59
7/27/2019 Bc34lec3 Nucleic Acids http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 1/59 Inhibitors of the Genetic Mechanisms

Bc34lec3 Nucleic Acids

Embed Size (px)

Citation preview

Page 1: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 1/59

Inhibitors of the Genetic

Mechanisms

Page 2: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 2/59

Macrolides

•  Erythromycin is a naturally-occurring

macrolide derived from Streptomyces

erythreus

•  Structural derivatives include clarithromycin and azithromycin:

Page 3: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 3/59

Macrolide Structure

Page 4: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 4/59

Macrolide binding in thecrytallographic structure of H.

marismortui 50S ribosomal subunit

http://www.ncbi.nlm.nih.gov/pubmed/11698379 

Page 5: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 5/59

Page 6: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 6/59

 Aminoglycosides

•  Initial discovery in the late 1940s, withstreptomycin being the first used; gentamicin,tobramycin and amikacin are most commonly usedaminoglycosides

•   All derived from an actinomycete or aresemisynthetic derivatives

•  Consist of 2 or more amino sugars linked to an

aminocyclitol ring by glycosidic bonds =aminoglycoside

Page 7: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 7/59

 Aminoglycoside Structure

Page 8: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 8/59

 AminoglycosidesMechanism of Action

•  Multifactorial, but ultimately involvesinhibition of protein synthesis

• Irreversibly bind to 30S ribosomesdisrupting the initiation of proteinsynthesis, decreases overall proteinsynthesis, and produces misreading of 

mRNA•  Most are bacteriocidal

Page 9: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 9/59

Streptogramins

•  Example: Synercid® 

•  synthetic pristinamycin derivatives in a

30:70 w/w ratio - Quinupristin:Dalfopristin

Page 10: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 10/59

Page 11: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 11/59

Page 12: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 12/59

Linezolid

Mechanism of Action

•  Binds to the 50S ribosomal subunit near tosurface interface of 30S subunit – causes

inhibition of 70S initiation complex whichinhibits protein synthesis

Page 13: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 13/59

Clindamycin

Clindamycin is a semisynthetic derivative of 

lincomycin which was isolated from

Streptomyces lincolnesis in 1962 

Page 14: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 14/59

Clindamycin

Mechanism of Action

Ø Inhibits protein synthesis by binding

exclusively to the 50S ribosomal subunit

§  Binds in close proximity to macrolides –

competitive inhibition

Page 15: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 15/59

Tetracycline

•  Tetracyclines inhibit

bacterial protein

synthesis by blocking

the attachment of thetransfer RNA-amino

acid to the ribosome.

More precisely they

are inhibitors of thecodon-anticodon

interaction.

Page 16: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 16/59

Metronidazole

Metronidazole is a synthetic nitroimidazole

antibiotic derived from azomycin. First found

to be active against protozoa, and then

against anaerobes where it is still extremelyuseful. 

Page 17: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 17/59

Metronidazole

Mechanism of Action

Ø Ultimately inhibits DNA synthesis 

§  Selective toxicity against anaerobic and

microaerophilic bacteria due to the presence of ferredoxins within these bacteria

§  Ferredoxins donate electrons to form highlyreactive nitro anion which damage bacterial

DNA and cause cell death

Page 18: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 18/59

Summary of antibiotic action on the

genetic mechanism

http://hstalks.com/main/view_talk.php?t=798&r=285&c=252

Page 19: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 19/59

Mutation and genetic

disorders

Page 20: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 20/59

Mutation

• 

Hereditable change in DNA resulting from change innucleotide sequence

•  Types of mutation –  Point mutations

•  Swap one base for another; insert a base; delete a base

 – Macrolesions•  Alteration of the number of copies of a short repeat and

•  Large insertions into a gene

•  Multiple causes –  Spontaneous

• DNA replication/repair errors•  Insertion of transposons

 –  Mutagens (physical, chemical, viral)

Page 21: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 21/59

DNA Mutations: An Overview

Page 22: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 22/59

Point Mutations•  Single or few base pair changes

•  Provide “background rate” of mutation –  critically important to evolution

•  More likely to lead to loss of function than gain of function

• 

Causes point mutation –  Induced•  action of mutagen; environmental agent that alters nucleotide

sequence

•  process of inducing mutations by mutagens called mutagenesis

 – Spontaneous•  arise in absence of known mutagen

•  may be due to tautomerism

•  may be caused by errors in DNA replication

Page 23: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 23/59

Types of point mutation

•  Base substitution

 –  transition•   A↔ G (purine↔ purine) (A·T↔ G·C)

