beta tipe ti zr nb

Embed Size (px)

Citation preview

  • 8/17/2019 beta tipe ti zr nb

    1/6

    www.elsevier.com/locate/jmbbm

     Available online at www.sciencedirect.com

    Short Communication

    β-Type Zr –Nb–Ti biomedical materials with high

    plasticity and low modulus for hard

    tissue replacements

    Li Nie, Yongzhong Zhann, Tong Hu, Xiaoxian Chen, Chenghui Wang

    College of Materials Science and Engineering, Guangxi University, Nanning, Guangxi 530004, PR China

    a r t i c l e i n f o

     Article history:

    Received 13 July 2013

    Accepted 15 August 2013

    Available online 28 August 2013

    Keywords:

    Zr –Nb–Ti alloys

    β-Type

    Biomedical materials

    Mechanical behavior 

    a b s t r a c t

    In order to develop new biomedical materials for hard tissue replacements, Zr –20Nb–xTi

    (x¼0, 3, 7, 11 and 15) alloys with required properties were designed and prepared by using 

    the vacuum arc melting method for the   rst time. Phase analysis and microstructural

    observation showed that all the as cast samples consisted of equiaxed   β-Zr phase. The

    mechanical properties and fracture behaviors of the Zr –20Nb–xTi alloys have been

    analyzed. It is found that these alloys exhibit high plasticity, moderate compressive

    strength (1044–1325 MPa) and yield stress (854–1080 MPa), high elastic energy (12–20 MJ/m3)

    and low Young's modulus (28–31 GPa). This good combination of mechanical properties

    makes them potential biomedical materials for hard tissue replacement.

    & 2013 Elsevier Ltd. All rights reserved.

    1. Introduction

    Currently, development of biological hard tissue replace-

    ments (HTR) has attracted increasing attention. However,

    only part of the investigated materials may be applied for 

    HTR, as a number of conditions should be satised. Firstly,

    the implant materials must possess excellent biocompatibil-

    ity without adverse reaction with human body. Secondly, it

    should have excellent corrosion resistance in body 

    uid, highmechanical strength and fatigue resistance. Finally, good

    wear resistance and low elastic modulus (close to that of a

    human bone (15–30 GPa)) are required, in order to transfer 

    adequate mechanical stress to the surrounding bones (Guo

    et al., 2010; Li et al., 2011).

    Ti–6Al–4V alloy was one of the earliest Ti-based biomater-

    ials introduced in implantable components and devices.

    However, the modulus of Ti–6Al–4V reaches about 110 GPa,

    which is substantially higher than that of natural human

    bone (10–30 GPa) (Niinomi, 1998). As a result, the human body

    may be seriously damaged under external applied load due to

    the elastic mismatch. Therefore, biomaterials with low elastic

    modulus are attracting the attention of researchers. It is

    found that new type biomedical Ti alloys with single   β-Ti

    phase can effectively reduce the elastic modulus to be about

    60–80 GPa (Nag et al., 2007; Niinomi, 2004), which is closer to

    the human bone. However, to develop suitable HTR materials,the elastic modulus should be further reduced without

    deterioration of the other properties. Consequently, develop-

    ment of the other metal-based biocompatible materials is an

    important solution.

    Zr is an important alloying element for Ti-based alloys to

    improve mechanical properties. More importantly, similar to

    Ti, Zr is a favorable non-toxic metal with good biocompat-

    ibility with organism. Zr and its alloys are known as excellent

    1751-6161/$ - see front matter  &

     2013 Elsevier Ltd. All rights reserved.http://dx.doi.org/10.1016/j.jmbbm.2013.08.019

    nCorresponding author. Tel.: þ86 771 3272311; fax:þ86 771 3233530.E-mail address: [email protected] (Y. Zhan).

     j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 2 9 ( 2 0 1 4 ) 1 – 6

    http://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1016/j.jmbbm.2013.08.019mailto:[email protected]://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1016/j.jmbbm.2013.08.019http://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1016/j.jmbbm.2013.08.019mailto:[email protected]://crossmark.dyndns.org/dialog/?doi=10.1016/j.jmbbm.2013.08.019&domain=pdfhttp://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1016/j.jmbbm.2013.08.019http://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1016/j.jmbbm.2013.08.019http://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1016/j.jmbbm.2013.08.019

  • 8/17/2019 beta tipe ti zr nb

    2/6

    bioactive metallic materials because a bone-like apatite layer 

    may be formed on their surfaces in living body. In addition, Zr 

    alloys exhibit high mechanical strength, fracture toughness

    and corrosion resistance (Inoue, 2000; Niinomi, 2003; Okazaki

    et al., 1998;  Wen et al., 2006), therefore they are potential

    biomaterials for hard tissue replacements. However, up to

    now very few report can be found on the Zr-based biomedical

    materials. Microstructure and magnetic susceptibility of as-

    cast Zr –Mo alloy have been investigated, and it was reported

    that the alloys are useful for medical devices applied under 

    magnetic resonance imaging (Suyalatu et al., 2010). Li et al.

