Click here to load reader

BfB - · PDF file bhb~b bhb~b agra quant ® bhb~ b } bh b b1 bèbèbó bí bò bó bébé 1¡!ª 6) bï 6: ± bï ± • c c' c2c!c c5c!:ä c.c4:«: : "9 aîb bab b¨bnbraî&(aîb

  • View
    2

  • Download
    0

Embed Size (px)

Text of BfB - · PDF file bhb~b bhb~b agra quant ® bhb~ b } bh b b1 bèbèbó...

  • ht tp

    :// w

    w w

    .a ut

    op re

    p. jp

    • EL

    IS A

    en zy

    m e-

    lin ke

    d im

    m un

    os or

    be nt

    as sa

    y – –

    • – –

    • – –E

    LI SA

    EL IS

    A EL

    IS A

    EL IS

    A

  • A gr

    aQ ua

    nt ®

    EL IS

    A G

    C -E

    C D

    E LI

    S A

    E LI

    S A

    A gr

    a A

    gr a Q

    ua nt

    Q ua

    nt ®®

    A gr

    aQ ua

    nt ®

    E LI

    S A

    E LI

    S A

    A gr

    a A

    gr a Q

    ua nt

    Q ua

    nt ®®

  • • • •E LI

    S A

    E LI

    S A

    A gr

    a A

    gr a Q

    ua nt

    Q ua

    nt ®®

    E LI

    S A

    E LI

    S A

    A gr

    a A

    gr a Q

    ua nt

    Q ua

    nt ®®

    E LI

    S A

    E LI

    S A

    A gr

    a A

    gr a Q

    ua nt

    Q ua

    nt ®®

    E LI

    S A

    E LI

    S A

    A gr

    a A

    gr a Q

    ua nt

    Q ua

    nt ®®

    • • • •

    E LI

    S A

    E LI

    S A

    A gr

    a A

    gr a Q

    ua nt

    Q ua

    nt ®®

    • • •

    • – – – – – – – –

    E LI

    S A

    E LI

    S A

    A gr

    a A

    gr a Q

    ua nt

    Q ua

    nt ®®

  • • A nt

    ib od

    y co

    at ed

    m ic

    ro w

    el ls

    )

    • (n on

    -c oa

    te d

    di lu

    tio n

    m ic

    ro w

    el ls

    )

    – –

    E LI

    S A

    E LI

    S A

    A gr

    a A

    gr a Q

    ua nt

    Q ua

    nt ®®

    • (M

    yc ot

    ox in

    st an

    da rd

    ( –

    E LI

    S A

    E LI

    S A

    A gr

    a A

    gr a Q

    ua nt

    Q ua

    nt ®®

    • (M yc

    ot ox

    in co

    nj ug

    at e)

    – –

    • (S ub

    st ra

    te a

    nd S

    to p

    so lu

    tio n)

    – (T

    M B

    ) – –

    E LI

    S A

    E LI

    S A

    A gr

    a A

    gr a Q

    ua nt

    Q ua

    nt ®®

    • –

    • 20

    0 15

    0 –

    D O

    N

    • 10

    0 –

    • N

    o. 1

    E LI

    S A

    E LI

    S A

    A gr

    a A

    gr a Q

    ua nt

    Q ua

    nt ®®

    • –

    • –

    10 0

    L 20

    0 L

    1 L

    • –

    10 0-

    20 0

    L

    • –

    • –

    • –

    • –

    • –

    (4 50

    nm )

    E LI

    S A

    E LI

    S A

    A gr

    a A

    gr a Q

    ua nt

    Q ua

    nt ®®

    • – –

    • – –

    E LI

    S A

    E LI

    S A

    A gr

    a A

    gr a Q

    ua nt

    Q ua

    nt ®®

  • A gr

    aQ ua

    nt ®

    28

    • 4

    • 30

    • • • 18

    • •

  • A gr

    aQ ua

    nt ®

    D O

    N L

    w /v

    L

    1

  • L

    • • • 3

  • M P

    Ro m

    er L

    ab s

    Ag ra

    Q ua

    nt A

    fla to

    xi n

    (1 -2

    0p pb

    ) Q UA

    NT IT

    A TI

    V E

    K IT

    D

    at a

    Re du

    ct io

    n W

    or ks

    he et

    O pe

    ra to

    r: TL

    M D

    at e:

    6- N

    ov -0

    2 A

    ss ay

    ID :

    A na

    ly si

    s of

    s oy

    s am

    pl es

    P la

    te L

    ot #:

    S IN

    -0 2-

    00 53

    C on

    j. Lo

    t: S

    IN -0

    2- 00

    54 S

    td s

    Lo t:

    S IN

    -0 2-

    00 46

    , 0 05

    5- 00

    59 S

    ub st

    ra te

    L ot

    : S

    IN -0

    2- 00

    78 S

    to p

    Lo t:

    S IN

    -0 2-

    00 79

    B io

    R ad

    R ea

    de r

    Se ct

    io n

    I: C

    al ib

    ra tio

    n C

    ur ve

    S td

    . L ev

    el Ab

    s. B

    /B o

    Lo g(

    C on

    c. )

    Lo gi

    t B /B

    o 0

    pp b

    = 2.

