109
Bilateral Market Power & Bargaining Johan Stennek

Bilateral Market Power & Bargaining

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Bilateral Market Power & Bargaining

1

Bilateral Market Power & Bargaining

Johan Stennek

Page 2: Bilateral Market Power & Bargaining

Don’tneedtoknowappendixesinlecturenotes

Page 3: Bilateral Market Power & Bargaining

BilateralMarketPowerExample:FoodRetailing

Page 4: Bilateral Market Power & Bargaining

4

Food Retailing •  Food retailers are huge

!

The!world’s!largest!food!retailers!in!2003!

Company! Food!Sales!(US$mn)!

Wal$Mart( 121(566(

Carrefour( 77(330(

Ahold( 72(414(

Tesco( 40(907(

Kroger( 39(320(

Rewe( 36(483(

Aldi( 36(189(

Ito$Yokado( 35(812(

Metro(Group(ITM( 34(700((

½ Swedish GDP

Page 5: Bilateral Market Power & Bargaining

5

Food Retailing •  Retail markets are highly concentrated

Tabell&1a.&Dagligvarukedjornas&andel&av&den&svenska&marknaden&Kedja& Butiker&

(antal)&Butiksyta&(kvm)&

Omsättning&(miljarder&kr)&

Axfood& 803&(24%)&

625&855&(18%)&

34,6&&&&&&&&&(18%)&

Bergendahls& 229&(7%)&

328&196&(10%)&

13,6&(7%)&

Coop& 730&(22%)&

983&255&(29%)&

41,4&(21%)&

ICA& 1&379&(41%)&

1&240&602&(36%)&

96,6&(50%)&

Lidl& 146&(4%)&

170&767&(5%)&

5,2&&&&&&&&&(3%)&

Netto& 105&(3%)&

70&603&(2%)&

3,0&(2%)&

&

Page 6: Bilateral Market Power & Bargaining

6

Food Retailing

•  Food manufacturers – Some are huge:

•  Kraft Food, Nestle, Scan •  Annual sales tenth of billions of Euros

– Some are tiny: •  local cheese

Page 7: Bilateral Market Power & Bargaining

7

Food Retailing •  Mutual dependence

– Some brands = Must have •  ICA “must” sell Coke •  Otherwise families would shop at Coop

– Some retailers = Must channel •  Coke “must” sell via ICA to be active in Sweden •  Probably large share of Coke’s sales in Sweden

– Both would lose if ICA would not sell Coke

Page 8: Bilateral Market Power & Bargaining

8

Food Retailing •  Mutual dependence

– Manufacturers cannot dictate wholesale prices – Retailers cannot dictate wholesale prices

•  Thus – They have to negotiate and agree

•  In particular – Also retailers have market power

= buyer power

Page 9: Bilateral Market Power & Bargaining

9

Food Retailing •  Large retailers pay lower prices

(= more buyer power) Retailer( Market(Share(

(CC#Table#5:3,#p.#44)#

Price(

(CC#Table#5,#p.#435)#

Tesco# 24.6# 100.0#

Sainsbury# 20.7# 101.6#

Asda# 13.4# 102.3#

Somerfield# 8.5# 103.0#

Safeway# 12.5# 103.1#

Morrison# 4.3# 104.6#

Iceland# 0.1# 105.3#

Waitrose# 3.3# 109.4#

Booth# 0.1# 109.5#

Netto# 0.5# 110.1#

Budgens# 0.4# 111.1#

#

Page 10: Bilateral Market Power & Bargaining

10

Food Retailing

•  Questions – How analyze bargaining in intermediate goods

markets?

– Why do large buyers get better prices?

Page 11: Bilateral Market Power & Bargaining

11

Other examples

•  Labor markets – Vårdförbundet vs Landsting

•  Relation-specific investments – Car manufacturers vs producers of parts

Page 12: Bilateral Market Power & Bargaining

12

Bilateral Monopoly

Page 13: Bilateral Market Power & Bargaining

13

BilateralMonopoly

•  Bilateral monopoly

–  One Seller: MC(q) = inverse supply if price taker

–  One Buyer: MV(q) = inverse demand if price taker

q

MC(q)

MV(q)

Page 14: Bilateral Market Power & Bargaining

14

Bilateral Monopoly Intuitive Analysis

•  Efficient quantity – Complete information – Maximize the surplus

to be shared

q

MC(q)

MV(q) q*

S*

Page 15: Bilateral Market Power & Bargaining

15

Bilateral Monopoly Intuitive Analysis

•  Efficient quantity – Complete information – Maximize the surplus

to be shared

q

MC(q)

MV(q) q*

S*

Efficiency from the point of view of the two firms = Same quantity as a vertically integrated firm would choose

Page 16: Bilateral Market Power & Bargaining

16

BilateralMonopolyIntuiHveAnalysis

•  Problem

–  But what price?