    (2011) have developed Zr –Si biomaterials with high strength

    and low elastic modulus (25.08–29.63 GPa), which satises

    well the requirements of HTR. Zr –Nb alloys were previously

    used as nuclear materials, thus the investigations were

    mainly focused on microstructural stability and corrosion

    behaviors under various conditions (Arima et al., 2005;

    Aurelio et al., 2001;   Benites et al., 2000;   Dey et al., 1995;

     Jeong et al., 2002; Kim et al., 2008). However, as biomedical

    materials, the Zr –Nb alloys have gradually attracted the

    attention of some researchers (Kondo et al., 2011;  Akahori

    et al., 2011a,  2011b). For instance, recently the mechanical

    properties and biocompatibilities of the Zr –Nb alloys have

    been experimentally studied (Akahori et al., 2011a, 2011b).

    In this paper, the Zr –20Nb–xTi alloys are designed, with

    Ti content in the range from 0 to 15.0 at%. The object is to

    develop potential biomedical materials with appropriate

    mechanical properties (i.e. low Young's modulus, favorable

    ductility, and moderate strength) for hard tissue replace-

    ments. The phase composition, microstructure and mechan-

    ical properties including compressive stress, Young's

    modulus and elastic energy of the as-cast Zr –20Nb–xTi (x¼

    0, 3, 7, 11 and 15) alloys have been investigated.

    2. Experimental procedure

    The Zr –20Nb–xTi alloys with nominal composition (in atomic

    fraction) of Zr –20Nb, Zr –20Nb–3Ti, Zr –20Nb–7Ti, Zr –20Nb–11Ti

    and Zr –20Nb–15Ti have been melted by using the WK-II type

    non-consumable vacuum arc melting furnace. The raw

    materials were pure sponge zirconium, pure niobium and

    pure sponge titanium with purity all higher than 99.9 wt%. In

    order to ensure adequate mixing and reaction of the samples

    in molten state, the melting temperature was controlled to be

    as high as 2500   1C by setting the current intensity. The

    reaction and melting time for each sample was kept for 

    80 s. The molten samples were then cooled down directly in

    the water-cooled copper melting pots (by running water at

    room-temperature) with cooling time is about 500 s. In order 

    to ensure chemical homogeneity of each sample, all the

    ingots was turned over and remelted for six times.

    Samples for optical and secondary electron microscopy

    were cut by electric discharge machining (EDM) from the

    ingots. They were mounted and then mechanically polished

    with SiC paper and Al2O3 particles with water. The polished

    samples were etched in an erodent with composition of 

    HF (aqueous solution): HNO3 (aqueous solution): water ¼1:2:6

    (ratio by volume). The weight percents of the HF aqueous

    solution and the HNO3 aqueous solution were 40% and 65%,

    respectively.

    Phases identication were carried out via X-ray diffraction

    (XRD) using Rigaku D/Max 2500 V diffractometer with Cu Ka

    radiation and graphite monochromator operated at 40 kV and

    200 mA. The microstructures were determined from DMM-

    660 type optical microscopy and Hitachi S-3400N scanning 

    electron microscope (SEM) equipped with energy dispersive

    (EDX) analysis. The dimensions of the compression specimen

    were 5 mm5 mm10 mm. Three samples were tested for 

    each alloy to get the average values. Compression test was

    conducted at room temperature in air at an initial strain rate

    of 1 mm/min by using the Instron 8801 axial servohydraulic

    dynamic testing system, to determine the mechanical prop-

    erties including ultimate compressive strength, fracture

    strain and Young's modulus etc.

    3. Results and discussion

    3.1. Component selection principle

    In this work, there are two objects for the design of these

    biological HTR materials. Firstly, the elastic modulus should

    be effectively reduced to comply with that of the human

    bones (10–30 GPa). This measure can reduce the effects of 

    stress shielding between the implant material and bones.

