects may be a group of (distinct) numbers, persons, food items, or something else : Chiang (2005) 2 1. (Enumeration) 2. (Description) 1 S 3 2, 3, 4 S Enumeration I (all positive integers) I Enumeration I Enumeration I (Description) : J (All real numbers) 2 5 A finite set An infinite set

    8

  • 2

    2.1.2 (Membership in a set) (epsilon) (is an element of)

    2.1.3 (Relationships between Sets) 2 3 1: 2:

    2.2 (Relation and Function)

    (Ordered Set) (Ordered Set) 2 Ordered Pairs 3 Ordered Triples 4 Ordered Quadruple 4 (Ordered Pairs) . 320

    9

  • 2.2.1 (Orderd Pairs and Cartesian Product) xy (Cartesian coordinate plane) Cartesian Plane 2 (Cartesian Product Direct Product) 5 x y

    10

  • 6 ( ){ }, 2x y y x= ( ){ },x y y x

    ( ){ }, 2x y y = x x y x y (One-to-One Relationship One-to-One Mapping) ( ){ },x y y x x y

    11

  • x y 1 x y (One-to-Many Relationship One-to-Many Mapping)

    2.2.2 (Function) y x (Function) y x y x y x ( y equals f of x) x (Argument) (Independent Variable) y (Value of Function) (Dependent Variable) x (Domain) y x (Images) (Range) x y 1 (One-to-Many Relationship One-to-Many Mapping) (One-to-One Relationship One-to-One Mapping)

    12

  • function (a) (b) 7 (Total cost:C) (Total output:Q) 150 7QC = + 100 : (Domain) (Range)

    13

  • Powerpoint Set

    14

  • 15

  • 16

  • 17

  • 18

  • 19

  • 20

  • 21

  • 22

  • 23

  • 24

  • 25

  • 26

  • 27

  • 28

  • 29

  • 30

  • 31

  • 2.3 (Function and Types of Function)

    (Constant Function)

    Range 1

    8 (National income Model) Investment) Autonomous investment

    2.3.1

    ( )0I ( 100

    2.3.2 (Polynomial Function)

    32

  • polynomial degree Polynomial

    1 Polynomial Function

    Degree n functionn=0 n=1 n=2 n=3 n=1

    =3 n=4

    n=1

    n=2

    n

    33

  • 9 (Total Cost: TC)

    TC a bQ= + n 1

    2 (Quadratic Function)

    0 0

    x 1 Quadratic formula (Completing the

    square) (Root of Function) x 1 ( ) 0f x y= = Cubic Fuction degree

    3 3

    34

  • 2 42

    b b aa

    Quadratic formula c 10

    11

    2( ) 8 16 0f x x x= + = 2( ) 8 16 0f x x x= + = 12 2( ) 11 18f x x x= +

    35

  • 13 2( ) 8 20f x x x= +

    x (Factoring the function)

    x x

    2.3.3 ential Logarithm Function)

    lem)

    15 t bt b

    = == =

    2 14

    4 4x +

    (Expon

    (Growth Prob

    (Exponential Function)

    3 2

    2

    ( )( )

    t

    t

    y gy f

    36

  • 16 t b

    y f t b= == =

    e Natural exponential function

    ( )( ) 2

    t

    t

    y g

    e (: Irrational number)

    ty e=

    2.71828...e =

    e

    Natural Exponential Functions and the Problem of Growth

    1( ) 1f m = +

    m

    m

    37

  • 111 21

    f + = 21(2) 1 2.25f =

    3

    4

    (1)

    2

    (4) 1 2.441414

    =

    = + 1(3) 1 2.370373

    f = 1f

    = +

    = + =

    e

    m

    1 m lim ( ) lim 1m m

    e f mm

    =

    A (Initial Principal) t (Continuous-compounding process) 1 t

    t

    t

    m t .

    + t t

    38

  • ( ) 1mtrV m A m= +

    1

    m

    1( ) lim 1rtw

    m

    rt

    mV m A whereww r

    Ae

    = +

    =

    = Error! Objects cannot be created from

    (Logarithm) (Inverse function of

    xponential)

    y==

    editing field codes. e

    log

    t

    e

    y et

    39

  • 2 .3.4

    (Power Function)

    2.4. (P) (X)

    1 21 2

    b

    b b

    y Axy Ax x==

    (Inverse Function)

    3 2x p= (1) (Marginal Revenue) 1 Demand Function 2 Inverse Demand unction F

    40

  • ( ) 2 3y f x x= = +

    2( )y f x x= =

    41

  • 3 (Static Equilibrium Analysis)

    (Static Equilibrium Analysis) : 3

    - ltaneous

    - (Simple Macroeconomic Model)

    - Simu- - (Break-even Point) - - - - -

    - - (Elasticity)

    - IS-LM

    42

  • 3.1

    3.1.1 (A Simple Macro economic Model) (Closed Economy)

    1

    (Closed Economy) (National Income) (Total spending) (Definitional equation)

    (3.1) (Gross Domestic Product)

    C (Consumption spending) (Investment spending: I)

    Y I

    ( )C

    0C C bY= + (3.2)

    0C b

    43

  • ( )I

    0I I= (3.3)

    0I

    (1)

    (the equilibrium level of DP)

    (3.5)

    (3.5)

    (3.6) (3.5) (3.6)

    (Exogenous Variables) (Parameter variables)

    (3.4) 4 G 0I I= I I= 1

    0( )I I= 1I I=

    44

  • 11 b (Keynesian Investment

    Multiplier)

    1 2 (National Income) (Total spending) (3.7) (3.7)

    45

  • 0( )G G=

    ( )T tY=

    (Exogenous variable)

    (3.8) eY = (3.9)

    eC = (3.10)

    1 (Comparative tatic) (3.9) .10)

    S(3

    0G 1G

    46

  • (Multipler: k)

    3

    d

    I (3.11)

    ures) ( )

    Y =

    dY Y TT tyC C bYI

    = == +=

    0

    0

    0

    0

    G GX XM mY

    ===

    Y, C, M (Autonomous Expendit 0 0 0 0, , ,C I G X

    47

  • (B) (G)

    .1.2. IS-LM 3 (A

    (a market for money) (Quantity of money supplied :

    3 market for good) M 0

    DM fY r= ) ,f ) (Quantity of money

    emanded :d (Positive constants)

    (Conditional Equation)

    (3.12)

    0

    0

    0

    0

    .........................

    d

    d

    Y C I GY Y TT tyC C bYI I erG G

    fY r M

    = + += == += =

    =

    (3.13)

    48

  • (Endogenous variables) (3.13) (Exogenous variables) (3.13) hree levels of Autonomous spending) (the constant stock of

    ( 6 ) ,r)

    /( / Equilibrium

    the good market requires that planned investment and planned saving be equal) (3.13) (Y,r)

    LM (LM Curve)/ / (L for liquidity

    and for money is sometimes known; M for the quantity of oney supplied).

    I

    (3.14)

    (tmoney) (Y IS (IS Curve)in (preference, as the demm S

    49

  • LM (3.13) (r) (Y)

    (3.15)

    (3.14) 5) (

    (3.16)

    (3.17)

    IS LM 2 IS LM

    *Y ) (3.1 ( *Y ) (3.14)

    50

  • 2 2 (Endogenous Variables) 3 . . .

    (Clearing Market

    ondition)

    8)

    (3.18) (Conditional Equation) ? ehavioral Equations)

    r

    (3.19)

    3 : 1 .1.3.

    123 C (3.1

    (B (A decreasing lineafunction of P) 2

    51

  • (An increasing linear

    function of P)

    (3.20)

    1 (Conditional equation)

    dQ a bP a b= > P (3.21) (Partial Equilibrium) () (General Equilibrium)

    .21) 3 3 Simultaneous

    m 3 21

    (Elimination of Variables)

    d sQ Q=

    ( , 0) 2 (Behavioral equations) sQ c d= +

    (3Equation syste

    3 System of

    Linear Equations

    52

  • (Excise Tax) (Excise Tax)

    2 . Specific Tax

    1 ()

    . Ad Valorem Tax2 ()

    (Comparative Static Analysis) 2

    53

  • 1 t (Specific Tax) 1.1

    1.2

    54

  • 2 x 2.1

    2

    .2

    55

  • (3.19) (3.19) (P) (Q) a 3.20) (3.20) (P) (Q) -c -b d () (Elasticity)

    (3.22)

    (

    56

  • 57

    (3.23)

    (Absolute V

    (Price Elasticity of Demand)

    alue)

    1pE < 1pE > 1pE =

    P =

    PQ

    Q b

  • 58

    (Total Revenue: TR

    TR = (3.24)

    Inverse Demand Function P = (3.25)

    TR = (3.26)

    (3.26) 1) ..................................... 2) Q

    Inverse Demand Function (3.25)

    )

    P (25) TR (24)

    3) ................................... TR (3.26)

  • 59

  • and) (Individual Demand) . n nq a b P= + 1 n P (the horizontal sum of the individual demand curves)

