24
MAHARANA PRATAP UNIVERSITY OF AGRICULTURE & TECHNOLOGY COLLEGE OF TECHNOLOGY AND ENGINEERING, UDAIPUR DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING A SEMINAR REPORT ON TRANSPARENT DISPLAY SUBMITTED TO: SUBMITTED BY: MR. P.C. BAPANA BHANWAR LAL ASSOCIATE PROFESSOR B.E. 4 TH YEAR 2 ND SEMESTER

Bhanwar Transparent Display

Embed Size (px)

DESCRIPTION

this is my report on transparent display

Citation preview

Page 1: Bhanwar Transparent Display

MAHARANA PRATAP UNIVERSITY OF AGRICULTURE & TECHNOLOGY

COLLEGE OF TECHNOLOGY AND ENGINEERING, UDAIPUR

DEPARTMENT OF

ELECTRONICS AND COMMUNICATION ENGINEERING

A SEMINAR REPORT ON TRANSPARENT DISPLAY

SUBMITTED TO: SUBMITTED BY:

MR. P.C. BAPANA BHANWAR LAL

ASSOCIATE PROFESSOR B.E. 4TH YEAR 2ND SEMESTER

Page 2: Bhanwar Transparent Display

TRANSPARENT DISPLAY

1) DEFINITION

2) HISTORY

3) COMPONENT OF TRANSPARENT DISPLAY

a. AMOLED

OLED

b. LCD

4) AMOLED

a. WORKING

b. AMOLED STRUCTURE

5) OLED

a. DEFINITION

b. ARCHITECTURE OF OLED

c. WORKING

d. TYPES OF OLED

i. ACTIVE OLED

ii. PASSIVE OLED

6) CURRENT RESEARCH ON OLED

7) APPLICATION OF OLED

8) TRANSPARENT LCD DISPLAY

WORKING

APPLICATION OF T-LCD

9) CURRENT RESEARCH ON T-DISPLAY

Page 3: Bhanwar Transparent Display

DEFINITION:-

The transparent display is general term for display having the property whose bake of the screen is

seen since the display itself has a certain degree of permeability.

Display that allows the user to see what is shown on the glass screen while still being able to see

through it. It is a technology that has been around for a decade or two, but only this year is it being

incorporated by companies such as Samsung and Planar system into consumer products like

handheld devices, televisions, and other technology.

HISTORY:-

The concept of a transparent screen has been in the works since the early 50’s, however, we’re just

now reaping the benefits of this incredible technology.

A transparent screen uses AMOLED technology to display colors with no backlight.

1960s - ac-driven electroluminescent cells using doped anthracene was developed.

Anthracene is a solid poly cyclic aromatic hydrocarbon consisting of three fused benzene rings.

In 1987 chin tang and van Slyke introduced the first light emitting diodes from thin organic layers.

In 1990 electroluminescence in polymers was discovered (PPV).

Recently, a number of product realized high –performance of display, after facilitating ‘slimmer’

and ‘larger’, are emerging, LED BLE-applied LCD and 3D display have occupied the great portion

of the existing LCD market since 2010 by adding new factors, “high-brightness” and Implementation

of 3D “Image”

AMOLED also has been spotlighted with advantages such as high resolution and fast response speed

etc. the demand of small sized product for mobiles has been increasing rapidly since 2010.

The mass production of large AMOLED product such as TV has begun since 2013, the competition

between LCD and PDI is expected to become fiercer gradually.

COMPONENT OF TRANSPARENT DISPLAY:-

AMOLED:-

Page 4: Bhanwar Transparent Display

AMOLED (Active-Matrix Organic Light-Emitting Diode) is a display technology for use in mobile devices

and televisions. OLED describes a specific type of thin-film display technology in which organic

compounds form the electroluminescent material, and active matrix refers to the technology behind the

addressing of pixels.

As of 2012, AMOLED technology is used in mobile phones, media players and digital cameras, and

continues to make progress toward low-power, low-cost and large-size.