    Secondly, the strengths (including the yield strength and the

    compressive strength) of the HTR material should be moder-

    ately improve to withstand external force. This measure

    helps to prolong the working life of the HTR components. It

    should be pointed out that as the hard tissue is mainly

    affected by compression stress, so the compressive properties

    are principally considered in this work. At the same time,

    excellent ductility is also required because it is important for 

    processing the HTR materials into components with various

    shapes.

    It is known that for the two crystal structures of Zr (i.e.

    close-packed hexagonal   α-Zr and body-centered cubic   β-Zr),

    the elastic modulus of the  β-Zr (about 60 GPa) is much lower 

    than that of the  α-Zr (about 100 GPa) (Cai et al., 2009; Kondo

    et al., 2011). As a result, in order to effectively reduce the

    elastic modulus of the zirconium alloy,   β-Zr should be

    obtained at room temperature. However, since the   β-Zr 

    belongs to high-temperature phase, the so-called   β   phase

    stabilizing elements like Mo, Nb, Ta, etc. should be added in

    the alloys to effectively decrease the   β-Zr and   α-Zr phase

    change transition temperature. Considering the future prac-

    tical applications, the expensive raw material Ta is excluded.

    In this work, we mainly want to improve the strength of the

    Zr alloy through the solid solution strengthening of alloying 

    elements. For this strengthening mechanism, the distortion

    energy caused by lattice distortion can hinder the movement

    of dislocations and thus improve the strength. Larger lattice

    distortion results in more signicant strengthening effect, but

    also decreases the plasticity. According to the Zr –Nb and the

    Zr –Mo binary phase diagrams (Abriata and Bolcich, 1982;

    Zinkevich and Mattern, 2002), the elements Nb and Mo can

    form innite and limited solid solutions in Zr, respectively.

    Therefore, Nb element may result in smaller lattice distortion

     j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 2 9 ( 2 0 1 4 ) 1 – 62

  • 8/17/2019 beta tipe ti zr nb

    3/6

    and obtain a good combination of ductility and strength, as

    compared with Mo. Accordingly, we select Nb as the major  β-

    Zr-stabilizing element for the designed alloys. In order to

    decrease the   β-α   phase transition temperature as far as

    possible and avoid the generation of coarse grains, the

    content of Nb is designed to be 20 at% (which is slightly

    higher than the segregation reaction transition component

    point, but slightly lower than that of the eutectic reaction

    (Abriata and Bolcich, 1982)). To further improve the mechan-

    ical properties, Ti is chosen as the third alloying element for 

    the Zr –Nb alloys. According to the Zr –Ti binary phase diagram

    (Murray, 1981), these two elements can form an innite solid

    solution. Ti is conducive to the formation of metastable  β-Zr 

    alloys at room temperature. Ti content is designed to be in

    the range from 0 to 15 at% to investigate the inuence of Ti

    content on the mechanical properties of the Zr –20Nb alloy.

    3.2. Phase identi cation and microstructure

    XRD patterns of the as-cast Zr –20Nb–xTi (x¼0, 3, 7, 11 and 15)

    alloys are shown in Fig. 1. It is clearly indicated that the solid

    state phase composition of all the samples is   β-type Zr. As

    Ti and Zr can dissolve completely with each other at any

    temperature (Murray, 1981), the effect of Ti element on the

    phase composition of Zr alloys should be weak. Nb belongs to

    4d transition metallic element, which is effective to stabilize

    the   β-Zr phase. In addition, it is noted that Zr and Nb can

    completely dissolve with each other in the   β   phase region

    (Abriata and Bolcich, 1982). The room-temperature phase

    composition at is closely related to the cooling rate after 

    the alloys have been solidied from high-temperature liquid

    (Li et al., 2012). In this work, all the alloys were produced in

    the water-cooled copper crucible by using arc melting. The

    cooling rate may be too fast for the small button samples to

    reach equilibrium state. In other words there is no suf cient

    time for the solid phase transition (β-Zr -α-Zr). Moreover, due

    to the similarity of the crystal structure and lattice parameter 

    between Zr and Nb elements, they may completely dissolve

    in each other and then result in ideal undercooling. This

    helps to form the metastable  β  phase at high temperatures.

    Hence, the high-temperature phase   β-Zr is kept at room-

    temperature in the as-cast samples. In addition, it is found

    that with the increase of Ti content, the intensities of XRD

    peaks change accordingly, which indicates that the crystal-

    line process has been affected.