    (Market Demand and Market Supply)

    (Behavioral Equations) 2 (Market Dem

    (Market Demand)

    1 1 1 1dq a b P= +

    2

    n n P

    2 2 2dq a b P= +

    d

    60

  • 61

    ! (Market Supply) (Individual Supply) 1 1 1 1sq c d P= + 2 2 2 2sq c d P= + . j sj j jq c d P= + P 1 j P (the horizontal sum of the individual supply curves)

    1 A 3

    A

    1 6 10 16 2 4 8 13 3 2 6 10 4 0 4 7 5 0 2 4

    3 (Individual Demand function) (Market Demand function)

    (Market Supply)

  • 62

    A

    A A A A

  • 2 I J

    I

    )

    )

    )

    ) (Identical Agent Homogenous Agent)

    , 1, 2,...,

    , 1, 2,...,

    di i isj j j

    Q P iQ a b P j J

    = + == + =

    [63]

  • 3

    400 2dmQ P=

    8SiQ P= +

    ) 10 ) 56

    .1) 10 .2)

    [64]

  • (Break-Even Point) 1 300 10 . . 1 . 1 30

    2 ( )

    S C MPC MPS

    Yd 100 -80 200 -60 2.1 S C 2.2 Break-Even income 2.3 I= 50+0.1Y C I 2.4

    [65]

  • 4 Basic Matrix Algebra Matrix Algebra

    Basic Matrix Algebra Matrix Algebra : 4 Basic Matrix Algebra

    - Terminology Matrix Algebra - Special Matrices - Matrix

    , , Matrix, Matrix (Scalar) - Matrix Algebra - Inverse - Determinants - Inverse Matrix Determinants - The Determinants and Non-singularity - (Cramers Rule)

    [66]

  • Powerpoint: Basic Matrix Algebra and its applications in economics4

    4 Powerpoint Powerpoint (.421) ...

    [67]

  • [68]

  • [69]

  • [70]

  • [71]

  • [72]

  • [73]

  • [74]

  • [75]

  • [76]

  • [77]

  • [78]

  • [79]

  • [80]

  • [81]

  • [82]

  • [83]

  • [84]

  • [85]

  • [86]

  • [87]

  • [88]

  • [89]

  • [90]

  • [91]

  • [92]

  • [93]

  • [94]

  • [95]

  • [96]

  • [97]

  • [98]

  • [99]

  • [100]

  • [101]

  • [102]

  • 5

    : 4

    - (Quadratic Function) - (Non Linear Function) - (Slope)

    - (Rule of Differentiation) (Non differentiable Function)

    - Convexity Concavity - - (Maxima - Minima) - (Inflection Point)

    - (Derivatives)

    -

    - (Derivatives) (Marginality) - - (Elasticity)

    [103]

  • 5.1 n (Polynomial of Degree n)

    a x

    n n = 1

    (linear function) (5.1)

    polynomial of degree n 20 1 2 ...y a a x a x= + + + + nn y a b= + x

    ( )1 1,x y ( )2 2,x y (5.1)

    y

    x

    (slope) (slope) y x 1

    1 (Marginal Cost)

    1 (Marginal Utility) (Linear function) (slope)

    5.1.1 (C F q=

    )

    ( )u U x=

    [104]

  • = 2

    ( ) 20 1 2f x y a a x a x= = + +

    y

    x

    x

    3h

    x 2x h = x 1x h = slope ( y x

    0x T

    A )

    /

    x ( )f x x (Derivative of f at x ) ( )f x x ( )'f x , ( )df x

    dx ,

    x , , ( )x 'y dydx D f

    1 ( ) 22 4f x x= + ( )'f x ( )' 4f x x=

    ( )f x '

    [105]

  • 5.2 (Differentiation / derivation) / process of obtaining the derivative

    smooth continuous smooth and continuous

    .2.1 (Continuity) 5 f a 3 1. ( )

    f a

    2. ( )limx a

    f x . 3 ( ) ( )lim

    x af x f a =

    2 0.6x = ( )g x

    ( )0.6f = 1. 2. ( )

    0.6limx

    f x ( )

    0.6limx

    f x ( )0.6limx f x+ ( )f x

    0.6 3

    0.6x =

    ( )f x = 2x 2x <

    1x +

    y

    2x

    x

    [106]

  • 5.2.1 Smooth Function / (smooth)

    x

    f a ( ) ( ) ( )'

    0limh

    f a h f af a

    h+ =

    x a h= + x a ( )'f a 0h

    ( )x a

    f ax a

    = , ( ) ( )' lim x a f x f a

    f

    a a

    x x x x (continuity) (Necessary)

    [107]

  • 3 ( ) 2 1f x x= +

    :

    x (all differentiable functions are )

    (continuity) (differentiable)

    continuous) (But not all continuous functions are differentiable

    ( )0f c or f c : (f is continuous) f c or ( )1 'f c : (f is continuously differentiable) ( )0c c ( )1c 'c (Rule of Differentiation) 1. f(x) = c c ( ) =f x 2. g(x) =cf(x) c ( ) =f x . f(x) = nx n ( ) =f x 3

    [108]

  • 4. f(x) = ( ) ( )U x V x U V x

    ( ) =

    f x

    4 f(x) = 232 x ( )f x

    5 f(x) = 13 22 3 5+ +x x x ( )f x 5. f(x) = ( ) ( )U x V x U V x

    ( ) =f x

    6 ( )7 18 100f (x) x 2x=

    6. f (x)V(x)

    = U V x

    ( ) =f x

    U(x)

    [109]

  • 2 36 4 3f (x) x x x= + ( )f x 7

    tion) Chain Rule

    7. f(x) =U(V(x)) U(V(x)) V(x)

    (Composite Func

    ( )f x

    8 2 3f (x) (x 4x )= ( )f x 9 2f (x) (1 x ) 1 2x= ( )f x (Derivatives of Inverse Function)

    f (Increasing and Continuous function) ,b] g f f(x) 0 x (a,b) g(x) 0 y y = f(x)

    [a

    [110]

  • 10 y = f(x) = 3x dxg '(y) /dy

    t Differentiation)

    (Implici

    11 2if 2xy y+ dy x ydx

    = +

    12

    2 2dy if 6x 2y 5y 16xdx

    + = 3

    [111]

  • (Derivative of Logarithmic

    Function and exponential Function)

    xy b= x = yx e= y =

    (Natural logarithm) ln Log ln

    yln xe

    ==

    xyxy

    ==

    . f(x) =

    ln

    ln

    ln x ( )f x 8

    . 9 y ln V(x)= ( )f x 0. 1 V(x)y e= ( )f x

    [112]

  • 11. xa where a 0 and a 1> ( )f x y =

    12.

    ay log x= ( )f x

    (x) e

    13 f '(x) if f

    3x 1=

    14

    15

    2f '(x) if f (x) ln(1 2x x )= + +

    2x12f '(x) if f (x) (1 x)(1 e )(3 x)= + +

    [113]

  • 2

    23

    2 3xf '(x) if f (x) (x 1)1 2x= 16

    (Second and Higher Derivatives) f 1 (First derivative) 2

    f(x) f lih 0

    f '(x h) f '(x)mh

    + 2 f(x) x (Second derivative of f(x) with respect to x)

    3

    17

    f(x) x f(x) x f(x)

    4 1

    4 3 3y x x 6x= +

    '''f (x)

    [114]

  • 5.3 Convexity and Concavity , Maxima and Minima

    / (Local max/ Local min)

    5.3.1 Global V

    (1) (2)

    (3)

    .S. Local Extremum Concept

    a, b , c d

    a (Constant Function) b (Strictly Increasing Function)

    ! (Strictly Increasing Function) f(x) < f(y) x y x < y

    [115]

  • C

    d

    5.3.2 1 (First-Derivative Test) y = f(x) (Local Max/ Local Min)

    1 2 1. 2.

    (d)

    0x x=

    (Smooth Function) (Necessary Condition) (Local max/ Local min)

    [116]

  • x (Critical point) (Stationary Point) !

    f (x) 0 =

    f (x) 0 = (Sufficient Condition)

    (Necessary Condition) f (x) 0 = a

    f (x j) 0 = = a x = j f(j) (Sta x = j b

    f(x) 1

    1 1 f(

    tionary Value) x = j (Inflection Point)

    f(x)

    x) 0x x= 0 ( 0(x ) 0 = ) 0f (x )

    (-)

    1. 1 (+)

    f

    0x x= 0x x=

    [117]

  • 2. 1 (+) (-)

    3. 1

    0x x= 0x x=

    0x x= 0x x= 18 /

    19 (Average-Cost Function)

    3 2y f (x) x 12x 36x 8= = + +

    2AC f (Q) Q 5Q 8= = +

    [118]

  • 5.3.3 2 (Second-Derivative Test) 2 (Interpretation of the Second Derivative)

    1 ( ) 2 ( )

    (x ) f(x) (x ) < 0

    (x ) f(x) (x ) < 0

    (x ) > 0 >0 > 0 0 < 0 < 0

    f (x) f (x)f

    > 0 0

    f 0 f > 0 0f 0

    f 0 0f (x )

    0f (x ) 0f (x )

    0f (x ) 0f (x )

    0f (x ) 0f (x )

    [119]

  • a

    5.3. (Curvature of a Graph)

    2 Strictly Convex/ Convex

    f(x) Strictly Convex M N f(x) MN MN

    f(x) Strictly Concave M N f(x) MN MN f(x) x

    b

    3 Strictly Concave/Concave

    f(x) x

    [120]

  • 2 x Strictly Concave function x Strictly Convex function !