OLED:-

An OLED (organic light-emitting diode) is a light-emitting diode (LED) in which the emissive

electroluminescent layer is a film of organic compound which emits light in response to an electric current.

LCD:-

The LCD utilizes ambient light, with no internal back lighting requirement. For this reason, it is more energy

efficient, cost effective and reliable than other displays of similar size.

AMOLED:-

AMOLED technology works using a TFT or thin film transistor screen (that doesn’t require a backlight)

made up of the organic light-emissive diode pixels to form a matrix. Combined with electrical energy,

the pixels will illuminate the light to display whites and colors. Blacks are displayed on the transparent

screen by in-active pixels. The thin film transistor is always controlling the current that tells the pixels

how bright to shine.

STRUCTURE OF AMOLED:-

An AMOLED display consists of an active matrix of OLED pixels that generate light (luminescence)

upon electrical activation that have been deposited or integrated onto a thin film transistor (TFT)

array, which functions as a series of switches to control the current flowing to each individual pixel.

Typically, this continuous current flow is controlled by at least two TFTs at each pixel (to trigger the

luminescence), with one TFT to start and stop the charging of a storage capacitor and the second to

provide a voltage source at the level needed to create a constant current to the pixel, thereby

eliminating the need for the very high currents required for passive matrix OLED operation.

Page 5: Bhanwar Transparent Display

TFT backplane technology is crucial in the fabrication of AMOLED displays. The two primary TFT

backplane technologies, namely polycrystalline silicon (poly-Si) and amorphous silicon (a-Si), are

used today in AMOLEDs. These technologies offer the potential for fabricating the active matrix

backplanes at low temperatures (below 150°C) directly onto flexible plastic substrates for producing

flexible AMOLED displays.

THIN-FILM TRANSISTOR:-

A thin-film transistor (TFT) is a special kind of field-effect transistor made by depositing thin films of a

semiconductor active layer as well as the dielectric layer and metallic contacts over a supporting substrate.

TFTs can be made using a wide variety of semiconductor materials. A common material is silicon. The

characteristics of a silicon based TFT depend on the crystalline state; that is,

The semiconductor layer can be either

(1) amorphous silicon

(2) microcrystalline silicon

(3) Poly-silicon.

Page 6: Bhanwar Transparent Display

AMORPHOUS SILICON:-

Amorphous silicon (a-Si) is the non-crystalline allotropic form of silicon. It can be deposited in thin films at

low temperatures onto a variety of substrates. It offers some unique capabilities for a variety of electronics.

Silicon is a fourfold coordinated atom that is normally tetrahedrally bonded to four neighboring silicon

atoms. In crystalline silicon (c-Si) this tetrahedral structure continues over a large range, thus forming a

well-ordered crystal lattice.

In amorphous silicon this long range order is not present. Rather, the atoms form a continuous random

network. Moreover, not all the atoms within amorphous silicon are fourfold coordinated. Due to the

disordered nature of the material some atoms have a dangling bond. Physically, these dangling bonds

represent defects in the continuous random network and may cause anomalous electrical behavior.

NANOCRYSTALLINE SILICON:-

Nanocrystalline silicon (nc-Si), sometimes also known as microcrystalline silicon (μc-Si), is a form of

porous silicon. It is an allotropic form of silicon with Paracrystalline structure—is similar to amorphous

silicon (a-Si), in that it has an amorphous phase.

This is in contrast to polycrystalline silicon (poly-Si) which consists solely of crystalline silicon grains,

separated by grain boundaries. The difference comes solely from the grain size of the crystalline grains.

Page 7: Bhanwar Transparent Display

Most materials with grains in the micrometre range are actually fine-grained polysilicon, so nanocrystalline

silicon is a better term. The term Nanocrystalline silicon refers to a range of materials around the transition

region from amorphous to microcrystalline phase in the silicon thin film.