    Typical secondary electron micrographs of the as-cast Zr –

    20Nb–xTi (x¼0, 3, 7, 11 and 15) biomedical alloys are dis-

    played in   Fig. 2. As both Nb and Ti can dissolve in the Zr 

    matrix, equiaxed   β-Zr crystal grain can be clearly observed.

    The grain boundaries of the  β-Zr crystal grain are also seen

    clearly. In addition, compared with the Zr –20Nb sample,

    addition of Ti element makes the grain boundary closer and

    renes the microstructure. This may be due to the fact that Ti

    element restrains the precipitation of Nb from the grain

    boundary and then reduces the thickness of grain boundary.

    3.3. Mechanical properties

    Fig. 3 shows the room-temperature compressive stress–strain

    curves of the   β-type Zr –20Nb–xTi (x¼0, 3, 7, 11 and 15)

    biomedical alloys. It is found that Ti element has an impor-

    tant impact on the mechanical properties. It is noted that the

    slope of elastic stage changes slightly with the increasing of 

    Ti content. This indicates that Ti element has little effect on

    the stiffness of Zr –20Nb alloy. As we know, the stress–strain

    curves can describe the hardening growth trend in the

    process of plastic deformation. According to Fig. 3, it is found

    that all the samples do not exhibit signicant hardening 

    effect with the increase of pressure. This means that the

    Zr –20Nb–xTi (x¼0, 3, 7, 11 and 15) alloys are suitable to be

    processed into different shapes.   Table 1   lists the values of 

    Young's modulus, compressive strength, yield strength, elas-

    tic energy and plastic strain of these biomedical alloys. It is

    found that all the samples exhibit high (and also close) plastic

    strains, which should be related to the mechanisms of 

    various solid solution types. Since both Nb and Ti can

    completely dissolved in the   β-Zr matrix, they may limitedly

    enhance the strength and maintain relatively high ductility.

    In this work, the maximum compression distance was set to

    be 4 mm. However, all the samples were not crushed in this

    compression distance. Compression cracks of the tested

    samples are shown in  Fig. 4. It is observed that the angles

    between the compression direction and cracks are about 451.

    According to the width of the cracks, it is inferred that the

    plasticity is relatively good Ti content ranges from 7% to 11%.

    In this work, low Young's modulus is a highlight for the

    Zr –20Nb–xTi system. As listed in   Table 1, the Young's

    modulus ranges from 28 to 31 GPa, which meets the require-

    ment of HTR for human body (15–30 GPa) well. Therefore, the

    present material system is expected to solve the problem

    caused by the mismatch of elastic properties between the

    implant materials and human bones. It should be pointed out

    that the solid solution strengthening is signicantly affected

    by Ti element. As the Young's modulus is dened to be the

    ratio of the normal stress and strain in the elastic deforma-

    tion stage, both the deformation resistance and the Young's

    modulus are increased due to more Ti addition. Accordingly,

    the compressive strength and the yield strength increase

    with increasing Ti content. The Zr –20Nb–15Ti sample has the

    highest compressive strength (1307718 MPa) and yield

    strength (1071710 MPa), which could be considered as rela-

    tively high values for the biological hard tissue substitute

    Fig. 1 – XRD patterns of the as-cast Zr –20Nb–xTi ( x¼0, 3, 7, 11

    and 15) alloys.

     j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 2 9 ( 2 0 1 4 ) 1 – 6   3

  • 8/17/2019 beta tipe ti zr nb

    4/6

  • 8/17/2019 beta tipe ti zr nb

    5/6

    where   δ e is the elastic energy,  εe is the elastic strain,   s y is the

    yield strength and  E   is Young's modulus (Zhan et al., 2012).

    According to Eq.   (1), the elastic energies of the   β-type

    Zr –20Nb–xTi (x¼0, 3, 7, 11 and 15) alloys are calculated and

    listed in   Table 1. It is indicated that the elastic energy is

    sensitive with the variation of Ti content. The elastic energy

    of the Zr –20Nb–xTi alloy ranges from 12 MJ/m3 to 20 MJ/m3,

    which is higher than most of the reported bio-Ti-base alloys

    (i.e. 1–5 MJ/m3)  (Niinomi, 1998; Zhan et al., 2012). This result

    means that the present material system can withstand

    greater elastic deformation.