    .2 2 1 f(x)

    0f (x )

    0f (x )

    1 0x x= 0 ( 0f (x ) 0 = )

    1. 2.

    (Necessary Condition) (Sufficient ondition)

    (Maximum) (Minimum)

    0f (x )

    C

    First-order necessary Second-order necessary Second-order sufficient

    [121]

  • 20 ( )4 21f (x) x 8x8=

    21

    42x 3g(x) x

    4 2=

    22

    4f (x) x=

    [122]

  • 6

    ) ()

    (Maximize Profit): - -

    - - (Lump-sum Tax) - (Profit Tax) - (Excise Tax)

    -

    (

    : 3 -

    [123]

  • 6.1 ()

    (Optimization) ( a limitation of resources) (The essence of the

    ilable)

    6.1.1

    optimization problem is to choose the BEST alternative ava

    [124]

  • [125]

  • ? 1. 2. 3.

    1.

    (Necessary Condition) (Sufficient

    ndition)

    (Maximum) (Minimum)

    Co

    First-order necessary S d-order necessary econSecond-order sufficient

    [126]

  • [127]

  • [128]

  • 6.1.2 (Firms Maximization) (Total Revenue)

    q p (q)

    Q* Q

    1. 2.

    (Total Cost) C

    FONC: SOSC:

    [129]

  • TR TC MC MR

    [130]

  • 6.2

    6.2.1 (Competitive Market) Concept

    s, many sellers) 2. (Homogeneous product)

    formation llers)

    (Free entry and perfect mobility)

    1. (Many Buyer

    3. (Perfect inamong buyers and Se4.

    ONC: ONC:

    FS

    [131]

  • 1 Q

    60 (Shut down price?)

    2 uglas technology

    2100C Q= +

    Constant-returns Cobb Do

    4w = 1 12 2Q L K= L K

    r=1

    [132]

  • 48

    (Market Demand) 294 /dQ p= (Short un Profit)

    R

    (Long-run equilibrium) Concept

    1. 2.

    =

    [133]

  • 6.2.2 (Market Power: Monopoly) ? - - - - :

    (Average Revenue:AR)

    (Marginal Ravenue:MR)

    [134]

  • (Total Revenue:TR) (Total Cost: TC) = Q ONC:

    : Rule of Thumb for Pricing

    P

    F SOSC:

    (Measuring Monopoly Power) = MC Q* (Searching for the optimal price) MC P MC Rule of Thumb

    ! Abba Lerner .. 1934 Lerners Degree of Monopoly Power

    [135]

  • ( )P MCLP= =

    he Lerner Index 0 1 Lerner Index

    1. Curve) (Firms Demand Curve)

    T L

    L (Elasticity of Market Demand

    2. . ( ) L ( )

    .

    .

    .

    [136]

  • (Taxation)

    P a bQ= TR= (Tot Cost)

    TC=cQ+f

    1

    al

    (Lump sum Tax) (Total Profit after Tax) = FONC:

    OSC:

    FONC

    S

    [137]

  • Q* P* (T) Neutral Tax 2 (Profit Tax) t (Total Profit after Tax)

    = ONC:

    OSC:

    F S

    FONC

    [138]

  • Q P* * *.t

    eutral Tax ! 3 (Excise Tax)

    (Total Profit after Tax)

    N

    t (Specific Tax) =

    ONC:

    OSC:

    Q* P*

    F S FONC

    [139]

  • Distortion Tax (Comparative Static) ()

    *Qt

    =

    *Pt

    =

    *

    t

    =

    TF S

    *Q = t otal Tax Revenue =ONC:

    OSC:

    *.t Q =

    Tax Revenue

    [140]

  • (Specific Tax) t

    T =

    1

    100 0.01P Q= Q () P (1) (2) (3

    () 50 30,000C Q= + 10

    )

    [141]

  • 2:

    P a bQ= TC=cQ+f (Sale Tax) t

    t

    . P* Q*

    T tPQ= ( )

    . FONC SOSC

    * .

    [142]

  • 7 1

    1

    - (Partial Differentiation) - (Second-order Partial Derivative) - (Differentials) - (Total Differentials) - (Total Derivative) - Implicit Functions

    - (Partial Market Equilibrium) - (Multipliers)

    - -

    -

    [143]

  • (Comparative Static)

    1( )y f x=

    One-variable calculus (Production function) (Cost function) (Profit function)

    1

    Multivariable

    t es

    efinition

    (Utility Function) (Demand Function)

    1( ,..., )ny f x x=

    calculus

    7.1 Func ions between Euclidian Spac D A function from a set A to B is a rule that assigns to each object in A, ne and only one object in B. In this case, we write 1

    x y x y= + omain: ange:

    :f A Bo

    2 1: R R ff 2 2( , )DR

    1 1:f R R 1

    ( )g xx

    = Domain: Range: X 1 domain f(X) 1 f(X)

    Range

    nction f X X)

    f (fu

    [144]

  • 2 unctionhe constant elasticity demand function

    nR R F 1 1 2 1 1 2( , , )q f p p y k p p y = = T

    The firms production function

    ( )

    1 1 2 2

    1 2

    1 2min ,x x

    q input =

    1 2

    1 1 2 2 tanb

    a a a

    a x a x Linear

    kx x Cobb Douglas

    outputc c

    k c x c x Cons t Elasticity of Substitution

    = + =

    +

    he firms production function that uses three inputs to produce two outputs f x x x q f x x x

    q q f x x x f x x x F x x x

    = == = =

    .1.1 (Geometric representation of function) , its all that counts.

    (Increasing function) ecreasing function)

    Demand negative ope Demand (Diminishing marginal

    roduct)

    q

    q

    =qFunction k mR R T

    ( ) ( )( ) ( )( ) ( )

    1 1 1 2 3 2 2 1 2 3

    1 2 1 1 2 3 2 1 2 3 1 2 3

    , , , ,

    ( , ) , , , , , , ,

    q

    q 3 2:F R R

    7The picture is not just worth a thousand words; sometimes

    1R 1R

    (D slp

    [145]

  • 7.1.2 Geometric Representations of Functions of Several Variables ( , , )y f x y z= 3

    (x,y,z) 3

    . x=a .

    px qy rz m+ + =

    . 2 2( , )z f x y x y= = +

    . 2 2 2 2x y z+ + =

    [146]

  • Budget Constraint y L K : Cobb-Douglas (L) (K)

    ( , )y f L K=

    7.1.3 Level Curves for z = f(x,y)

    3 x y f(x,y) = c z=c plot z= c xy Level Curve z=c Level Curve

    ( , )f x y c=

    [147]

  • 4 Level Curve 2 2( , )z f x y x y= =

    5 Level Curve

    Isoquant Level curve Level curve y=10, y=20 Isoquant 1 Cartesian Plane

    : Level Curves for a Production Function

    2

    2 4

    !

    [148]

  • 7.2 Partial Derivative

    1 2( , ,..., )ny f x x x=

    ix y (i=1,2,...,n) 1 2, ,..., nx x x

    ix 1x ix y

    y 1x

    1 0x

    110

    1 1

    limx

    y yf

    x x

    1xy1x

    with respect to 1x ) y (The partial derivative of y

    6 1 2 1 1 2 2( , ) 3 4y f x x x x x x= = + +

    1

    yx 2

    yx

    2 2

    7 ( , ) ( 4)(3 2 )y f u v u u v= = + + y

    u

    yv

    [149]

  • 8 2(3 2 ) /( 3 )y u v u v= + yu

    yv

    9

    ( )1 2 1 2, loU x x x x= g

    xMU yMU

    ive of the following function

    3 6

    1. Compute all the partial derivat s a) 4x

    2

    2 3 xy y xy x + b) xy d) 2 3x ye + c)

    e)x yx y+ f)

    23 7x y x y 2. Compute the partial deriv

    nt Elasticity of Subative of the Cobb-Douglas function

    stitution (CES) production function

    ) 1 21 1 2

    a aq k x x= and of the Consta

    ( 1 1q k c x = 2 2 ba a ac x + assuming that all the parameters are positive

    [150]

  • 7.2.1 (Economic Interpretation) : Marginal Product

    1

    F K L= 2 (L) (K)

    L=L* K=K*

    ( )y f x= ( )f x

    Q ( , )