POLYCRYSTALLINE SILICON:-

Polycrystalline silicon, also called polysilicon, is a material consisting of small silicon crystals. It differs

from single-crystal silicon, used for electronics and solar cells, and from amorphous silicon, used for thin

film devices and solar cells.

In single crystal silicon, also called monocrystal, the crystal lattice of the entire sample is continuous and

unbroken with no grain boundaries.

At the component level, polysilicon has long been used as the conducting gate material in MOSFET and

CMOS processing technologies.

ORGANIC MATERIAL:-

ANTHRACENE:-

Anthracene is a solid polycyclic aromatic hydrocarbon consisting of three fused benzene rings. It is a

component of coal tar. Anthracene is used in the production of the red dye alizarin and other dyes.

Anthracene is colorless but exhibits a blue (400-500 nm peak) fluorescence under ultraviolet light.

In 2010, a strong absorption band of anthracene was observed along a line of sight to a star in the open

cluster IC 348, and this may be associated with an intervening molecular cloud.

Commercial anthracene is obtained from coal tar, common impurities being phenanthrene and carbazole. A

classic laboratory method for the preparation of anthracene is by cyclodehydration of o-methyl- or o-

methylene-substituted diarylketones in the so-called Elbs reaction.

Properties

Molecular formula C14H10

Molar mass 178.23 g mol−1

Page 8: Bhanwar Transparent Display

Appearance Colorless

Density

1.25 g/cm³ at 19.85 °C, Solid

0.969 g/cm³ at 220 °C, liquid

Melting point 218 °C, 491 K, 424 °F

Boiling point 340 °C, 613 K, 644 °F

Solubility in water Insoluble

Solubility

methanol: 0.0908 g/100 mL

hexane: 0.164 g/100 mL

EU classification Dangerous for the Environment

Flash point 21 °C (250 °F)

Auto-ignition temperature

540 °C (1,004 °F)

POLY(P-PHENYLENE VINYLENE):-

Poly(p-phenylene vinylene) (PPV, or polyphenylene vinylene) is a conducting polymer of the rigid-

rod polymer host family. PPV is the only polymer of this type that has so far been successfully

processed into a highly ordered crystalline thin film. PPV and its derivatives are conducting

polymers of rigid-rod polymer family. They are the only conducting polymers that have been

successfully processed in film with high levels of crystallinity. PPV is easily synthesized in good

purity and high molecular weight. Although insoluble in water, its precursors can be manipulated in

aqueous solution. The small optical band gap and its bright yellow fluorescence makes PPV a

candidate in many electronic applications such as light-emitting diodes (LED) and photovoltaic

devices. Moreover, PPV can be easily doped to form electrically conductive materials. Its physical

and electronic properties can be altered by the inclusion of functional side groups.

Properties

Molecular formula (C8H6)n

Appearance Yellow solid

Solubility in water Insoluble

Page 9: Bhanwar Transparent Display

APPLICATIONS:- Polyphenylene vinylene is capable of electroluminescence, leading to applications in polymer-based

organic light emitting diodes

PPV was used as the emissive layer in the first polymer light-emitting diodes

PPV is also used as an electron-donating material in organic solar cells.

POLYANILINE:-

Polyaniline (PANI) is a conducting polymer of the semi-flexible rod polymer family. Although the

compound itself was discovered over 150 years ago, only since the early 1980s has polyaniline

captured the intense attention of the scientific community. This interest is due to the rediscovery of

high electrical conductivity. Amongst the family of conducting polymers and organic

semiconductors, polyaniline has many attractive processing properties. Because of its rich chemistry,

polyaniline is one of the most studied conducting polymers of the past 50 years.

SYNTHESIS AND PROPERTIES:-

Polymerized from the inexpensive aniline monomer, polyaniline can be found in one of three idealized

oxidation states.