•  C↔ T (pyrimidine↔ pyrimidine) (C·G↔ T· A)

 –  transversion

•  purine↔ pyrimidine (e.g., A↔ C) (A·T↔ C·G)

•   Addition or deletion of nucleotide pairs (base-pair addition or deletion) –  also called indel mutations

Page 24: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 24/59

Types of mutation and effects

Page 25: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 25/59

Functional consequences

•  Missense mutations differ in severity –  conservative AA substitution substitutes chemically

similar AA; less likely to alter function

 –  nonconservative AA substitution replaces chemically

different AA; more likely to alter function•  Nonsense mutation results in premature termination

of translation

 –  truncated polypeptides often are nonfunctional

•  Point mutation in non-coding region may or may not

have visible effect (e.g., regulatory region)

S t M t ti

Page 26: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 26/59

Spontaneous Mutation:

Tautomeric shift

•  Natural variation in chemical form of base(isomers); differ in position of atoms & bonds –  amino (normal)↔ imino (rare)

 –  keto (normal)↔ enol (rare)

•  Results in mutation during DNA replication –  base in rare tautomeric form pairs with chemically

similar base of its normal complement

 –  e.g., C·G↔ C*·G at replication results in C*· A whichresolves to C· A upon reverse of tautomeric shift

 –  at next DNA replication event, use of A strand resultsin T· A base pair, a transition

•  Contributes to spontaneous mutation rate

Page 27: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 27/59

Common Tautomers & Base-

pairingThe more common ‘keto’ and ‘amino’ form of eachbase

Page 28: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 28/59

Rare tautomers

base-pair differentlythan the morecommon tautomers

T(enol) pairs with G

G(enol) pairs with T 

C(imino) pairs with A

A(imino) pairs with C

Page 29: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 29/59

Tautomeric shifts can be a source of rare spontaneous mutation

Page 30: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 30/59

During the next round of DNA replication, the transitionmutation becomes “fixed” in the DNA.

Page 31: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 31/59

Creation of indel mutations

The slippage model for creation of insertions and deletions

Page 32: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 32/59

Induced mutation: Physical Agents

•  Ultraviolet radiation – Thymine is most susceptible; UV radiation

generates thymine diradicals which can

dimerizes (pyrimidine-pyrimidine dimers) – activates SOS system, resulting in insertion of 

incorrect base

•  Ionizing radiation

 – Generates free radicals from cleavage of molecules including H2O, bases, sugar-phosphate backbones

Page 33: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 33/59

Formation of the most toxic and mutagenic DNA lesion, cyclobutane-pyrimidine dimers by UV radiation.

Dimers can form between two adjacent pyrimidines. (A) thymine-thyminecyclobutane-pyrimidine dimer, and (B) thymine-cytosine dimer and their 

photoreactivation by the enzyme photolyase in the presence of light.

Page 34: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 34/59

UV light inducesthe formation ofcyclobutane

dimers(pyrimidinedimers) and 6-4photoproducts

These products

cause significant‘kinks’ in theDNA and stopreplication andtranscription

Page 35: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 35/59

Free-radical effects

•  Oxidative damage to bases

 – caused by superoxide and peroxide radicals

 – chemically alter base pairing properties

Page 36: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 36/59

Oxidatively Damaged Bases

Active oxygen species like superoxide radicals (O2), hydrogenperoxide (H2O2) and hydroxyl radicals (OH.) are produced byaerobic respiration and can damage DNA

Pairs with A

Page 37: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 37/59

Induced Mutation: Chemical agents

•  Alkylating agents

•  Intercalating agents

• Deaminating agents

Page 38: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 38/59

 Alkylating Agents

•  Depurination, spontaneous loss of G or A

•  agent modifies base resulting in altered

pairing•  e.g., EMS (ethyl methanesulfonate) and NG

(nitrosoguanidine), formaldehyde, CHCl3, epoxides

•  results in replication block and insertion of nonspecific bases by SOS system

Page 39: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 39/59

Depurination occursmore often than youmight think

Mammalian cell losesabout 10,000 purinesfrom its DNA in a 20hour cell generationperiod

Obviously, theselesions must berepaired

Spontaneous Depurination

Page 40: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 40/59

 Alkylating agent: substitutions

•  Mutagens have different mutational

specificity

 – Base analogs

•  similar to nitrogenous bases of DNA, but havealtered pairing properties

•  e.g., 5-bromouracil (5-BU) and 2-aminopurine (2-AP)

