Bernhard Lechner

Embed Size (px)

Citation preview

  • 8/12/2019 Bernhard Lechner

    1/68

    Research activities

    at the Chair and Institute ofRoad, Railway and Airfield ConstructionRailway Concrete Pavements

    Dr.-Ing. Bernhard Lechner

    2ndInternational Conference on Best Practices

    for Concrete Pavements

    Florianopolis, November 2011

  • 8/12/2019 Bernhard Lechner

    2/68

    Continuously Reinforced Concrete Pavementfor ballastless tracks (Nuremberg-Ingolstadt)

  • 8/12/2019 Bernhard Lechner

    3/68

    High speed line CologneRhine/Main opened 2002

    Vmax 300 km/h

    Rreg 3350m

    Cantmax 170mm

    Grademax 40 %o

  • 8/12/2019 Bernhard Lechner

    4/68

    Research activities

    at the Chair and Institute ofRoad, Railway and Airfield Construction

    Introduction Why ballastless tracks?

    Concrete Pavements supporting

    Sleeper Panels or Fastening Systems

    Design features and thickness design

    Perspectives and Conclusions

  • 8/12/2019 Bernhard Lechner

    5/68

    Research activities

    at the Chair and Institute ofRoad, Railway and Airfield Construction

    Dr.-Ing. Bernhard LechnerIntroduction

    Actual conventional track design

    Ballast bed:

    High permeabilityNo rigid fixation of sleeper panel

  • 8/12/2019 Bernhard Lechner

    6/68

    Load distribution by rail deflection and damping required

    -0,5

    0,0

    0,5

    1,0

    1,5

    2,0

    6000

    5000

    4000

    3000

    2000

    1000

    0

    -1000

    -2000

    -3000

    -4000

    -5000

    -6000

    Defle

    ction[mm]

    Defle

    ction[mm]

    [mm]

    Unsprung mass

    of axle up to 2to

    Rail deflection under 20t single axle load

  • 8/12/2019 Bernhard Lechner

    7/68

    Gapbetweensleeperandballast[mm]

    Introduction

    Uneven sleeper support (Hanging sleeper)

    Dr.-Ing. Bernhard Lechner

  • 8/12/2019 Bernhard Lechner

    8/68

    White spots

  • 8/12/2019 Bernhard Lechner

    9/68

    Improving conventional ballasted tracks by

    Reduction of dynamic rail seat loads:

    Additional load distribution and dampingby introduction of elastic components (e.g. fastening

    systems)

    Reduction of ratio rail seat load vs. ballast stress:

    Wide base sleepers

  • 8/12/2019 Bernhard Lechner

    10/68

    Elastic Rail Pads

    Elastic Sleeper Pads

    Sub-Ballast Mats

    (Bridge decks)

    Wheel Load

    Rail seat load

  • 8/12/2019 Bernhard Lechner

    11/68

    Conventional sleeper

    B 70

    Conventional

    Fastening System

    Sleeper B 75

    increased contact area

    High resilient fastening

    system

  • 8/12/2019 Bernhard Lechner

    12/68

    Resistance against track

    buckling

    Control of high longitudinal

    compressive forces in

    continuously welded rail

    during summertime.

    Dr.-Ing. Bernhard Lechner

  • 8/12/2019 Bernhard Lechner

    13/68

    CologneRhine/Main 2002

    Vmax= 300 km/h

    Rreg= 3350m

    Cantmax170mm

    Grademax40 %o

  • 8/12/2019 Bernhard Lechner

    14/68

    Costs ballasted vs. ballasted track

    Tracks on earthworks:

    Improved Ballasted track superstructure (including protection layer)

    Initial costs: 450-500 T Annual maintenance costs: 3.55 T

    Ballastless track superstructure (including base layer and noise absorbers)

    Initial costs: 550-700T Annual maintenance costs 0.25T

  • 8/12/2019 Bernhard Lechner

    15/68

    Total cost for the new construction of a railway line (without rolling stock)

    Conclusion: High leverage of reducing civil construction cost by use ofalignment advantages of slab track superstructure for PDLs