    * *( , )F K LK

    K K

    K =1

    K * *( , )F K L

    kMP

    1 Marginal product of capital ( )

    * *( , )F K LL

    LMP

    1 Marginal product of labor ( )

    10 Cobb-Douglas production function Q=

    3 14 44Q K L=

    L= 625 K = 10,000

    10

    LMP KMP

    [151]

  • ti , interpret ( )* *,T x y

    x 1.1 If ( , )T x y is the temperature func on

    2 13 39Q L K= 1.2 Consider the production function

    a) What is the output when L = 100 and K = 216? b) Use the marginal analysis to estimate Q(998,216) and Q(1000, 217.5) c) Use the calculator to compute these two value of Q to three decimal places

    stim 1.3 The demand function

    and compare these value with your e ate in b.11 12 1

    1 1 1 2a a bQ K P P I= is called a constant elasticity

    demand function a) Compute the three elasticities ( own price, cross price, and income), and show that they are all constants b) What are reasonable ranges for the four parameters in

    Composite function Composite

    function

    1Q

    7.3 The Chain Rule

    t ? Definition:im

    Let and be two functions. Suppose that B, the age of f , is the subset of C , the domain of g . Then, the composition of f with g,

    :f A B :g C D

    :f A D , is defined as the function ( )( )g f =xD

    g D

    : The composition of f with g

    [152]

  • z x y ( , )F x y= z

    x y t ( ), ( )x f t y g t= =

    ), ( ))z F f g t( (t=

    11 (Direct Substitution) Chain rule

    1 2log( )y x x= + 1x t= 22x t= dydt

    12

    0dz

    at tdt

    = if 2

    2 22

    5 31 1

    2tt xy

    1x t y t w ew y+= = + = + = + z

    [153]

  • Higher-Order Derivative

    ix 1 2 n 1 2 n

    partial derivative i

    fx

    Continuously Differentia

    f ( , ,..., )y f x x x= , ,...,x x x

    ble Function y x= der

    f

    1C

    ivative x=0 (J) J

    x J f is continuously differentiable on J

    x ( )f x

    ( )f x x J is twice differentiable on J

    x is twice continuously differentiable on J

    ( )( ) ( )f x f x = f( )f x f 2C

    ( )*

    i

    fx = x

    i is differentiable at f *x ( )*i

    fx x

    1C *x

    f is continuously differentiable on J at

    ( )*i

    fx x differentiable

    j i

    fx x

    i jx x second order partial derivative of f 2

    j i

    fx x

    2f

    2f

    i ix x

    2

    j i

    fx x

    i j Cross partial derivatives or mixed partial derivatives 2ix

    [154]

  • Second-order Derivative and Hessians

    13 4 44Q K L= all second derivatives

    3 1

    function 2 second order partial erivative 4 n second order partial derivative Matrix

    d

    2n n n (i,j) ( )2 *

    j i

    fx x

    x Matrix Hessian Matrix

    2D f =x 14 ( ) 21 21 2 1, x xy f x x x e += = 1 2,f f Hessian Matrix

    [155]

  • Second Partial Derivative

    15 Cobb-Douglas function

    : (YoungTheorem) ( )1,....,= ny f x x J

    2C nR

    ( ) ( )2 2

    j i i j

    f fx x x x = x x

    ( , , ) a b c , , ,A a b and c are positive K L T AK L T= F Marginal Products the econd-order partials

    S

    Noted: Youngs Theorem Hessian Matrix Symmetric matrix

    [156]

  • 7.4 The Total Differential of A Function of Several Variables differential

    ( )dy f x dx= the differential y x he tangent to the function at x) y x

    )

    (t

    ( ) (y f x x f x = +

    x ( )0x y

    ( )y f x x x = + 0

    dy dx dy dx differential of x differential of y

    ( )0x ( )f x

    16 23 7 5y x x= + dy

    Remark

    1.

    3. 2.

    [157]

  • dy y=f(x) Differentiation Differentiation

    dydx

    dy Differentiationdx

    with respect to x

    .4.1 Total differentials differential

    S Y i=

    S Saving I Interest rate

    S (ds) y i (dy,di) Total differential

    U

    7 Concept S ( , )

    Y national Income

    1S C dS =

    : nf R R 1 2( , ,..., )nU U x x x=

    d =

    [158]

  • 7.4.2 differential 1 2( , )y f x x=

    Rule:1 ule:2 ule:3

    0dk =R ( ) =nd cUR ( ) =d U V Rule:4 ( )d UV Rule:5

    = =

    UdV

    Rule ( )d:6 U V W

    2x x+

    18 2

    19

    =Rule:7 ( ) =d UVW 17 5 3y = 21 2 21 13y x x x= +

    1 2212

    x xyx+=

    [159]

  • 20

    .4.2 The Total Derivatives

    f

    Total Derivative

    Channel Map y x w

    1 2 33 (2 1)( 5)= +y x x x

    7

    ( , ) ( )y f x w where x g w= = y x w w y (1) (Indirect Effect) g (2) (Direct Effect) f partial derivative

    [160]

    y xf g

    f

    w

  • o l derivative total differential x wdy f dx f dw T ta = + dw

    x wdy dx dwf fw dw= +

    d dw=

    Total derivative dy The total d dw

    ifferentiation of Y with

    respect to w

    21 Total derivative dy dw

    Y=f(x,w)=3 ( ) 2 4x w where x g x w w = = + + 2 2 C

    ( ) ( )y f x x here x g w x h w= = =

    22 U=U(C,S)

    SS=g(C)

    ( )1 2 1 2, ,w w dy = dw

    [161]

  • f

    2

    f h

    y 1x w f g

    x

    23

    =L(t)

    ( , , )Q Q K L t=K=K(t) L

    ( ),x g u v= ( )1 2, , ,y f x x u v= ( )1

    2 ,x h u v=

    dy = du

    dydv

    = 24 Total derivative dz

    dy

    z f x y x xy y where x g y= = + = =

    ( ) 2 2, 2 , ( ) 3y

    [162]

  • 25 Total derivative ( ), ,z f x y t where x a bt and y c dt= = + = +

    26 partial total derivative

    wu

    wv

    2w x= a bxy cux u vy u

    where

    + += +=

    7.5 Implicit Functions

    Explicit Function y x

    ( )y f x=

    4( ) 3y f x x= =

    43 0y x =

    ( )1, ,..., 0mF y x x =

    implicit function

    ( )1,..., my f x x=

    [163]

  • 8

    ( 1 )

    ( 1

    : 3 ( 1 )

    - ( 1 ) - Third Degree Price Discrimination - Multiple-Plant Firm - Multiple-Product Firm

    )

    [164]

  • [165]

    8.1 The Differential (Optimization Condition) 1 (Optimization

    onditions for problems with a single choice variables) derivative

    e ntials

    irst Order Necessary Condition

    FONC

    c Diff re

    F ( )z f x=

    SOSC:

    ( )z f x= differential (Maximum) (Minimum)

    First-order necessary Second-order necessary Second-order sufficient

  • 8.1.1 / (Extreme Value of a Function of wo Variables) T

    ( , )z f x y= First-Order Necessary Condition

    1

    0 dx dy dz =

    2

    [166]

  • (Necessary Condition) (Sufficient Condition) 2 2 [b]

    otal differential econd-Order Total differential

    1 dz

    econd-Order Sufficient Condition

    1 2 [a]

    Second-order tS

    x ydz f dx f dy= +

    2d z

    3 25z x xy y= + 2d z S

    ( , )z f x y=

    [167]

  • ( , )z f x y= / ( ),z f x y=

    (Maximum) (Minimum)

    First-order necessary Second-order necessary Second-order sufficient

    2 / 3 2 28 2 3 1z x xy x y+ + +

    =

    3 /

    22 x yz x ey e e= +

    [168]

  • 8.2 Quadratic Forms polynomial 1

    0 1 ...n

    na a x a x+ + + 1

    2 33 4 2x x y xy+ polynomial 1 term term (The sum of exponents each term is uniform) polynomial Form

    in 4 9x y z

    2 24 3x xy y + 2 22 7x xy yw w+ +

    Sec rond-Order Total Diffe ential as a Quadratic Form

    2

    2 2 2xx xy yyd z f dx f dxdy f dy= + +

    u

    ab =h

    ===

    =

    2d z

    [169]

  • q

    positive definite

    q Non-positive negative semidefinite q negative definite

    Matrix Form

    Matrix q determinant

    positive definite

    negative definite

    q q ( 0)> q Nonnegative ( 0) positive semidefinite

    ( 0) ( 0)<

    2 22q au huv bv= + +

    A

    a hh b = A

    q q

    [170]

  • a a= determinant First leading principle minor of A

    h

    h b second leading principle minor of B a

    2 2 22xx xy yyd z f dx f dxdy f dy= + +

    positive definite

    4 25 3 2q u uv v q positive negative definite ?