LEUCOEMERALDINE – white/clear & colorless (C6H4NH)

EMERALDINE – green for the emeraldine salt, blue for the emeraldine base

({[C6H4NH]2[C6H4N]2}n)

(PER)NIGRANILINE – blue/violet (C6H4N)n

In figure 1, x equals half the degree of polymerization (DP). Leucoemeraldine with n = 1, m = 0 is

the fully reduced state. Pernigraniline is the fully oxidized state (n = 0, m = 1) with imine links

instead of amine links. Studies have shown that most forms of polyaniline are one of the three states

or physical mixtures of these components. The emeraldine (n = m = 0.5) form of polyaniline, often

referred to as emeraldine base (EB), is neutral, if doped (protonated) it is called emeraldine salt (ES),

with the imine nitrogens protonated by an acid. Protonation helps to delocalize the otherwise trapped

diiminoquinone-diaminobenzene state. Emeraldine base is regarded as the most useful form of

polyaniline due to its high stability at room temperature and the fact that, upon doping with acid, the

resulting emeraldine salt form of polyaniline is highly electrically conducting.Leucoemeraldine and

pernigraniline are poor conductors, even when doped with an acid.

The colour change associated with polyaniline in different oxidation states can be used in sensors

and electrochromic devices. Although color is useful, the best method for making a polyaniline

sensor is arguably to take advantage of the dramatic changes in electrical conductivity between the

different oxidation states or doping levels. Treatment of emeraldine with acids increases the

electrical conductivity by ten orders of magnitude. The same material can be prepared by oxidation

of leucoemeraldine.

Page 10: Bhanwar Transparent Display

Polyaniline is more noble than copper and slightly less noble than silver which is the basis for its

broad use in printed circuit board manufacturing (as a final finish) and in corrosion protection.

OLED:-

An OLED (organic light-emitting diode) is a light-emitting diode (LED) in which the emissive

electroluminescent layer is a film of organic compound which emits light in response to an

electric current. This layer of organic semiconductor is situated between two electrodes.

Generally, at least one of these electrodes is transparent.

HISTORY :-

• First developed in the early 1950s in France

• Early technology would emmite a short burst of light when a voltage was applied

• This early form applied high-voltage alternating current field to crystalline thin films of

acridine orange and quinacrine.

• In 1960, Martin Pope and co-workers at New York University developed ohmic dark-

injecting electrode contacts to organic crystals.

• 1960s - AC-driven electroluminescent cells using doped anthracene was developed

• In a 1977 paper, Shirakawa et al. Reported high conductivity in similarly oxidized and

iodine-doped polyacetylene.

• In 1987 Chin Tang and Van Slyke introduced the first light emitting diodes from thin organic

layers.

• In 1990 electroluminescence in polymers was discovered.

ARCHITECTURE OF OLEDS:-

• Substrate (clear plastic, glass, foil) - The substrate supports the OLED.

• Anode (transparent) - The anode removes electrons (adds electron "holes") when a current

flows through the device.

ORGANIC LAYER:

• CONDUCTING LAYER –

This layer is made of organic plastic molecules that transport "holes" from the anode. One

conducting polymer used in OLEDs is polyaniline.

• EMISSIVE LAYER –

This layer is made of organic plastic molecules (different ones from the conducting layer)

that transport electrons from the cathode; this is where light is made. One polymer used in the

emissive layer is polyfluorene.

• Cathode

(may or may not be transparent depending on the type of OLED) - The cathode injects

electrons when a current flows through the device.