    Civil construction

    55-70 %

    Electrical & Signallingequipment25-35 %

    Track work

    5-10 %

    1 % reduction of civil cost 10 % compensation of track cost

  • 8/12/2019 Bernhard Lechner

    16/68

    Low maintenance

    High availability ( 100%)

    Increased service life Designed service life 60 years

    Low structural height

    High lateral track resistance which allows future speed increases incombination with tilting technology and/or usage of eddy current

    brakes (contactless braking system) No problems with flying ballast stones at high speed

    Ballastless tracksState-of-the-art solutions for high speed lines

    Main characteristics:

  • 8/12/2019 Bernhard Lechner

    17/68

    Eddy current brake

    http://localhost/var/www/apps/conversion/tmp/scratch_9//upload.wikimedia.org/wikipedia/commons/4/48/Wirbelstrombremse_aktiv.jpg
  • 8/12/2019 Bernhard Lechner

    18/68

    Research activities

    at the Chair and Institute ofRoad, Railway and Airfield Construction

    Introduction Why ballastless tracks?

    Concrete Pavements supporting

    Sleeper Panels or Fastening Systems

    Design features and thickness design

    Perspectives and Conclusions

  • 8/12/2019 Bernhard Lechner

    19/68

    GENERAL SYSTEMS OF BALLASTLESS TRACKS

    DISCRETE RAIL SEATS

    OR CONTINUOUSLY

    EMBEDDED RAIL

    ON CONCRETE SLAB

    (CRCP)

    PRE-CAST SLABS ON

    TREATED BASE

    Ref: Max Bgl GmbH

    SLEEPER PANEL ON

    CONCRETE PAVEMENT

    (fixed or monolithic)OR ASPHALT PAVEMENT

    (fixed)

    Ref: Pfleiderer track systems

  • 8/12/2019 Bernhard Lechner

    20/68

    First ballastless track

    installed at Rheda station

    1972

  • 8/12/2019 Bernhard Lechner

    21/68

    Rheda 1972

    14cm CRCP

    First ballastless track installed at Rheda station 1972

  • 8/12/2019 Bernhard Lechner

    22/68

    Ballastless track systems

  • 8/12/2019 Bernhard Lechner

    23/68

  • 8/12/2019 Bernhard Lechner

    24/68

  • 8/12/2019 Bernhard Lechner

    25/68

    CRCP for ballastless tracks (Hannover-Berlin)

    Free cracking of CRCP

  • 8/12/2019 Bernhard Lechner

    26/68

    Discrete rail seats on

    CRCP(controlled crackingrequired)

    Cement treated base (CTB)

    CRCP

  • 8/12/2019 Bernhard Lechner

    27/68

    Cracking of CRCP controlled by embedded prefabricted sleepers

    (Test section built 1978)

  • 8/12/2019 Bernhard Lechner

    28/68

    Sleeper panels onCRCP

    Monolithic connection

    Rheda with trough

    (Hannover-Berlin 1988)

    Cement treated base (CTB)

    CRCP

  • 8/12/2019 Bernhard Lechner

    29/68

    Sleeper panels onCRCP

    Monolithic connection

    Rheda with troughand two-block

    or lattice girder sleepers

    Cologne-Rhine/Main 2002Cement treated base (CTB)

    CRCP

  • 8/12/2019 Bernhard Lechner

    30/68

    Sleeper panels onCRCP

    Monolithic connection

    Rheda 2000

    (without trough)

    Nuremberg-Ingolstadt 2006

    Cement treated base (CTB)

    CRCPCRCP + Filling Concrete

  • 8/12/2019 Bernhard Lechner

    31/68

    Temporary rail support required

  • 8/12/2019 Bernhard Lechner

    32/68

  • 8/12/2019 Bernhard Lechner

    33/68

    Temporary rail support removed

  • 8/12/2019 Bernhard Lechner

    34/68

    Curing according to road construction

  • 8/12/2019 Bernhard Lechner

    35/68

  • 8/12/2019 Bernhard Lechner

    36/68

    Nrnberg Ingolstadt

  • 8/12/2019 Bernhard Lechner

    37/68

    Cracks up to 0.5mm are

    according to CRCP design

    no sealing required

  • 8/12/2019 Bernhard Lechner

    38/68

    Switches must be

    integrated

  • 8/12/2019 Bernhard Lechner

    39/68

  • 8/12/2019 Bernhard Lechner

    40/68

    CRCP for ballastless tracks (Hannover-Berlin)