    2d z

    2z negative definite d

    2= + +

    5 definiteness matrix 3 44 6 = B

    [171]

  • Quadratic Forms x n Definition: A quadratic form on Rn is a real-valued function of the form

    Q(x , x , ... , x ) = .(1) in which each term is a monomial of degree two quadratic form x 2 Matrix form (1) =

    1 2 n ij i ji j

    a x x

    ( )Q T 6 two-dimentional quadratic form

    Matrix form

    three-dimentional quadratic form Matrix form Definiteness of Quardratic Forms

    2 211 1 12 1 2 22 2a x a x x a x+ +

    2 2 211 1 22 2 33 3 12 1 2 13 1 3 23 2 3a x a x a x a x x a x x a x x+ + + + +

    quadratic form x = 0 rm positive definite

    2y ax= 0a > 0y 0

    fo 0a < 0y 0 x = 0 quadratic form

    egative definite two-dimentions

    =

    N

    ( )1 1 2,Q x x 2 21 2 0x x+ 1Q positive definite ( )2 1 2,Q x x = 2 21 2 0x x Q negative definite 2

    ( )3 1 2,Q x x = 2 21 2x x ( ( )3 1,0Q = +1 = -1 ) ( )3 1,0Q 3Q indefinite (4Q 1) ( )2 2 21 1 2 22 0x x x x+ + 1 0

    2,x x = 2x x+ = 0 1 2,x x 4Q positive semidefinite

    ( )5 1 2,Q x x = ( )21 2 0x x +

    [172]

  • 0 1 2,x x 0 5Q negative semidefinite

    efinition D : Let A be an symmetric matrix , then A is n n

    (a) positive definite if T 0> for all 0 in nR (b) positive semidefinite if for all T 0 0 in (c) negative definite if

    nR T 0< for all 0 in nR

    (d) negative semidefinite if T 0 for all 0 in (e) indefinite if for some

    nR T 0> in and nR 0< for some other in

    Principal Minors of a Matrix

    nR

    matrix n n matrix k k

    matrix n k n k matrix k-order principal submatrix of determinant k k

    principal submatrix

    ipal minor ofprinc 7 matrix 3 3

    =

    hird-order principal minor

    econd-order principal minor

    11 12 1321 22 2331 32 33

    a a aa a aa a a

    T

    S

    Definition

    First-order principal minor

    : matrix n n matrix k kk n k order leading principal

    atrix determinant the order leading principal inor

    thk

    thk

    n

    submm

    [173]

  • order leading principal submatrix k k leading principal minor k 8 Matrix 3 3 leading principal minors 3 11 1211

    21 22

    ,a a

    aa a

    11 12 1321 22 2331 32 33

    a a aa a aa a a

    : symmetric matrix n n ) positive definite n leading principal minor ) negative definite n leading principal minor (a

    (b 1 2 10, 0, 0A A A< > < etc.

    (c) indefinite

    9 Matrix (a) 1 2 30, 0, 0, 0A A A A> > > > A (b) 0, 0,A A A< > < >

    4 4 4

    1 2 3 40, 0A )

    A(c 1 2 3 40, 0, 0, 0A A A A> > = < A (d) 1 2 3 40, 0, 0, 0A A A A< < < < A

    1. definiteness Sym etm ric matrics :

    (e) (a) 1 1

    2 11 2 02 4 50 5 6

    (b) 4 5 (f) 1 10 0

    3 4

    02

    1 1 0

    ) (g) 3 44 6

    1 0 3 00 2 0 53 0 4 00 5 0 6

    (c

    (h) 2 23 4 7q u uv v= +

    [174]

  • (i) ) 1)

    23 2 35 4 2u u u u+ +

    . definiteness

    3

    2 27 3q u uv v= + (j 2 28 3q uv u v=

    2 26 5 2q xy y x= (k(l) 21 1 2 1 3 23 2 4q u u u u u= + 2(m) 2 2 24 6 4 7q u uv uw v w= +

    22 2 21 2 3 1 2 26 3 2 4q u u u u u u u= + +

    2 2 22 3 6 8 2q u v w uv uw vw= + +

    [175]

  • Objective functions with more than two variables ( )1 2 3, ,Z f x x x= F.O.N.C : S.O.S.C

    ( )2d Z d dZ= =

    H = All leading principal minor =

    = 1H

    2H 3H =

    Z is a if maximumminimum 1 2 3 1 2 3

    0, 0, 00, 0

    H H HH H H

    < > < > 0, > >

    [176]

  • 10 Extreme Values Z = 2 2 2 21 1 2 2 1 3 32 4x x x x x x x+ + + + +

    11 Extreme Values

    Z = 3 2 21 1 3 2 2 33 2 3x x x

    x x x + +

    3

    [177]

  • n-variable case: ( 1 2, ,...Z f x x x= )n .O.N.CF :

    dZ =

    2

    0ii

    fx

    = i 1,2,...i n= S.O.S.C:

    2 u quadratic form

    d Z

    H =11 12 1

    21 22 2

    1 2

    n

    n

    n n nn

    f f ff f f

    f f f

    "

    All principal minors H , 2H , nH Z maximum Z minimum

    values check Extreme values (maximum) (minimum)

    2

    Extreme

    1. Z = 1 2 1 2 2 3 33 3 4 6x x x x x x x+ + + ( )2 2 2

    2 2

    2. Z = 1 2 329 x x x + + 3. Z = 2 2 21 3 1 2 2 3 2 33x x x x x x x x+ + + +

    ( )2x y w w x y + 4. Z = 2e e e e+ +

    [178]

  • ( )22 2 2x y w we e e x e y+ + + 5. Z = 6. Z = 4 2 26 3x x xy y+ + 7. Z = 2 26 2 10 2 5x x y x y + + + 8. Z = 2 3xy x y xy+ 9. Z = 34 23 3x x y y+ 1 . 0 F = 212 2 26 3 4 10 5x xy y yz z x y z+ + +

    ( ) ( )2 2 22 2 22 3 x y zx y z e + ++ + 11. F = Second-order conditions in relation to concavity and convexity:

    Concept Convex and Concave Function

    convex set U

    f concave U nR 1 2,x x ( )0,1t

    f convex U convex set U

    nR 1 2,x x ( )0,1t

    [179]

  • Theorem 1: (Linear Function) f linear function f Convex Concave Strictly Convex concave heorem 2:

    T (Negative of a Function) f concave (convex) function oncave)

    heorem 3:f convex (cT f g concave (convex) function g = f+g g concave (convex) function :

    U Convex set f oncave function Hessian matrix

    2f C nR ( )2Df x

    x ( )2

    C negative semidefinite U f convex function Hessian matrix f x positive definite

    8

    D 12 ( )1, 3f x y x x y= +

    concave

    4 2 2 4y x y+ convex 13 ( )1,f x y xy= convex concave

    [180]

  • ( ) 1 14 41,f x y x y= 14 convex concave

    15 ( )1, a bf x y x y= convex concave

    . concave convex )

    1 ( ) 43 5 lnxf x e x= + (a x

    ) ( ) 2 21, 3 2 3 4 1f x y x xy y x y= + + + (b(c) ( ) 41, , 3 5 lnxf x y z e y z= + (d) )1, , a b cf x y z Ax y z= , , 0a b c > (

    1. ( 1 ) 1 / ( ),z f x y=

    (Maximum) (Minimum)

    First-order necessary

    Seco dnd-or er sufficient

    [181]

  • ( )1 2, ,..., nz f x x x= 2 /

    (Maximum) (Minimum) First-order necessary

    Second-order sufficient

    8.3

    8.3.1 Price Discrimination Concept

    rice Discrimination 3 P1. 2.

    irst Degree Price Discrimination Second Degree Price iscrimination

    3.

    FD

    [182]

  • Third- Degree Price Discrimination

    Third-Degree Price Discrimination 2

    16 (Total Revenue)

    2

    ( ) ( ) ( )1 1 2 2 3 3TR R Q R Q R Q= + + iR i ( Total Cost )

    1 2 3( )C C Q Q Q Q Q= = + +

    1 Objective Function

    = 2 FONC

    1

    2

    ........(1)

    ===

    ........(2)

    3 ........(3) 1, 2 3

    3

    MC MR MR MR= = = ..(4) 1 2

    ii iR PQ=

    iMR = 4

    [183]

  • di ............ 3 SOSC * * *1 2 3, ,Q Q Q

    * ONC

    ===

    * *1 2 3, ,P P P F Hessian Matrix

    11 12 13

    21 22 23

    31 32 33

    = == == =

    H

    =

    Check all leading principal minors

    1

    2

    H

    H

    = = =

    3H = =

    [184]

  • 17 3 1 163 4P Q= 2 2105 5P Q=

    3 375 6P Q=

    20 15C Q= +

    3

    2 FONC ........(1)........(2)

    1 Objective Function

    12 =3 ........(3) =

    =

    2*Q =

    =

    *1*

    QQ

    ==

    3

    *

    1*

    2*

    3

    PP

    ==

    P

    [185]

  • 3 SOSC Hessian Matrix

    13

    21 22 23

    33

    = = == = == = =

    11 12

    31 32

    H

    =

    Check all leading principal minors

    1

    2

    3

    H

    H

    H

    = = = = =

    .3.2 (Competitive Firm Input hoices: Cobb-Douglas Technology) Cobb-Douglas roduction Function

    8CP

    Q L K = = w = r

    [186]

  • 1 (Objective Function)

    =

    2 FONC L

    K

    ==

    (The Economic interpretation)

    Hessian Matrix

    22

    3 Check SOSC

    11

    21 = 12

    = =

    =

    H

    =

    heck all leading principal minors C

    H1

    2

    == = H

    [187]

  • .3.3 1 (Problem of a Multiproduct Firm) 18 2 (Exogenous Variable)

    TR =

    2

    8 2 21 1 22 2C Q QQ Q= + + Profit Function

    TR TC = =

    C

    hoice Variables

    [188]

  • First Order Necessary Condition (FONC) 1

    2

    ==

    *1Q = *2Q = Check Second Order Sufficient Condition (SOSC)

    = H

    1H = 2H = 2d .......................definite 19 2 1 2

    24015

    Q P PQ P P

    2 +1 1=

    2 1 2

    ..............................