Page 11: Bhanwar Transparent Display

WORKING PRINCIPLE:-

A typical OLED is composed of a layer of organic materials situated between two electrodes, the anode and

cathode, all deposited on a substrate. The organic molecules are electrically conductive as a result of

delocalization of pi electrons caused by conjugation over all or part of the molecule. These materials have

conductivity levels ranging from insulators to conductors, and therefore are considered organic

semiconductors. The highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) of

organic semiconductors are analogous to the valence and conduction bands of inorganic semiconductors

TYPES OF OLEDS:-

PASSIVE OLEDS

• The organic layer is between strips of cathode and anode that run perpendicular

• The intersections form the pixels

• Easy to make

• Use more power

• Best for small screens

Page 12: Bhanwar Transparent Display

ACTIVE OLEDS

• Full layers of cathode and anode

• Anode over lays a thin film transistor (TFT)

• Requires less power

• Higher refresh rates

• Suitable for large screens

CURRENT RESEARCH FOR OLEDS:-

Page 13: Bhanwar Transparent Display

• Manufacturers focusing on finding a cheap way to produce.

o "Roll-to-Roll" Manufacturing.

• Increasing efficiency of blue luminance.

ADVANTAGES OF OLEDS:-

OLED DISPLAYS VS. LCD AND PLASMA:-

• Much faster response time.

• Consume significantly less energy.

• Able to display "True Black" picture.

• Wider viewing angles.

• Thinner display.

• Better contrast ratio.

• Safer for the environment.

• Has potential to be mass produced inexpensively.

• OLEDs refresh almost 1,000 times faster than LCDs.

OLED LIGHTING VS. INCANDESCENT AND FLUORESCENT :-

• Cheaper way to create flexible lighting.

• Requires less power.

• Better quality of light (ie. no "Cold Light").

• New design concepts for interior lighting .

DISADVANTAGES OF OLEDS:-

OLED DISPLAYS VS. LCD AND PLASMA

• Cost to manufacture is high

• Overall luminance degradation

• Constraints with lifespan

• Easily damaged by water

• Limited market availability

OLED LIGHTING VS. INCANDESCENT AND FLUORESCENT

• Not as easy as changing a light bulb

Page 14: Bhanwar Transparent Display

APPLICATION OF OLED:-

OLED technology is used in commercial applications such as displays for mobile phones and

portable digital media players, car radios and digital cameras among others. Such portable

applications favor the high light output of OLEDs for readability in sunlight and their low power

drain.

SAMSUNG APPLICATIONS:-

By 2004 Samsung, South Korea's largest conglomerate, was the world's largest OLED manufacturer,

producing 40% of the OLED displays made in the world, and as of 2010 has a 98% share of the

global AMOLED market.

Samsung SDI announced in 2005 the world's largest OLED TV at the time, at 21 inches (53 cm).

In May 2008, Samsung unveiled an ultra-thin 12.1 inch laptop OLED display concept, with a

1,280×768 resolution with infinite contrast ratio.

In October 2008, Samsung showcased the world's thinnest OLED display, also the first to be

"flappable" and bendable

The company is leading the world of OLED industry, generating $100.2 million out of the total $475

million revenues in the global OLED market in 2006. As of 2006, it held more than 600 American

patents and more than 2800 international patents, making it the largest owner of AMOLED

technology patents.

January 8, 2013, at CES Samsung unveiled a unique curved 4K Ultra S9 OLED television, which

they state provides an "IMAX-like experience" for viewers.

SONY APPLICATIONS:-

The Sony CLIÉ PEG-VZ90 was released in 2004, being the first PDA to feature an OLED screen.

At the 2007 Las Vegas Consumer Electronics Show (CES), Sony showcased 11-inch (28 cm,

resolution 960×540) and 27-inch (68.5 cm, full HD resolution at 1920×1080) OLED TV models.

In May 2007, Sony publicly unveiled a video of a 2.5-inch flexible OLED screen which is only 0.3

millimeters thick.

At the Display 2008 exhibition, Sony demonstrated a 0.2 mm thick 3.5 inch display with a resolution

of 320×200 pixels and a 0.3 mm thick 11 inch display with 960×540 pixels resolution, one-tenth the

thickness of the XEL-1.

In January 2011, Sony announced the PlayStation Vita handheld game console (the successor to the

PSP) will feature a 5-inch OLED screen.

On June 25, 2012, Sony and Panasonic announced a joint venture for creating low cost mass

production OLED televisions by 2013.