  • 8/12/2019 Bernhard Lechner

    41/68

    Sleeper panels fixedon CRCP

    BTD V2

    (Hannover-Berlin 1988)

    180mm CRCP

    300mm Cement Treated Base (CTB)

  • 8/12/2019 Bernhard Lechner

    42/68

    ATD-structure with sleepers on asphalt pavement (30cm)

    High-speed line HannoverBerlin (1998)

  • 8/12/2019 Bernhard Lechner

    43/68

    Discrete rail seatson CRCP

    ControlledCracking required

    BTE (ZBLIN)240mm CRCP

    300mm Cement treated base (CTB)

  • 8/12/2019 Bernhard Lechner

    44/68

    Pre-cast slabs orframes on a treated

    baseusing grouting mortars

    BGL

    (Nuremberg-Ingolstadt2006)

    Grouting mortar

  • 8/12/2019 Bernhard Lechner

    45/68

  • 8/12/2019 Bernhard Lechner

    46/68

    Nrnberg-

    Ingolstadt

  • 8/12/2019 Bernhard Lechner

    47/68

    Ballastless tracksInstallation of noise absorption elements

  • 8/12/2019 Bernhard Lechner

    48/68

    Research activities

    at the Chair and Institute of

    Road, Railway and Airfield Construction

    Introduction Why ballastless tracks?

    Concrete Pavements supporting

    Sleeper Panels or Fastening Systems

    Design features and thickness design

    Perspectives and Conclusions

  • 8/12/2019 Bernhard Lechner

    49/68

    Vossloh Fastening System FF 336

    Ankerschraube As 10Anchor bolt As 10Perno de anclaje As10

    Hakenschraube Hs 32T- head bolt Hs 32Tornillo con gancho Hs 32

    Schraubenfeder FeHelical spring FeResorte hlicoidal Fe

    SechskantmutterHexagon nutTuerca hexagonal

    Kragenscheibe UlsCollared washer Uls

    Arandela Uls

    Elastische Zwischenplatte ZwpElastic plate ZwpPlaca elstica Zwp

    Zwischenlage ZwRail pad ZwPlaca de asiento Zw

    Zwischenplatte ZwpIntermediate pad ZwpPlaca intermedia Zwp

    SchieneRailCarril

    Rippenplatte RphRibbed plate RphPlaca nevada Rph

    Isolierkragenbuchse FbuInsulating bush FbuCasquillo con collarn aislante Fbu

    Spannklemme Skl 12Tension Clamp Skl 12Clip elstico Skl 12

    Unterlegscheibe UlsWasher Uls

    Arandela Uls

    Rail deflection (bending)~ 1.5 mm

  • 8/12/2019 Bernhard Lechner

    50/68

    Load scheme UIC 71

    EI slab>> EI rail

    Rails with elastic fastening system

    Load distribution by rail Slab loaded by rail seat loads Slab design according to road

    pavement design

  • 8/12/2019 Bernhard Lechner

    51/68

    Boogie of ICE 1

    49,0

    -2,0-2,3

    52,8

    5,20

    4,55

    3,90

    3,25

    2,60

    1,95

    1,30

    0,65

    0,00

    -0,65

    -1

    ,30

    -1

    ,95

    -2

    ,60

    -3,25

    -3,90

    -4

    ,55

    -5,20

    -5,85

    -6,50

    -7

    ,15

    -7

    ,80

    -8,45

    Distance to 1st axle [m]

    -20,0

    0,0

    20,0

    40,0

    60,0

    [kN]