    = +

    .......

    [189]

  • function P

    Q Cramers rule

    TR =

    2

    (Profit Function)

    First Order Necessary Condition (FONC)

    1 2,Q Q

    1 2,P P 1 2,Q Q

    1 2,P P

    1

    2

    PP==

    2 21 1 22 2C Q QQ Q= + +

    Choice Variables

    1

    =

    2 =

    *1Q = *2Q =

    [190]

  • Check Second Order Sufficient Condition (SOSC)

    =H

    1H = 2H =

    2d .......................definite

    P lem)

    1

    8.3.4 1 (Multiplant Firm rob

    ( )i i iTC C q= i = 1,2,,n

    i

    iq

    TR =

    Q = ( )*TR P Q Q= (Exogenous

    Q

    P Variable)

    P ( )P Q =

    [191]

  • First Order Necessary Condition

    i = i = ,2,,n

    1

    Hessian Matrix

    1 2

    H

    =

    1 1 0H R C = < 2H =

    :

    [192]

  • 20 2

    2:

    1) 1 2 (AR)

    (MR)

    2)

    1: ( ) 21 1 110C Q Q=

    ( ) 21 2 220C Q Q=

    700 5P Q= 1 2Q Q Q= +

    1 2, , ,totalQ Q Q P 1 (Profit Function) Choice Variables

    [193]

  • 2 First Order Necessary Condition (FONC) 1 = 2 =

    *1Q = *2Q = 3 Check Second Order Sufficient Condition (SOSC)

    = H

    1H = 2H =

    2d .......................definite

    [194]

  • 9

    ( 1 )

    ( 1 ) : 3

    - Lagrange Multiplier

    - - -

    -

    [195]

  • 9.1 ( 1 )

    Choice Variables (Independent) 2 ()

    1 2 950Q Q+ =

    1Q 2Q

    ( Constrained Optimum value) (Free Extremum) ( Constrained Extremum)

    1Q 2Q1 2 950Q Q+ =

    [196]

  • (The optimal allocation of scarce resources) (Optimal) optimization ( scarce resource) optimization (with constraint) Constrained Optimization problem (Prototype)

    9.1. Constraints :Tw

    x x x

    ( )( )( )( )( )( )

    1 2

    1 2

    1 1 2 1

    2 1 2 2

    1 2

    1 1 2 1

    2 1 2 2

    max ( , ..., )

    , ,...,

    , ,...,

    , ,...,...............................

    , ,...,

    , ,...,

    , ,...,...............................

    nn

    n

    n

    n

    n n n

    n

    n

    imize f x x xwhere x x x R must satisfy

    g x x x b

    g x x x b

    g x x x b

    h x x x c

    h x x x c

    ==

    ( )1 2, ,...,n n nh x x x c=

    1 2 1 : Optimization with Equality o variables and One Equality Constraint

    1 U = 1 2 12+

    1 2,x x 1 2

    2 2 1 4

    [197]

  • 1 2 .. 2

    1. (Substitution Method) 2. Lagrangian Method

    bstitution Method) : (Substitution Method) Budget Constraint 1

    1 2 60

    (Su

    1x 2 1

    U =

    1

    dUdx

    FONC: =

    1 2

    Constraint

    2x explicit function 1x Lagrange-

    ultiplier Method M

    [198]

  • Lagrange Multiplier f h 2 1C

    ( )1 2max ,imize f x x St. ( )1 2,h x x c=

    ( ) ( ) ( )1 2 1 2 1 2, , , ,L x x f x x c h x x = + 1 (FONC)

    ( )( )

    ( )1 2, 0c h x x = =

    1 1 1 21

    2 2 1 22

    , 0

    , 0

    L f h x xxL f h x xxL

    = = = =

    Lagrangian function

    ONC:

    L = F

    [199]

  • 2

    . 6Max z xySt x y

    =+ =

    1 Lagrangian function 2 FONC:

    3

    1 2 1 2

    1 2 1 2

    ( , ). ( , ) 4 16

    Max U x x x xSt h x x x x= + =

    =

    grangian function 2 FONC:

    1 La

    [200]

  • 4

    21 2 1 2( , )Max f x x x x=

    2 21 2 1 2. ( , ) 2 4 3St h x x x x= + =

    1 Lagrangian function 2 FONC:

    6

    [201]

  • n 1 : Optimization with Equality s and One Equality Constraint Constraints : n variable

    1 2

    1 2

    ( , ,..., ). ( , ,..., )

    n

    n

    f x x xSt g x x x c=

    n 2 : Optimization with Equality Constraints : n variables and two Equality Constraint

    1 2

    1 2

    1 2

    ( , ,..., ). ( , ,..., )

    ( , ,..., )

    n

    n

    n

    f x x xSt g x x x c

    h x x x d==

    [202]

  • Co

    n k : Optimization with Equality nstraints : n variables and k Equality Constraint

    1 2( , ,..., )nf x x x

    . ( , ,..., )( , ,..., )

    ...............................

    n

    n

    St h x x x ch x x x c

    1 1 2 1

    2 1 2 2

    1 2( , ,..., )k n kh x x x c=

    2 (Second-Order Sufficient Condition)

    ==

    1 2( , ,..., )nf x x x

    . ( , ,..., )St h x x x c=

    .....................( , ,..., )k n kh x x x c

    1 1 2 1

    2 1 2 2( , ,..., )..........

    n

    nh x x x c=

    1 2 =

    he Lagrangian T

    [ ] [ ][ ]

    1 2 1 2 1 1 1 1 2 2 1 1 1 2

    1 2

    ( , ,..., ) ( , ,..., ) ( , ,..., ) ( , ,..., ) ...

    ( , ,..., )n n n

    k k k n

    nx x x f x x x c h x x x c h x x x

    c h x x x

    = + + +

    irst Order Necessary Condition: FONC

    L

    F

    1

    Lx

    2

    Lx

    [203]

  • [204]

    ..

    n

    Lx

    1

    L L

    1..

    n

    L

    Second Order Sufficient Condition: SOSC order Hessian Matrix B

    1

    ( ) ( )1 * 1 *0 0 h h

    x x" "# %

    1 1h h

    x x" "# % #

    ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )

    1

    * *1

    1 * * * * * *11 1

    1 * * * * * *1

    0 0

    , ,

    , ,

    n

    k kn

    kn

    kn n n nn

    g gH

    L L

    h h L L

    =

    x x

    x x

    x x x x

    # # % #" "

    # % #" "

    the last n-k leading principle minors H n Choice Variables k

    1 2

    1 1 1 1 2

    2 2 1 2 2

    0 x x

    x x x x x

    x x x x x

    h h

    H h L L

    h L L

    =

  • Choice Variables (n) (k) the last n-k = leading principle minors Matrix

    Choice Variables (n) (k) the last n-k = leading principle minors Matrix

    (Local Max) the last (n-k) leading principal minor determinant (Alternate in Sign) determinant (k+n)x(k+n) (Local Min) the last (n-k) leading principal minor determinant

    1 2

    1 1 1 1 2

    2 2 1 2 2

    0 x x

    x x x x x

    x x x x x

    h h

    H h L L

    h L L

    =

    1 2 3

    1 1 1 1 2 1 3x x x x x x xh L L L

    H = 2 2 1 2 2 3

    3 3 1 3 2 3 3

    0 x x x

    x x x x

    x x x x x x x

    h h h

    h L L L

    h L L L

    2x x x

    1 2

    2 1 1 1 1 2

    2 2 1 2 2

    0 x x

    x x x x x

    x x x x x

    h h

    H h L L

    h L L

    =

    1 2 3

    1 1 1 1 2 1 3

    2 2 1 2 2 2 3

    3 3 1 3 2 3 3

    3

    0 x x x

    x x x x x x x

    x x x x x x x

    x x x x x x x

    h h h

    h L L LH H

    h L L L

    h L L L

    = =

    ( 1)n

    ( 1)k

    [205]

  • 5 cal Max Local Min

    6 2 Local Max Local Min

    in

    1 Lo

    7 3 Local Max Local M

    [206]

  • 9.2

    (The optimal allocation of scarce resources)

    St.