•  Only restrictions

–  Seller must cover his costs, C(q*)

–  Buyer must not pay more than wtp,

V(q*)

=> Any split of S* = V(q*) – C(q*) seems reasonable

q

MC(q)

MV(q)q*

S*

Page 17: Bilateral Market Power & Bargaining

17

BilateralMonopolyIntuiHveAnalysis

•  Note –  If someone demands “too much”

–  The other side will reject and make a counter-offer

•  Problem –  Haggling could go on forever

–  Gains from trade delayed

•  Thus –  Both sides have incentive to be reasonable

–  Party with less aversion to delay has strategic advantage

Page 18: Bilateral Market Power & Bargaining

18

BilateralMonopolyDefiniHons

•  Definitions

–  Efficient quantity: q*

–  Walrasian price: pw

–  Maximum bilateral surplus: S*

q

MC(q)

MV(q)q*

pw S*

Page 19: Bilateral Market Power & Bargaining

19

BilateralMonopoly

•  First important insight: –  Contract must specify both price and

quantity, (p, q)

–  Q: Why?

–  Otherwise inefficiency (If p > pw then q < q*)

q

MC(q)

MV(q)q*

pw S*

Page 20: Bilateral Market Power & Bargaining

ExtensiveFormBargainingUlHmatumbargaining

Page 21: Bilateral Market Power & Bargaining

21

UlHmatumbargaining

•  One round of negotiations –  One party, say seller, gets to propose a contract (p, q)

–  Other party, say buyer, can accept or reject

•  Outcome –  If (p, q) accepted, it is implemented

–  Otherwise game ends without agreement

•  Payoffs –  Buyer: V(q) – p q if agreement, zero otherwise

–  Seller: p q – C(q) if agreement, zero otherwise

•  Perfect information –  Backwards induction

Solvethisgamenow!

Page 22: Bilateral Market Power & Bargaining

22

UlHmatumbargaining

•  Time 2

–  Buyer accepts proposed contract (p, q) iff V(q) – p q ≥ 0

•  Time 1

–  Seller: maxp,q p q – C(q) such that V(q) – p q ≥ 0

Page 23: Bilateral Market Power & Bargaining

23

UlHmatumbargaining

max p,q p q – C(q)

st : V (q) – p q ≥ 0

Must set p such that: p ⋅q = V (q)

maxq V (q) – C(q)

Must set q such that: MV q( ) = MC(q)

Sellertakeswholesurplus

EfficientquanHty

Page 24: Bilateral Market Power & Bargaining

24

UlHmatumbargaining

•  SPE of ultimatum bargaining game

–  Unique equilibrium

–  There is agreement

–  Efficient quantity

–  Proposer takes the whole (maximal) surplus

Page 25: Bilateral Market Power & Bargaining

25

UlHmatumbargaining

•  Assume rest of lecture –  Always efficient quantity

–  Surplus = 1

–  Player S gets share πS

–  Player B gets share πB = 1 – πS

•  Ultimatum game

–  πS = 1

–  πB = 0

Page 26: Bilateral Market Power & Bargaining

Tworounds(T=2)

Page 27: Bilateral Market Power & Bargaining

27

Tworounds(T=2)

•  Alternating offers

•  Players are impatient

–  For B: €1 in period 2 is equally good as €δB in period 1

–  Where δB, δS < 1 are discount factors

Page 28: Bilateral Market Power & Bargaining

28

Tworounds(T=2)

•  Period 1 –  B proposes

–  S accepts or rejects

•  Period 2 (in case S rejected)

–  S proposes

–  B accepts or rejects

•  Perfect information => Use BI

Solvethisgamenow!

π BT ,π S

T( )

π BT −1,π S

T −1( )

Page 29: Bilateral Market Power & Bargaining

29

Tworounds

•  Period T = 2 (S bids) (in case S rejected) –  B accepts iff:

–  S proposes:

•  Period T-1 = 1 (B bids) –  S accepts iff:

–  B proposes:

•  Note –  S willing to reduce his share to get an early agreement

–  Both players get part of surplus

–  B’s share determined by S’s impatience. If S very patient πS≈1

π BT ≥ 0

π BT = 0 π S

T = 1

π ST −1 ≥ δSπ S

T = δS < 1

π BT −1 = 1− δS > 0 π S

T −1 = δS

Page 30: Bilateral Market Power & Bargaining

Trounds

Page 31: Bilateral Market Power & Bargaining

31

T rounds

•  Model

–  Large number of periods, T

–  Buyer and seller take turns to make offer

–  Common discount factor δ = δB = δS

–  Subgame perfect equilibrium (ie start analysis in last period)

Page 32: Bilateral Market Power & Bargaining

32

T rounds

Time Bidder πB πS Resp. T S ? ? ?