LG APPLICATIONS:-

As of 2010, LG Electronics produced one model of OLED television, the 15 inch 15EL9500 and has

announced a 31" OLED 3D television for March 2011.

On December 26, 2011, LG officially announced the "world's largest 55" OLED panel" and featured

it at CES 2012. In late 2012, LG announces the launch of the 55EM9600 OLED television in

Australia.

LCD TRANSPARENT :-

LCD (Liquid Crystal Display):-

• LCD Panel is based on

– A light valve for each pixel that turn the light on, off, or an intermediate level.

• Grid of such light valve for the LCD display panel.

Page 15: Bhanwar Transparent Display

• A back light and display enhancement films create the illumination.

WOKING:-

• Applying voltage to the electrodes changes the level of illumination in each sub-pixel

• The panel is sandwiched between

– Front surface films to enhance display property

– Backlight

LINEAR POLARIZED LIGHT:-

• Light usually vibrates in all direction

• A linear polarized light limit the vibration to one direction

• It absorbs the component of light that vibrate in all other direction.

• LCD require light to vibrate in one direction

Page 16: Bhanwar Transparent Display

IODINE BASED POLARIZER:-

• Is the most common polarizer

• It is made by

– Stretching a cast polyvinyl alcohol film (PVA) to align the iodine in turn.

– Staining it with iodine

– The stained PVA laminated between two slices of cellulose triacetate.

• The cellulose triacetate

– Provide physical rigidity

– Some degree of heat and humidity protection

• Is the most common polarizer

• It is made by

– Stretching a cast polyvinyl alcohol film (PVA) to align the iodine in turn.

– Staining it with iodine

ABOUT LIQUID CRYSTAL:-

• Liquid crystal molecules can move freely while maintaining their orientation.

• It align itself to a polyimide film to the inside of a panel glass.

• When the two glass panels are not aligned the liquid crystal twists accordingly.

• The liquid crystal will also align to electric field.

Page 17: Bhanwar Transparent Display

LIGHT PATH:-

• The light passes through the polarizer.

• The voltage applied to the electrodes controls the liquid crystal orientation

• The liquid crystal orientation controls the rotation of the incoming polarized light.

• Color filters are used in color LCD, where each color sub-pixel is controlled individually

BACK-LIGHT:-

• The light generated by the backlight.

• The light is evenly distributed the light evenly over the LCD panel.

• Display enhancement films are placed between the light diffuser and the LCD panel. They aim to

maximize the light reaching the observer.

Page 18: Bhanwar Transparent Display

WORKING OF T-LCD

Now coming to transparent lcd display:

In this all the starting layers are removed as shown in diagram.

The light used is the ambient light.

And the LCD is transparent.

APPLICATION T-LCD:-

The transparent LCD enables to look through the display like glass on an exhibit or product

behind it.

This provides absolutely new presentation possibilities for museums, shopping malls where you

can show a product or exhibit and put some additional information or animation on the LCD.

The LCDs can also be equipped with interactive features like touch systems for example.

The product is dedicated for creative people who make the content for such signage solutions or

for AV system integrators who develop a complete concept.

EXAMPLE LCD TRANSPARENT DISPLAY :-

ORION IMAGES :

The ORION Images introduces the 22 inch transparency lcd with a full color display. ORION 22TPD

transparent LCD support high transparency rate, which enables viewing right through the panel like glass

and it only consumes 90% less electricity compared with a conventional LCD panel using back light unit.

22TPD

Display

Screen Size 22 Inch

Max. Resolution 1680 x 1050 @ 60Hz

Pixel Pitch 0.282 x 0.282mm

Active Display Area (H x V) 473.76 x 296.1 mm

Contrast Ratio 500 : 1

Transmittance [%] 15% [typ]

Page 19: Bhanwar Transparent Display

Viewing Angle (H/V) 160° / 140°

Display Color 16.7 Million (8bits)

Response Time < 5ms

Aspect Ratio 16 : 9

Surface Treatment Clear LR, Haze 2%

Interface TMDS (Main) - HDMI 1

LVDS Optional

Special Features

High Transmittance 0.15

Features HDMI (TMDS support)

DE (Data Enable) Mode

Dimension

Outline Dimension (W x H x D)

19.437" x 14.606 x 0.2756"

Depth 7.0mm with Connector area : 22mm (max.)