    ( , ) ( , 0)x yU U x y U U= > x yxP yP B+ =

    1 Lagrangian Function 2 First-Order Condition (FONC): (Economic Interpretation) 1 1 2 3

    [207]

  • 2 Indifference Curve

    Lagrange multiplier

    [208]

  • 3 Second-Order Sufficient Condition 9.1 Bordered Hessian

    H =

    9.2 Check the last n-k leading principle Minor n = the last leading princip Minor

    k = Check le

    H =

    FONC 2d U

    definite dB = 0

    [209]

  • 8 1 12 2( , ) 10U x y x y=

    m 1 xP

    2 yP x y

    [210]

  • 9.3 ( Minimize Total ure Under the Level of Utility)

    y x y

    tion

    Expendit 0U

    , )(U U x= E=

    Lagrangian Func 1 Lagrangian Function 2 First-Order Condition (F ): ONC 3 Second-Order Sufficient Condition

    3.1 Bordered Hessian

    H

    =

    3.2 Check the last n-k leading principle Minor n = k =

    Check the last leading principle Minor

    [211]

  • H =

    FONC

    def

    9.4

    inite dB = 0

    2d U

    ( , )Q q L K=

    TC wL rK c= + =

    L K c

    Lagrangian Multiplier Method

    unction 1 Lagrangian F 2 First-Order Condition (FONC):

    [212]

  • (Economic Interpretation)

    3

    Second-Order Sufficient Condition

    3.1 Bordered Hessian

    [213]

  • H =

    Check the last n-k leading principle Minor

    n = k = Check the last leading principle Minor

    3.2

    H =

    FONC definite dB = 0

    2d U

    [214]

  • (Least Cost Combination of Inputs) (Conditional Input Demand)

    2 (L) (K) w r

    9.5

    TC =

    F L K=

    Lagrangian Multiplier Method for the cost minimization roblem 1

    0Q ( , )Q

    p Lagrangian Function

    2

    First-Order Condition (FONC):

    (Economic Interpretation)

    [215]

  • 3 Second-Order Sufficient Condition

    3.1 Bordered Hessian

    H

    =

    3.2 Check the last n-k leading principle Minor

    Check the last leading principle Minor

    n = k =

    [216]

  • H =

    FONC definite dB = 0

    The Expansion Path (Comparative Static Analysis) ( Isoquants ) ( Least Cost combination between L* and K*) Isoquant slope Isoquant slope Isocost (Expansion Path)

    Isoquants Strictly Convexity ( 2) (Expansion Path) 1 Cobb-Douglas Production Function

    2d U

    Q AL K = 1

    [217]

  • L* K*

    9.6 (Profit Maximization) (Unconditional Input Demand)

    9.5 L* K* ( Profit Maximization) L K Objective function

    ( )P AL K wL rK =

    PQ wL rK = Q AL K = Q AL K () Lagrangian Multiplier Method 1 Lagrangian Function Endogenous Variables / Choice variables

    [218]

  • 2 First-Order Condition (FONC): 3 Second-Order Sufficient Condition

    3.1 Bordered Hessian

    H

    =

    3.2 Check the last n-k leading principle Minor n = k = Check the last leading principle Minor

    H =

    [219]

  • Optimization 1. y2Q x=

    x y 6 4

    2. ( ),U x y xy=

    1) x y 1 20 80 2) x y 4 20 160

    3. Firm 2 1 2,x x

    1 2 10.01 2 20Q x x x= + 1000 30 40 1 % () 1 1) 2)

    4. 2

    11252

    x p= , 230y p= 92 22 2 6 2TC x y x xy= + + +

    5. 2 x,y

    1 12 22Q x y= + (x,y) 4 5 100

    1) 20

    [220]

  • 2)

    220

    6.

    3)

    M wx py= +

    4,1,2

    ( ),U U x y=

    U is Differentiable 7. 3 1 2,x x 3x

    60 1 2 3, ,U x x x= UM

    8. B

    U x x x x x x= = 3( )1 2 3 1 2 3, , 1 2, ,p p p U

    1) 3 2) (Sufficient condition) 3) Homogenous function 9. a)

    ( ) ( ) 2 22 2, 2 x yf x y x y e = + b) 2

    2,

    2 2 21 2 3 1 2 34 2 3 1y x x x x x x= + c) ( ,L x y z) 2 2z x y x x y z= + + d)

    e) Maximize :

    2xyw e xy= ( )2 22 2 221

    2x y xx y xe e + + ( ),x y R

    [221]

  • 10. Utility function ( )1 2 1 ba b aU x x x b a = + subject to 2

    1i i

    ip x M

    == a,b

    1) 2) () 3) 11. 1 21 2Y AX X = W R 12. ( ) 1 21 2 1 2, , , ... nn nU x x x Ax x x =

    1 2, ,..., np p p M 1x 13. 2

    1 2,Q Q 1 1100p Q= 2 280p Q= 1)

    2)

    3) ()

    14.

    ( )1 26C Q Q= +

    , ,x y z ( ) 21 1200 100C x x= + , ( ) 22 1200 300C y y y= + + ,

    2000

    ( )3 200 10C z z= +

    [222]

  • 15. M

    ( ), , log log logU x y z a x b y c z= + + , ,a b c 1 2 3, ,P P P , ,X Y Z

    1) 3 2) Comparative Static Analysis

    3) , ,X Y Z 3 ( )

    16. Q AK L =

    K , L r w 1) K 2) 3) Comparative static analysis exogenous

    endogenous 17. CES Function ( ) 11 21p p pQ A x x = + 1 2,x x 1 2,p p 1) Cobb-Douglas function 2) Demand function

    M 3) Check second order condition

    18. Neo-classic (Two period consumption model) Microeconomics maximize utility 2 utility function n

    0p

    ( )1 10

    , lt

    tt t t

    iU c c c+ +

    ==

    t tM r

    [223]

  • Comparative static analysis endogenous exogenous ( Hint : ( )11 tt t

    cc Mr

    ++ =+ ) 19. Utility function ( )ln ln 24U c N= +

    N

    c P w M 1) Constraint 2) Utility maximize subject to constraint in 1) 3) Demand for c ( c*) Supply function ( N*)

    4) 3) Homogenous 5) Let * . Show that ( )* *ln ln 24U c N= + * 0UM > and

    *

    0Up

    > ( ) ( ) ( ), ln 1 ln 2 2 3f x y x y x y= +

    6) ( ) ( ), ln 3 2f x y x y= + 7) ( ) ( ), 1 x y 8f x y x e y= + : 8) 1

    0, 0x y> > 2 2 23 3 ; : 2 3x y z yz sub x y z+ + + + + =

    9) ( ) ( )( )ln ; : 1 1 4xy sub x y+ + = 10) ( )

    1 1

    ln ; :n n

    i i i ii i

    x sub p x y= =

    = 11) 0

    ( ) ( )2 24 2 8; : 2 1 8x y sub x y+ + =

    [224]

  • 10 Integration Integration

    Integration Integration : 2 Integration

    - Notation and Terminology - (Rules of Integration) - (Definite Integrals)

    Integration - (Total Revenue Function)

    (Marginal Revenue Function) - (Total Cost Function) (Marginal

    Cost Function) - (Total Profit Function) (Marginal Profit Function) - - - (Consumer Surplus)

    - (Producer Surplus) - First Degree Price Discrimination Perfect Price Discrimination -

    [225]

  • [226]

    10.1 (Indefinite Integrals) (Marginal Utility) X partial derivative x Marginal Cost Marginal Utility Marginal Cost

    10.1.1 (Antiderivative) (Integration) F(x) f(x) f(x) F(x) F(x) integral antiderivative f(x) f(x) x

    ( ) ( )f x dx F x C= + ( ) ( )dF x f xdx = integral sign f(x) integrand ( integrated) (Antiderivative)

    ( ) +F x C

    ( ) f x dx

    10.1.2 Basic Rule of Integration Rule I: (the power rule) Rule II: (the exponential rule)

    x xe dx e c= +

    11 ( 11

    n nx dx x c nn

    += + + )

  • [227]

    Rule III: (the logarithmic rule) Rule IIa: Rule IIIa: Rule of operation Rule IV: (Integral of a sum) Rule V: (Integral of a multiple) Rule Involving Substitution Rule VI: (the substitution rule) Rule VII: (Integration by parts)

    vdu uv udv=

    ( ) ( ) ( )duf u dx f u du F udx

    = = c+

    ( )( )kf k dx k f x dx=

    ( ) ( )( ) ( )f x g x dx f x dx g x dx+ = +

    ( )( ) ( ) ( )

    ( ) ( )ln 0

    ln 0

    f xdx f x c f x

    f x

    or f x c f x

    = + > +

    ( ) ( ) ( )f x f xf x e dx e c = +

    1 lndx x cx

    = +

  • 1 (Indefinite Integral-Antiderivative) 1. xdx =

    2. 31 dxx

    xdx =

    4. ( )4 23 5 2x x d+ x

    x x x dx =

    6. x3 2( )x x xe e e d + =

    =

    3. =

    5.