Page 33: Bilateral Market Power & Bargaining

33

T rounds

Time Bidder πB πS Resp. T S 0 1 yes

Page 34: Bilateral Market Power & Bargaining

34

T rounds

Time Bidder πB πS Resp. T S 0 1 yes

T-1 B ? ? ?

Page 35: Bilateral Market Power & Bargaining

35

T rounds

Time Bidder πB πS Resp. T S 0 1 yes

T-1 B rest δ yes

Page 36: Bilateral Market Power & Bargaining

36

T rounds

Time Bidder πB πS Resp. T S 0 1 yes

T-1 B 1-δ δ yes

Page 37: Bilateral Market Power & Bargaining

37

T rounds

Time Bidder πB πS Resp. T S 0 1 yes

T-1 B 1-δ δ yes T-2 S ? ? ?

Page 38: Bilateral Market Power & Bargaining

38

T rounds

Time Bidder πB πS Resp. T S 0 1 yes

T-1 B 1-δ δ yes T-2 S δ(1-δ) rest yes

Page 39: Bilateral Market Power & Bargaining

39

T rounds

Time Bidder πB πS Resp. T S 0 1 yes

T-1 B 1-δ δ yes T-2 S δ(1-δ) 1-δ(1-δ) yes

Page 40: Bilateral Market Power & Bargaining

40

T rounds

Time Bidder πB πS Resp. T S 0 1 yes

T-1 B 1-δ δ yes T-2 S δ(1-δ) 1-δ(1-δ) yes

multiply

Page 41: Bilateral Market Power & Bargaining

41

T rounds

Time Bidder πB πS Resp. T S 0 1 yes

T-1 B 1-δ δ yes T-2 S δ-δ2 1-δ+δ2 yes

Page 42: Bilateral Market Power & Bargaining

42

T rounds

Time Bidder πB πS Resp. T S 0 1 yes

T-1 B 1-δ δ yes T-2 S δ-δ2 1-δ+δ2 yes T-3 B ? ? ?

Page 43: Bilateral Market Power & Bargaining

43

T rounds

Time Bidder πB πS Resp. T S 0 1 yes

T-1 B 1-δ δ yes T-2 S δ-δ2 1-δ+δ2 yes T-3 B rest δ(1-δ+δ2) yes

Page 44: Bilateral Market Power & Bargaining

44

T rounds

Time Bidder πB πS Resp. T S 0 1 yes

T-1 B 1-δ δ yes T-2 S δ-δ2 1-δ+δ2 yes T-3 B 1-δ(1-δ+δ2) δ(1-δ+δ2) yes

Page 45: Bilateral Market Power & Bargaining

45

T rounds

Time Bidder πB πS Resp. T S 0 1 yes

T-1 B 1-δ δ yes T-2 S δ-δ2 1-δ+δ2 yes T-3 B 1-δ+δ2-δ3 δ-δ2+δ3 yes

Page 46: Bilateral Market Power & Bargaining

46

T rounds

Time Bidder πB πS Resp. T S 0 1 yes

T-1 B 1-δ δ yes T-2 S δ-δ2 1-δ+δ2 yes T-3 B 1-δ+δ2-δ3 δ-δ2+δ3 yes T-4 S δ(1-δ+δ2-δ3) rest yes

Page 47: Bilateral Market Power & Bargaining

47

T rounds

Time Bidder πB πS Resp. T S 0 1 yes

T-1 B 1-δ δ yes T-2 S δ-δ2 1-δ+δ2 yes T-3 B 1-δ+δ2-δ3 δ-δ2+δ3 yes T-4 S δ(1-δ+δ2-δ3) 1-δ(1-δ+δ2-δ3) yes

Page 48: Bilateral Market Power & Bargaining

48

T rounds

Time Bidder πB πS Resp. T S 0 1 yes

T-1 B 1-δ δ yes T-2 S δ-δ2 1-δ+δ2 yes T-3 B 1-δ+δ2-δ3 δ-δ2+δ3 yes T-4 S δ-δ2+δ3-δ4 1-δ+δ2-δ3+δ4 yes