Net Weight 1.3 Kg (2.866 lbs)

Warranty Part / Labor 2year / 2year

MTBF (Approx.) 50,000 Hours

Power Consumption: < On < 15W

Electrical Ratings DC5V / 3A

Circumstance Operating Temperature 0 ~ 40° C / 32 ~ 104° F

Storage Temperature 5 ~ 40° C / -22 ~ 176° F

*Design and Specifications are subject to change without notice

Page 20: Bhanwar Transparent Display

SAMSUNG :

The NL22B’s high transmittance rate of 15% combined with a contrast ratio of 500:1, produces a

vivid visual solution that accentuates any showcased product.

Display

Screen Size: 22"

Panel Technology: 60Hz LED Transparent Display

Page 21: Bhanwar Transparent Display

Resolution: 1680 x 1050

Brightness: 165 nits

Contrast Ratio (Typical): 500:1

Viewing Angle (H/V): 160°/140°

Response Time: 5 ms

Connectivity

Input: USB 3.0 x 2, USB 2.0 x 2, RJ45 LAN

Power

Power Supply: AC 100 -240 V(+/-10%), 50/60 Hz

Power Consumption (Typical/Max): 105 W / 115.5 W

Power Consumption (Standby): Less than 3 W

Environmental Conditions

Operating Temperature: 0°C - 40°C

Operating Humidity: 10 - 80% Non-Condensing

Features

MagicInfo™ Premium Enbedded

Multimedia Speakers: 3 W x 2

Dimensions

Without Stand (W x H x D):20.2" x 15.3" (16.4" w/ Rubber Foot) x 14.8"

Packaging (W x H x D): 26.5" x 22.3" x 21.6"

Weight

Set: 42.2 lb.

Package: 46.6 lb.

Service

Standard Warranty: 3-Year Onsite Parts/Labor/Backlight

Accessories

Included: Quick Setup Guide, Warranty Card, Application CD, MagicInfo-I DVD, Power Cord,

Remote Controller, Batteries, Keys

CURRENT RESEARCH ON T-DISPLAY

HP

HP has been granted a patent for a see-through display, opening up more possibilities for augmented

reality computing.

Originally filed in 2006 with the USPTO, the patent describes a way for people to see both an image

on-screen and whatever lies behind the monitor itself,

using a system of light-reflective slats on a transparent panel, according to the BBC.

Reflective-yet-transparent surfaces have been tried in other applications before, such as the

teleprompters used by TV networks; HP, however, believes that its approach could solve problems

existing systems have in displaying grayscale or full-color images. Concept designs such as the HP

Flex and the ThruScreen were offered to the makers of the movie Real Steel. One suggestion by HP

is to use the technology on a car windscreen for navigation data.

SAMSUNG

SEOUL, South Korea--(BUSINESS WIRE)--Samsung Electronics Co., Ltd. announced today that it

is expanding the transparent display market with production of a 46-inch transparent LCD panel,

beginning this month.

Page 22: Bhanwar Transparent Display

Younghwan Park, senior vice president of LCD marketing, Device Solutions, Samsung Electronics,

said, “Transparent panels, an exciting application of next-generation display technology, have

unlimited potential to change our viewing habits over the next several years. As a strong supporter of

the transparent display market, Samsung plans to develop this technology into a new growth engine

for our LCD business.”

Samsung’s 46-inch transparent LCD panel features a contrast ratio of 4,500:1 with HD (1,366x768)

resolution and 70 percent color gamut.