    [228]

  • 7.2( 2)y dy

    y =

    8. 2 15(1 )x x d+ x

    xxe dx =

    10. 1 ln xdxx =

    =

    9.

    [229]

  • 11. =

    12. 2 3xe x dx x xdx

    x x+

    3 21x x+ =

    14. ln( 2)2 4x dxx++

    =

    13. =

    10.1.2 Initial-Value Problems

    ( ) ( )f x dx F x C= + Initial condition C

    [230]

  • 2 Initial-value problem a) F(x) 1( ) 2

    2F x x = and F(0)=1/2

    b) F(x) and F(1) = 5/12

    10.2 (Definite Integrals)

    2( ) (1 )F x x x =

    ( ) ( )f x dx F x C= + a b x ( a < b)

    [ ] [ ]( ) ( ) ( ) ( )F b c F a c F b F a+ + = 1 definite integral of f(x) from a to b a lower limit of integration b upper limit of integration

    ( ) ( ) ( ) ( )bb

    a a

    f x dx F x F b F a= = 3 definite integral

    ( )10

    0e d

    [231]

  • 411

    t

    t

    d dxdt x +

    ( ) ( )22 3 21

    2 1 6x x dx

    10.2.1 A Definite Integral as an Area under the Curve

    1 1 A f(x) f(x)

    y

    x a b

    y=f(x)

    A=?

    [232]

  • [233]

    2 y=f(x) [a,b] ( A) [a,b] 4 1 2 3 4, , ,x x x x A

    A = [a,b] 3

    3

  • [234]

    4

    10.2.2 (Some Properties of Definite Integral) Property I: The interchange of the limits of integration changes the sign of the definite integral: Property II: A definite integral has a value of zero when the two limits of integration are identical Property III: A definite integral can be expressed as a sum of a finite number of definite subintegrals as follows

    ( ) ( )b aa b

    f x dx f x dx=

    ( ) ( ) ( ) 0aa

    f x dx F a F a= =

    ( ) ( ) ( ) ( ) ( )d b c da a b c

    f x dx f x dx f x dx f x dx a b c d= + + < <

  • [235]

    5 Property IV: Property V: Property VI: Property VII: (Integration by part)

    ( ) ( )b ba a

    f x dx f x dx =

    ( ) ( )b ba a

    kf x dx k f x dx=

    ( ) ( ) ( )( )b b ba a a

    f x g x dx f x dx g x dx+ = +

    x b x bx bx a

    x a x a

    vdu uv udv= =

    ==

    = ==

  • [236]

    4 3

    21x dx +

    5 0

    24

    22

    xdx

    x

    10.3 Improper Integral f a x b ( )F x ( )f x

    ( ) ( ) ( )b

    a

    f x dx F b F a=

  • [237]

    3

    20

    1dx

    x 21( )f x x= 0x = 1

    a

    dxx

    (Closed Interval) 1 f x a

    ( ) lim ( )b

    ba a

    f x dx f x dx

    = 2 f x a

    ( ) lim ( )b b

    aa

    f x dx f x dx=

    3 f x R 0

    0

    ( ) ( ) ( )f x dx f x dx f x dx

    = +

    6 21

    2dx

    x

  • [238]

    7 1

    1dx

    x

    10.4 Integration

    10.4.1. (Recovering Total Cost from Marginal Cost) MC(Q) (the underlying total cost) TC(Q) = 8 MC(Q) = 3 + 2Q TC(Q) = What is the constant in a total cost function? It is fixed costs, so using a marginal cost function we are unable to recover the level of fixed costs that a firm faces.

    10.4.2. (Total Profit Function) (Marginal Profit Function) (MP) MP=MR-MC q1 Profit =

  • [239]

    9 MR= 50-2q MC= 10+q q=10

    10.4.3. 1 2( ) 200 2MR t t= 2( ) 25 2MC t t t= + + 1. 4 2.

  • [240]

    3. S(t) ( ) 1000 119S t t=

    10.4.4. Yahoo

    12( ) 0.3 0.1S Y Y

    = 81 Yahoo

    10.4.5. (Consumer and Producer Surplus) (consumer and producer surplus) (when the demand curve and supply curve are not linear)

  • [241]

    Q = D(P) Q = S(P). P* Q* (Consumer surplus) CS (Producer surplus) PS CS = CS = PS = PS =

  • [242]

    10 D(P) = 25 1

    2 2P S(P) = 1 1

    2 2P +

    Welfare Effects of Price changes

    30 12 2

    P Welfare Effects of Tax distortion 4

    10.4.6. First Degree Price Discrimination Perfect Price Discrimination 2247P Q= MC = 4+3Q CS

  • [243]

    Perfect Price Discrimination

    10.4.7.

    (Net Investment) 1312t (capital stock) t = 0 25 (K) [1,3]

  • [244]

    10.4.8 : (Random Variables) (Random variables) (a probability distribution) X a random variable x 1 (Fair die) X f(x) f(1)=1/6, f(2)=1/6, f(3)=1/6, f(4)=1/6, f(5)=1/6, f(6)=1/6 and f(i)=0 for any other value i.

    ( any discrete random variable X: DRV) f(x) 1. 2. x domain f(x) 3. X Z ( any continuous random variable ) Z [a,b] f(x) pdf

    ( ) 0f x ( ) 1

    xf x =

    ( ) ( ) ( )t x

    F x P X x f t

    = =x<

  • [245]

    1. 2. 3. X cont. r.v. pdf. t f(t), Distribution Fn. Cumulative Distribution Fn. of X 4. X continuous r.v. f(x) probability density x, (Expected value) x E(X) = 5. X continuous r.v. f(x) probability density x, (Variance value) x

    ( ) 0,f x for x < <

    ( ) 1f x dx

    =

    ( ) ( ) ( )x

    F x P X x f t dt

    = =

    x < <

    ( )x f x dx =

  • [246]

    Uniform distribution f(x)

    1) CDF Uniform distribution f(x)

    2) E(x)

    3) Var(x)

    1 22.1 (The Concept of Sets)2.1.1 (Sets)2.1.2 (Membership in a set)2.1.3 (Relationships between Sets)

    2.2 (Relation and Function)2.2.1 (Orderd Pairs and C2.2.2 (Function)

    2.3 (Function and Types of Func2.3.1 (Constant Function)2.3.2 (Polynomial Function)2.3.3 (Exponential Logar2.3.4

    2.4. (Inverse Function) 3 (Static Equilibrium Analysis)3.1 3.1.1 (A Simple Macro econo3.1.2. IS-LM3.1.3. : 1

    4Basic Matrix Algebra Matrix Algebra 5 5.1 n (Polynomial of Degree n)5.1.1 (slope)

    5.2 (Differentiation / derivation) / process o5.2.1 (Continuity)5.2.1 Smooth Function

    5.3 Convexity and Concavity , Maxima and Minima5.3.1 Global V.S. Local Extremum Concept5.3.2 1 (First-Derivative 5.3.3 2 (Second-Derivative5.3.3 (Curvature of a Graph)

    6 (- 6.1 (6.1.1 6.1.2

    6.2 6.2.1 (Competitive Market)6.2.2 (Market Power: Monopoly)

    7 1 7.1 Functions between Euclidian Spaces7.1.1 (Geometric representatio7.1.2 Geometric Representations of Functions of Several Vari7.1.3 Level Curves for z = f(x,y)

    7.2 Partial Derivative7.2.1 (Economic Interpretation)

    7.3 The Chain Rule7.4 The Total Differential of A Function of Several Variable7.4.1 Total differentials7.4.2 differential7.4.2 The Total Derivatives

    7.5 Implicit Functions 8 8.1 The Differential (Optimization Condit8.1.1 / (Extreme V

    8.2 Quadratic Forms8.3 8.3.1 Price Discrimination8.3.2 8.3.3 1 (Problem of8.3.4 1 (Mul

    9 9.1 ( 1 )9.1.1 2 1 : Optimi

    9.2 9.3 9.4 9.5 (L9.6 (Profit Maximization) 10Integration Integration Integration

    10.1 (Indefinite Integr10.1.1 (Antiderivative) (I10.1.2 Basic Rule of Integration10.1.2 Initial-Value Problems

    10.2 (Definite Integrals)10.2.1 A Definite Integral as an Area under the Curve10.2.2 (Some Propert

    10.3 Improper Integral10.4 Integration 10.4.1. 10.4.2. (Total Profit Function) 10.4.3. 10.4.4. 10.4.5. (Consumer10.4.6. First Degree Price Discrimination Perfect Price10.4.7. 10.4.8 :