Page 49: Bilateral Market Power & Bargaining

49

T rounds

Time Bidder πB πS Resp. T S 0 1 yes

T-1 B 1-δ δ yes T-2 S δ-δ2 1-δ+δ2 yes T-3 B 1-δ+δ2-δ3 δ-δ2+δ3 yes T-4 S δ-δ2+δ3-δ4 1-δ+δ2-δ3+δ4 yes … … … … … 1 S δ-δ2+δ3-δ4+…-δT-1 1-δ+δ2-δ3+δ4-…+δT-1 yes

Page 50: Bilateral Market Power & Bargaining

50

T rounds

Time Bidder πB πS Resp. T S 0 1 yes

T-1 B 1-δ δ yes T-2 S δ-δ2 1-δ+δ2 yes T-3 B 1-δ+δ2-δ3 δ-δ2+δ3 yes T-4 S δ-δ2+δ3-δ4 1-δ+δ2-δ3+δ4 yes … … … … … 1 S δ-δ2+δ3-δ4+…-δT-1 1-δ+δ2-δ3+δ4-…+δT-1 yes

π B = δ − δ 2 + δ 3 − δ 4 + ...− δ T −1

π S = 1− δ + δ 2 − δ 3 + δ 4 − ...+ δ T −1

Page 51: Bilateral Market Power & Bargaining

51

T rounds

Geometric seriesπ B = δ − δ 2 + δ 3 − δ 4 + ...− δ T −1

π S = 1− δ + δ 2 − δ 3 + δ 4 − ...+ δ T −1

Page 52: Bilateral Market Power & Bargaining

52

T rounds

S's shareπ S = 1− δ + δ 2 − δ 3 + δ 4 − ...+ δ T −1

Page 53: Bilateral Market Power & Bargaining

53

T rounds

S's shareπ S = 1− δ + δ 2 − δ 3 + δ 4 − ...+ δ T −1

Multiplyδπ S = δ − δ 2 + δ 3 − δ 4 + δ 5 − ...+ δ T

Page 54: Bilateral Market Power & Bargaining

54

T rounds

S's shareπ S = 1− δ + δ 2 − δ 3 + δ 4 − ...+ δ T −1

Multiplyδπ S = δ − δ 2 + δ 3 − δ 4 + δ 5 − ...+ δ T

Addπ S + δπ S = 1+ δ T

Page 55: Bilateral Market Power & Bargaining

55

T rounds

S's shareπ S = 1− δ + δ 2 − δ 3 + δ 4 − ...+ δ T −1

Multiplyδπ S = δ − δ 2 + δ 3 − δ 4 + δ 5 − ...+ δ T

Addπ S + δπ S = 1+ δ T

Solve

π S =1+ δ T

1+ δ

Page 56: Bilateral Market Power & Bargaining

56

T rounds

Equilibrium shares with T periods

π S =1

1+ δ1+ δ T( )

π B =δ

1+ δ1− δ T −1( )

Page 57: Bilateral Market Power & Bargaining

57

T rounds

Equilibrium shares with T periods

π S =1

1+ δ1+ δ T( )

π B =δ

1+ δ1− δ T −1( )

S has advantage of making last bid1+ δ T > 1− δ T −1

To confirm this, solve model where -  B makes last bid -  S makes first bid

Page 58: Bilateral Market Power & Bargaining

58

T rounds

Equilibrium shares with T periods

π S =1

1+ δ1+ δ T( )

π B =δ

1+ δ1− δ T −1( )

S has advantage of making last bid1+ δ T > 1− δ T −1 Disappears if T very large

Page 59: Bilateral Market Power & Bargaining

59

T rounds

Equilibrium shares with T ≈ ∞ periods

π S =1

1+ δ

π B =δ

1+ δ

S has advantage of making first bid1

1+ δ>

δ1+ δ

To confirm this, solve model where -  B makes first bid

Page 60: Bilateral Market Power & Bargaining

60

T rounds

Equilibrium shares with T ≈ ∞ periods

π S =1

1+ δ

π B =δ

1+ δ

S has advantage of making first bid1

1+ δ>

δ1+ δ

To confirm this, solve model where -  B makes first bid

Page 61: Bilateral Market Power & Bargaining

61

T rounds

Equilibrium shares with T ≈ ∞ periods

π S =1

1+ δ

π B =δ

1+ δ

S has advantage of making first bid1

1+ δ>

δ1+ δ

First bidder’s advantage disappears if δ ≈ 1

Page 62: Bilateral Market Power & Bargaining

62

T rounds

Equilibrium shares with T ≈ ∞ periods and very patient players (δ ≈ 1)

π S =12

π B =12

Page 63: Bilateral Market Power & Bargaining

63

Difference in Patience

Equilibrium shares with T ≈ ∞ periods and different discount factors

π S =1− δB

1− δSδB

π B =1− δS

1− δSδB

δB

(Easy to show using same method as above)