    4. Conclusions

    In order to develop novel biomedical HTR materials with

    required properties, the  β-type Zr –20Nb–xTi (x¼0, 3, 7, 11 and

    15) alloys were designed and fabricated for the  rst time. The

    effects of Ti element on the microstructure and mechanical

    Table 1  –  The mechanical properties of the  β-type Zr –20Nb–xTi ( x¼0, 3, 7, 11 and 15) biomedical alloys.

    Alloys  Young's modulus

    (GPa)

    Compressive strength

    (MPa)

    Yield strength

    (MPa)

    Elastic energy (MJ/

    m3)

    Plastic strain

    (%)

    Zr –20Nb 28.97570.085 104672 85773 12.7370.01 37.8470.07

    Zr –20Nb–3Ti 29.68570.465 111079 89077 13.7070.03 37.6270.13

    Zr –20Nb–7Ti 29.02070.94 1145715 91075 13.6570.01 38.0270.06

    Zr –20Nb–11Ti

      29.30570.045 1204719 104377 18.5670.54 38.1070.02

    Zr –20Nb–

    15Ti  29.91570.535 1307718 1071710 19.1570.08 37.6970.01

    Fig. 4  –  SEM images of the crack of the compressively tested samples: (a) Zr –20Nb, (b) Zr –20Nb–3Ti, (c) Zr –20Nb–7Ti, (d) Zr –

    20Nb–11Ti, and (e) Zr –20Nb–15Ti.

     j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 2 9 ( 2 0 1 4 ) 1 – 6   5

  • 8/17/2019 beta tipe ti zr nb

    6/6

    properties of the binary Zr –20Nb alloy were investigated. The

    following results are got:

    (1) All the as cast Zr –20Nb–xTi samples contain only one

    phase (β-Zr). The size of the equiaxed β-Zr grains is greatly

    affected by the Ti content. The grain size and grain

    boundary are rened with more Ti addition.

    (2) The Zr –20Nb–xTi alloys exhibit a good combination of 

    mechanical properties including nice plasticity, moderate

    compressive strength (1044–1325 MPa) and yield stress

    (854–1080 MPa), high elastic energy (12–20 MJ/m3) and

    low Young's modulus (28–31 GPa). As it meets most of 

    the required properties for hard tissue replacements,

    these novel biomaterials are considered to be potential

    candidate for future applications.

    Acknowledgments

    This research work is jointly supported by the National

    Natural Science Foundation of China (51161002) and the

    Program for New Century Excellent Talents in University of 

    China (NCET-12-0650).

    r e f e r e n c e s

    Abriata, J.P., Bolcich, J.C., 1982. The NbZr (niobium–zirconium)

    system. Bulletin of Alloy Phase Diagrams 3 (1), 34–

    44.Akahori, T., Niinomi, M., Nakai, M., Tsutsumi, H., Kondo, Y.,

    Hattori, T., Fukui, H., 2011a. Mechanical properties andbiocompatibilities of Zr –Nb system alloys with different Nbcontents for biomedical applications. Journal of JapanInstitute of Metals 75 (8), 445–451.

    Akahori, T., Niinomi, M., Nakai, M., Tsutsumi, H., Kondo, Y.,Hattori, T., Fukui, H., 2011b. Mechanical properties andfrictional wear characteristics of biomedical Zr –20 mass% Nballoy subjected to surface hardening treatment. Journal of 

     Japan Institute of Metals 75 (8), 452–459.Arima, T., Miyata, K., Inagaki, Y., Idemitsu, K., 2005. Oxidation

    properties of Zr –Nb alloys at 500–600   1C under low oxygenpotentials. Corrosion Science 47 (2), 435–446.

    Aurelio, G., Guillermet, A.F., Cuello, G.J., Campo, J., 2001.

    Structural properties and stability of metastable phases in the

    Zr –Nb system: Part I. Systematics of quenching-and-aging 

    experiments. Metallurgical and Materials Transactions A32 (8), 1903–1910.

    Benites, G.M., Fernández Guillermet, A., Cuello, G.J., Campo, J.,2000. Structural properties of metastable phases in Zr –Nballoys: I. Neutron diffraction study and analysis of latticeparameters. Journal of Alloys and Compounds 299 (1–2),

    183–

    188.Cai, S., Daymond, M.R., Khan, A.K., Holt, R.A., Oliver, E.C., 2009.Elastic and plastic properties of  βZr  at room temperature.

     Journal of Nuclear Materials 393 (1), 67–76.Dey, G.K., Singh, R.N., Tewari, R., Srivastava, D., Banerjee, S., 1995.

    Metastability of the  β-phase in Zr-rich Zr –Nb alloys. Journal of Nuclear Materials 224 (2), 146–157.