•  result in transitions

Page 41: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 41/59

 Action of 5-BU5-BU can frequently change to either the enol or ionized form

Causes G-C to A-T or A-T to G-C transitions

Page 42: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 42/59

 Action of 2-APSimilar to 5-BU but with a different specificity

A-T to G-C transitions and G-C to A-T transitions

Page 43: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 43/59

Intercalating agents

•  flat, planar molecules intercalate between

base pairs, disrupt DNA synthesis

 – e.g., proflavin, acridine orange, aflatoxin,

benzo(a)pyrene

Page 44: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 44/59

Intercalating agentscan cause single baseadditions and deletions

R ti I t l ti

Page 45: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 45/59

Reactive Intercalation:

 Aflatoxin

Aflatoxin modifies guanine andresults in loss of base in DNA

Page 46: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 46/59

Deamination

•  Deamination, converts cytosine to uracil

which pairs with adenine at replication

•  Indel mutations

 – result in translation frameshift

 – often occur in regions of repeated bases

Page 47: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 47/59

Deamination of C yields U whichbase pairs with A

Results in C-G toT-A transition

This occurs

spontaneously

Deamination

Page 48: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 48/59

Hotspots for mutation often reflect an aspect of the DNAsequence, for example, a sequence repeat

FS5, FS25, FS45, FS65 result from addition of one set of CTGG which isrepeated three times in the lacI gene

FS2, FS84 result from loss of one set of CTGG

Page 49: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 49/59

Page 50: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 50/59

The Ames test was developedby Bruce Ames for evaluatingvarious chemicals for theirpotential as mutagens andcarcinogens

The Ames Test

1. Chemical injected into

mouse where it is metabolized

2. Liver (site of most chemicalmetabolism) is isolated and anextract is made that containsthe metabolized chemical

3. Extract is tested for mutagenicityin 3 strains of Salmonella to score forvarious kinds of mutations

Page 51: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 51/59

Defense mechanisms

•  Free radical scavengers

 – Vitamins A, E, C; only C is water soluble and

does not accumulate in the body

 – GSH (glutathione) converted to GSSG

 – Metallothionein (61 amino acids with 20

cysteines and 7 zinc atoms

•  Enzymes – Photolyase: photoreactivation repair 

Page 52: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 52/59

Photoreactivation repair 

•  Various enzymes with specific properties,

e.g. cleavage of pyrimidine dimers (T^T)

 – enzyme binds to dimer 

 – energy of blue light cleaves bond

Page 53: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 53/59

Defense mechanisms: enzymes

 – Demethylase (suicide enzyme)

 – Superoxide dismutase (converts superoxides

to H2O2)

 – Catalase (converts H2O2 to H2O + O2

 – Peroxidases

•  Repair systems

Page 54: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 54/59

Defense mechanisms: DNA Repair 

•  DNA damage must be repaired

•  Damaged DNA in any cell will be deleterious to

cellular function

 – in germ line cells mutations heritableBacteria are particularly prone to damage

 – haploid all mutations are dominant

 – unicellular whole organism affected

•  Repair most effective before replication at site

•  Repair can be more or less error-prone

Page 55: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 55/59

Types of Repair: Mismatch

•  Mismatch repair genes: mut 

•  Mismatched bp detected

•  Nearby ss cut and excision of ssDNA

past mismatch

•  – daughter strand preferentially excised

•  DNA polymerase repairs gap

Page 56: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 56/59

 Apurinic gap repair 

•   Apurinic gaps

 – most common spontaneous degradation of 

DNA

 – hydrolysis of sugar-purine bond - loss of purine(A, G)

•  Repair by AP endonuclease

 – removes base, ss gap filled by polymerase•  If no repair then A inserted at replication

 – G-C → T-A transversion mutation

Page 57: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 57/59

Excision repair 

•  Multi-enzyme system

•  Repairs stretch of damaged nt’s

 – damaged ssDNA excised

 – gap repair by polymerase

Page 58: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 58/59

Nucleotide-excision

repair removes bulky

DNA lesions that

distort the doublehelix

http://www.nature.com/

scitable/resource?action=showFullImageF

orTopic&imgSrc=36086/pierce-17_30_FULL.jpg 

Page 59: Bc34lec3 Nucleic Acids

7/27/2019 Bc34lec3 Nucleic Acids

http://slidepdf.com/reader/full/bc34lec3-nucleic-acids 59/59

Post-replication repair 

•  Polymerase can’t replicate acrossdamaged nt’s

•  Leaves a ss gap

•  Gap filled by strand exchange from theother dsDNA

•  Secondary gap repaired by polymerase