    3,0 m

    Lift-up forces

  • 8/12/2019 Bernhard Lechner

    52/68

    Thickness design using slab theory models (Westergaard) or FEM

    Static bending stresses in concretelayer in longitudinal direction

    Static bending stresses in concretelayer in transversal direction

  • 8/12/2019 Bernhard Lechner

    53/68

    Axle load 100 kNAxle load 200 kN

    Q = 50 kNp = 0,7 N/mm

    max

    max

    Sstat = 32 kN

    Sdyn = 5078 kN

    max

    max

    Elastic rail pad

    Geo-textilep < 0,3 N/mm

    Asphalt

    Asphalt

  • 8/12/2019 Bernhard Lechner

    54/68

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    3,0

    0 100 200 300 400 500

    [x 10 Load cycles]

    plasticdeformation[mm]

    - eformation

    -Erosion-Frost

    Sleeper panel on

    asphalt pavement

  • 8/12/2019 Bernhard Lechner

    55/68

    Height adjustment within fastening system + 76mm / -24mm

    to compensate slab settlement or heaving

  • 8/12/2019 Bernhard Lechner

    56/68

    Old, conventional tracks

    Vertical stresses z acting on subgrade

  • 8/12/2019 Bernhard Lechner

    57/68

    Actual, conventional tracks for hightspeed v 250km/h

    Vertical stresses z acting on subgrade

    Protection layer

    Frost blanket layer

  • 8/12/2019 Bernhard Lechner

    58/68

    Ballasted / Ballastless

    Transition Design

    Approval of new track designs or track components

  • 8/12/2019 Bernhard Lechner

    59/68

    Develops new track

    Application for approval- Design / dimensioning- Certificates

    TestingExpert reports Approval for in-situ

    testing

    Approval

    Safety

    Declaration ofusage

    LCC

    Industry Federal Rail Agency

    (EBA)

    Client

    /operator(DBAG)

    Order

    Approval of new track designs or track components

  • 8/12/2019 Bernhard Lechner

    60/68

  • 8/12/2019 Bernhard Lechner

    61/68

    Track movable Benkelman beam to check track quality

  • 8/12/2019 Bernhard Lechner

    62/68

    DEFLECTION BEHAVIOUR OF A BALLASTLESS TRACK

    after 3 years of operation

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    1,2

    1,4

    1,6

    0 5 10 15 20 25 30 35 40 45 50sleeper number

    verticaldeflection[m

    m]

    concrete slab (sept.1996)

    concrete slab (sept.1999)

    rail (sept. 1996)

    rail (sept. 1999)

  • 8/12/2019 Bernhard Lechner

    63/68

    Research activities

    at the Chair and Institute of

    Road, Railway and Airfield Construction

    Introduction Why ballastless tracks?

    Concrete Pavements supporting

    Sleeper Panels or Fastening Systems

    Design features and thickness design

    Perspectives and Conclusions

  • 8/12/2019 Bernhard Lechner

    64/68

    Further developments of ballastless tracks with concrete pavements

    New track designs using long term experiences of the road sector

    - Concrete pavement on unbound base layer

    - Jointed plain concrete pavement (JPCP)

    -

  • 8/12/2019 Bernhard Lechner

    65/68

    Conclusions

    Concrete pavement technology for road application isplatform for high level rail application (but not only)

    Rail requirements are specific and tight

    Interface between pre-fabricated and built in placecomponents is critical

  • 8/12/2019 Bernhard Lechner

    66/68

    Obrigado pela sua ateno !

    Thanks for your attention !

    Dr.-Ing. Bernhard Lechner

    Technische Universitt MnchenChair and Institute of Road, Railway and Airfield ConstructionBaumbachstrae 781245 Mnchen

    Germany

    Tel +49.89.289.27033Fax +49.89.289.27042

    E-Mail: [email protected]: www.vwb.bv.tum.de

    mailto:[email protected]://www.vwb.bv.tum.de/http://www.vwb.bv.tum.de/mailto:[email protected]
  • 8/12/2019 Bernhard Lechner

    67/68

  • 8/12/2019 Bernhard Lechner

    68/68

    Discrete rail seats on

    CRCP(controlled crackingrequired)

    BES (WALTER-HEILIT)

    Cement treated base (CTB)

    CRCP