    Guo, Q., Zhan, Y., Mo, H., Zhang, G., 2010. Aging response of theTi–Nb system biomaterials with  β-stabilizing elements.Materials &  Design 31 (10), 4842–4846.

    Inoue, A., 2000. Stabilization of metallic supercooled liquid andbulk amorphous alloys. Acta Materialia 48 (1), 279–306.

     Jeong, Y.H., Lee, K.O., Kim, H.G., 2002. Correlation betweenmicrostructure and corrosion behavior of Zr –Nb binary alloy.

     Journal of Nuclear Materials 302 (1), 9–19.

    Kim, H.G., Park, S.Y., Lee, M.H., Jeong, Y.H., Kim, S.D., 2008.Corrosion and microstructural characteristics of Zr –Nb alloyswith different Nb contents. Journal of Nuclear Materials 373(1–3), 429–432.

    Kondo, R., Nomura, N., Tsutsumi, Y., Doi, H., Hanawa, T., 2011.Microstructure and mechanical properties of as-cast Zr –Nballoys. Acta Biomaterialia 7, 4278–4284.

    Li, C., Zhan, Y., Jiang, W., 2011. Zr –Si biomaterials with highstrength and low elastic modulus. Materials & Design 32 (8–9),4598–4602.

    Li, C., Zhan, Y., Jiang, W., 2012.  β-Type Ti–Mo–Si ternary alloysdesigned for biomedical applications. Materials &  Design34 (0), 479–482.

    Murray, J.L., 1981. The TiZr (titanium–zirconium) system.Bulletin of Alloy Phase Diagrams 2 (2), 197–201.

    Nag, S., Banerjee, R., Fraser, H.L., 2007. A novel combinatorialapproach for understanding microstructural evolution and itsrelationship to mechanical properties in metallic

    biomaterials. Acta Biomaterialia 3 (3), 369–376.Niinomi, M., 1998. Mechanical properties of biomedical titanium

    alloys. Materials Science and Engineering: A 243 (1–2), 231–236.Niinomi, M., 2003. Fatigue performance and cyto-toxicity of low

    rigidity titanium alloy, Ti–29Nb–13Ta–4.6Zr. Biomaterials 24(16), 2673–2683.

    Niinomi, M., 2004. Titanium alloys for medical and dentalapplications. Paper presented at the Medical Device Materials:Proceedings from the Materials &  Processes for MedicalDevices Conference 2003, 8–10 September, 2003, Anaheim,California.

    Okazaki, Y., Rao, S., Tateishi, T., Ito, Y., 1998. Cytocompatibility of various metal and development of new titanium alloys for medical implants. Materials Science and Engineering: A 243(1–2), 250–256.

    Suyalatu, Nomura, N., Oya, K., Tanaka, Y., Kondo, R., Doi, H.,Tsutsumi, Y., Hanawa, T., 2010. Microstructure and magneticsusceptibility of as-cast Zr –Mo alloys. Acta Biomaterialia 6 (3),1033–1038.

    Wen, C.E., Yamada, Y., Hodgson, P.D., 2006. Fabrication of novelTiZr alloy foams for biomedical applications. MaterialsScience and Engineering: C 26 (8), 1439–1444.

    Zhan, Y., Li, C., Jiang, W., 2012.  β-Type Ti–10Mo–1.25Si–xZr biomaterials for applications in hard tissue replacements.Materials Science and Engineering: C 32 (6), 1664–1668.

    Zinkevich, M., Mattern, N., 2002. Thermodynamic assessment of 

    the Mo–

    Zr system. Journal of Phase Equilibria 23 (2), 156–

    162.

    Fig. 5  –  Illustration of elastic energy in a stress–strain plot.