    27 4

    1. 0

    pp b

    = 2.

    03 9

    0. 90

    0. 94

    R ^2

    = -0

    .9 94

    9 2.

    5 pp

    b =

    1. 74

    9 0.

    77 0.

    40 0.

    52 Sl

    op e

    = -1

    .1 91

    5 5.

    0 pp

    b =

    1. 36

    3 0.

    60 0.

    70 0.

    17 In

    te rc

    ep t =

    0. 96

    15 10

    .0 p

    pb =

    0. 72

    7 0.

    32 1.

    00 -0

    .3 3

    20 .0

    p pb

    = 0.

    50 1

    0. 22

    1. 30

    -0 .5

    5

    Se ct

    io n

    II: S

    am pl

    e C

    al cu

    la tio

    ns

    No .

    AB S

    SA M

    PL E

    lo gi

    t B /B

    o pp

    b Av

    g. p

    pb St

    de v

    1 2.

    27 4

    0 pp

    b st

    d #D

    IV /0

    ! #D

    IV /0

    ! 2

    2. 03

    9 1.

    0 pp

    b st

    d 0.

    94 1.

    05 3

    1. 74

    9 2.

    5 pp

    b st

    d 0.

    52 2.

    34 4

    1. 36

    3 5.

    0 pp

    b st

    d 0.

    17 4.

    57 5

    0. 72

    7 10

    .0 p

    pb s

    td -0

    .3 3

    12 .0

    9 6

    0. 50

    1 20

    .0 p

    pb s

    td -0

    .5 5

    18 .5

    2 7 8

    1. 58

    4 S

    am pl

    e 3

    m ix

    ed 0.

    36 3.

    19 9

    2. 40

    5 S

    am pl

    e 3

    m ix

    ed #N

    U M

    ! #N

    U M

    ! 10 11

    1. 88

    1 S

    am pl

    e 1

    0. 68

    1. 72

    12 2.

    20 7

    S am

    pl e

    2 1.

    52 0.

    34 13

    2. 17

    8 S

    am pl

    e 3

    1. 36

    0. 47

    14 1.

    74 1

    S am

    pl e

    4 0.

    51 2.

    37 15

    0. 54

    7 S

    am pl

    e 1

    sp ik

    ed 1

    0 pp

    b to

    ta l A

    fla -0

    .5 0

    16 .8

    3 16

    0. 60

    5 S

    am pl

    e 2

    sp ik

    ed 1

    0 pp

    b to

    ta l A

    fla -0

    .4 4

    15 .0

    3 17

    0. 59

    7 S

    am pl

    e 3

    sp ik

    ed 1

    0 pp

    b to

    ta l A

    fla -0

    .4 5

    15 .2

    6 18

    0. 53

    2 S

    am pl

    e 4

    sp ik

    ed 1

    0 pp

    b to

    ta l A

    fla -0

    .5 2

    17 .3

    5 19 20

    2. 18

    1 S

    am pl

    e 1

    1. 37

    0. 45

    21 2.

    26 1

    S am

    pl e

    2 2.

    24 0.

    08 22

    2. 21

    3 S

    am pl

    e 3

    1. 56

    0. 31

    23 1.

    46 2

    S am

    pl e

    4 0.

    26 3.

    91 24

    0. 61

    7 S

    am pl

    e 1

    sp ik

    ed 1

    0 pp

    b to

    ta l A

    fla -0

    .4 3

    14 .6

    9 25

    0. 54

    6 S

    am pl

    e 2

    sp ik

    ed 1

    0 pp

    b to

    ta l A

    fla -0

    .5 0

    16 .8

    6 26

    0. 64

    3 S

    am pl

    e 3

    sp ik

    ed 1

    0 pp

    b to

    ta l A

    fla -0

    .4 0

    14 .0

    1

    -0 .8

    0

    -0 .6

    0

    -0 .4

    0

    -0 .2

    0

    0. 00

    0. 20

    0. 40

    0. 60

    0. 80

    1. 00

    1. 20

    0. 00

    0. 20

    0. 40

    0. 60

    0. 80

    1. 00

    1. 20

    1. 40

    Lo g(

    Co nc

    .)

    Logit(B/B0)

    • •

    • –

    • – –

    • –

    • –

    A gr

    aQ ua

    nt ®

  • A gr

    aQ ua

    nt A

    gr aQ

    ua nt

    ®® A

    fla A

    fla

    A fla

    to xi

    n B1 B2 G

    1 G

    2 G

    IP S

    A A

    gr aQ

    ua nt

    A fla

    4/ 40

    (L ot

    # S

    IN (A

    )0 1-

    00 01

    )

    10 4

    50 g

    A fla

    to xi

    n B

    1, B

    2, G

    1, G

    2

    (p pb

    ) 20

    3 1

    1

    10 0

    11 .6

    5 27

    .4 6

    10 0

    42 .4

    %

Search related