A 2012 CES Innovations Award honoree, Samsung’s transparent LCD panel is being produced for a

wide variety of retail display applications such as product showcases, commercial freezer doors and

platform doors of subway stations in North America, Europe and Asia. Also, it will be used in other

applications including e-boards, information windows, medical equipment, e-signage and mobile

devices.

Samsung’s 22-inch transparent LCD panel, which is now being commercialized, has been well

received by customers and potential customers in the mobile devices, jewelry and luxury goods

sectors due to its compact size and low power consumption, in addition to its attention-grabbing

display qualities.

According to market research firm Display Bank, the transparent display market is expected to grow

from US$0.9 billion in 2015 to US$87 billion in 2025.

PLANAR DISPLAY-UCIC TECHNOLOGY

Planar® LookThru™ Series, feature interactive transparent LCD displays that

allow consumers to view the physical product behind the display. Planar LookThru displays and open frame kits are ideal for retail merchandising,

corporate displays, museum exhibits, award or trophy cases in education or

corporate settings, tradeshow exhibits and a wide range of other architectural

applications.

UCIC TECHNOLOGY

Planar's Ultimate Color Illumination and Contrast (UCIC™) technology combines delivers enhanced

transparent displays that deliver a amazing color, contrast and transparency .

Your brand color matters. That is why Planar developed UCIC technology for Planar® LookThru™

Series transparent LCD displays. With a combination of technology and techniques, Planar's UCIC

technology provides maximum transparency without giving up contrast or color.

Planar's UCIC is composed of three core components:

LCD Selection

Planar transparent LCDs are carefully selected to provide the best level of transparency while still

delivering high quality content. Planar LookThru Series displays are designed to deliver superior

chromaticity, contrast and a symmetrical and wide viewing angle.

Benefits:

* Black is black

* Superior transparency

* Reduced image diffraction of product inside Planar LookThru displays

Lighting System

Lighting is a critical component of an effective transparent LCD display. Since the LCD themselves

don't give off light, a poorly implemented lighting system will make the digital content look dark or

Page 23: Bhanwar Transparent Display

colors will appear saturated. Planar LookThru displays feature optimized lighting around luminas

efficiency, thermal management and color temperature.

Benefits:

* Great color

* Brilliant long-lasting display

* Superior balance of light output and energy use

The ERO Advantage

Planar's ERO™ (Extended Ruggedness and Optics) technology utilizes a proprietary bonded front

glass and smooth touch surface process to create a highly durable display that can withstand the

rigors of high-traffic environments and accommodate touch screen usage in interactive applications.

ERO also improves perceived contrast by more than 300%, giving viewers the highest quality visual

experience, making it more readable and impactful even in bright public venues.

Benefits:

* Improves contrast by eliminating mismatched reflective layers

* Optical coatings diffuses reflections

* Protects the LCD

* Touch sensor ready

MICROSOFT CORPORATION

The foundation of Microsoft's interactive display is a transparent 3D OLED supplied by Samsung.

Other than traditional Kinect interactions, however, the display creates a 3D scenario behind the

screen. The user reaches to the back of the screen to interact with the shown objects. This may not be

the most convenient 3D technology and reminiscent of an environment similar to a biology research

lab, but it is the most impressive demonstration of a transparent OLED we have seen to date.

To achieve a naked eye 3D effect, the technology directs the light emitted by the two stereo images

to the user's left and right eye. Microsoft integrated eye-tracking to compensate for head movements

and keeps the 3D effect alive even if the user slightly changes her or his location. There were few

technical details, but the demo video shows that the display cannot quite achieve complete

transparency and it appears that this technology works only with high contrast objects.

REFERENCE:-

www.samsung.com

www.planar.com

www.hp.com

Page 24: Bhanwar Transparent Display

www.orionimages.com

www.microsoft.com

http://en.wikipedia.org/wiki/See-through_display

http://en.wikipedia.org/wiki/OLED

ieeexplore.ieee.org