     j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 2 9 ( 2 0 1 4 ) 1 – 66

    http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref1http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref1http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref1http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref1http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref1http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref1http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref1http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref1http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref2http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref2http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref2http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref2http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref2http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref2http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref2http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref2http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref2http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref2http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref3http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref3http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref3http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref3http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref3http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref3http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref3http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref3http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref3http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref3http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref4http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref4http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref4http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref4http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref4http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref4http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref4http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref4http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref4http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref4http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref4http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref4http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref5http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref5http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref5http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref5http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref5http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref5http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref5http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref5http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref5http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref5http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref6http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref6http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref6http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref6http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref6http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref6http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref6http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref6http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref6http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref6http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref6http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref6http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref7http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref7http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref7http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref7http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref7http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref7http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref7http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref7http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref7http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref8http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref8http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref8http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref8http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref8http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref8http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref8http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref8http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref8http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref8http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref9http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref9http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref9http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref9http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref9http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref9http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref9http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref9http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref9http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref9http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref9http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref10http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref10http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref10http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref10http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref10http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref11http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref11http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref11http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref11http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref11http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref11http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref11http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref11http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref12http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref12http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref12http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref12http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref12http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref12http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref12http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref12http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref12http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref12http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref12http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref13http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref13http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref13http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref13http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref13http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref13http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref13http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref13http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref14http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref14http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref14http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref14http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref14http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref14http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref14http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref14http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref14http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref14http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref14http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref15http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref15http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref15http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref15http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref15http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref15http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref15http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref15http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref15http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref15http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref15http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref15http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref15http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref16http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref16http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref16http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref16http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref16http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref16http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref16http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref16http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref17http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref17http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref17http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref17http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref17http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref17http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref17http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref18http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref18http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref18http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref18http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref18http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref18http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref18http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref19http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref19http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref19http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref19http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref19http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref19http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref19http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref19http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref19http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref19http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref19http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref19http://refhub.elsevier.com/S1751-6161(13)00276-2/othref0005http://refhub.elsevier.com/S1751-6161(13)00276-2/othref0005http://refhub.elsevier.com/S1751-6161(13)00276-2/othref0005http://refhub.elsevier.com/S1751-6161(13)00276-2/othref0005http://refhub.elsevier.com/S1751-6161(13)00276-2/othref0005http://refhub.elsevier.com/S1751-6161(13)00276-2/othref0005http://refhub.elsevier.com/S1751-6161(13)00276-2/othref0005http://refhub.elsevier.com/S1751-6161(13)00276-2/othref0005http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref20http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref20http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref20http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref20http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref20http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref20http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref20http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref20http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref20http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref21http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref21http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref21http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref21http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref21http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref21http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref21http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref21http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref21http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref22http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref22http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref22http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref22http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref22http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref22http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref23http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref23http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref23http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref23http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref23http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref23http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref23http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref23http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref23http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref23http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref23http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref23http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref23http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref23http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref23http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref24http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref24http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref24http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref24http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref24http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref24http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref24http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref24http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref24http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref23http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref23http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref23http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref22http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref22http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref22http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref21http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref21http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref21http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref21http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref20http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref20http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref20http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref20http://refhub.elsevier.com/S1751-6161(13)00276-2/othref0005http://refhub.elsevier.com/S1751-6161(13)00276-2/othref0005http://refhub.elsevier.com/S1751-6161(13)00276-2/othref0005http://refhub.elsevier.com/S1751-6161(13)00276-2/othref0005http://refhub.elsevier.com/S1751-6161(13)00276-2/othref0005http://refhub.elsevier.com/S1751-6161(13)00276-2/othref0005http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref19http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref19http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref19http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref18http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref18http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref17http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref17http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref17http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref17http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref16http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref16http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref16http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref15http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref15http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref15http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref15http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref14http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref14http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref14http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref14http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref13http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref13http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref13http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref12http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref12http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref12http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref12http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref11http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref11http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref11http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref10http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref10http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref9http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref9http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref9http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref9http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref8http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref8http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref8http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref7http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref7http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref7http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref7http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref6http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref6http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref6http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref6http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref6http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref5http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref5http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref5http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref5http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref5http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref4http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref4http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref4http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref3http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref3http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref3http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref3http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref3http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref2http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref2http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref2http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref2http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref2http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref1http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref1http://refhub.elsevier.com/S1751-6161(13)00276-2/sbref1