Page 64: Bilateral Market Power & Bargaining

64

Difference in Patience

•  Recall –  ri = continous-time discount factor

–  Δ = length of time period

•  Then, as Δ è 0:

– 

–  Using l’Hopital’s rule

δ i = e−riΔ

π S =1− δB

1− δSδB

≈rB

rS + rB

Page 65: Bilateral Market Power & Bargaining

65

Extensive form bargaining

•  Conclusions

–  Exists unique equilibrium (SPE)

–  There is agreement

–  Agreement is immediate

–  Efficient agreement (here: quantity)

–  Split of surplus (price) determined by relative patience •  Right to propose in last round gives advantage (T < ∞)

•  Right to propose in first round gives advantage (δ < 1)

Page 66: Bilateral Market Power & Bargaining

66

Implications for Bilateral Monopoly

Page 67: Bilateral Market Power & Bargaining

67

Implications for Bilateral Monopoly

•  Equal splitting

ΠS = ΠB

p ⋅q − C q( ) = V q( ) − p ⋅q

2 ⋅ p ⋅q = V q( ) + C q( )

p = 12V q( )q

+C q( )q

⎣⎢

⎦⎥

Page 68: Bilateral Market Power & Bargaining

68

Implications for Bilateral Monopoly

•  Equal splitting

ΠS = ΠB

p ⋅q − C q( ) = V q( ) − p ⋅q

2 ⋅ p ⋅q = V q( ) + C q( )

p = 12V q( )q

+C q( )q

⎣⎢

⎦⎥

Retailer’s average revenues

Page 69: Bilateral Market Power & Bargaining

69

Implications for Bilateral Monopoly

•  Equal splitting

ΠS = ΠB

p ⋅q − C q( ) = V q( ) − p ⋅q

2 ⋅ p ⋅q = V q( ) + C q( )

p = 12V q( )q

+C q( )q

⎣⎢

⎦⎥

Manufacturer’s average costs

Page 70: Bilateral Market Power & Bargaining

70

Implications for Bilateral Monopoly

•  Equal splitting

ΠS = ΠB

p ⋅q − C q( ) = V q( ) − p ⋅q

2 ⋅ p ⋅q = V q( ) + C q( )

p = 12V q( )q

+C q( )q

⎣⎢

⎦⎥

The firms share the Retailer’s revenues

and the Manufacturer’s costs

equally

Page 71: Bilateral Market Power & Bargaining

71

Nash Bargaining Solution -- A Reduced Form Model

Page 72: Bilateral Market Power & Bargaining

72

Nash Bargaining Solution

•  Extensive form bargaining model –  Intuitive

–  But tedious

•  Nash bargaining solution –  Less intuitive

–  But easier to find the same outcome

Page 73: Bilateral Market Power & Bargaining

73

Nash Bargaining Solution

•  Three steps 1.  Describe bargaining situation

2.  Define Nash product

3.  Maximize Nash product

Page 74: Bilateral Market Power & Bargaining

74

Nash Bargaining Solution

•  Step 1: Describe bargaining situation 1.  Who are the two players?

2.  What contracts can they agree upon?

3.  What payoff would they get from every possible contract?

4.  What payoff do they have before agreement?

5.  What is their relative patience (= bargaining power)

Page 75: Bilateral Market Power & Bargaining

75

Nash Bargaining Solution Example 1: Bilateral monopoly

•  Step 1: Describe the bargaining situation –  Players: Manufacturer and Retailer

–  Contracts: (T, q)

–  Payoffs: •  Retailer:

•  Manufacturer:

–  Payoff if there is no agreement (while negotiating) •  Retailer:

•  Manufacturer:

–  Same patience => same bargaining power

!π R = 0

!πM = 0

π R T ,q( ) = V q( ) − TπM T ,q( ) = T − C q( )

T = total price for q units.

Page 76: Bilateral Market Power & Bargaining

76

Nash Bargaining Solution Example 1: Bilateral monopoly

•  Step 2: Set up Nash product

N T ,q( ) = π R T ,q( ) − !π R⎡⎣ ⎤⎦ ⋅ πM T ,q( ) − !πM⎡⎣ ⎤⎦

Retailer’s profit from contract Manufacturer’s profit from contract

Page 77: Bilateral Market Power & Bargaining

77

Nash Bargaining Solution Example 1: Bilateral monopoly

•  Step 2: Set up Nash product

N T ,q( ) = π R T ,q( ) − !π R⎡⎣ ⎤⎦ ⋅ πM T ,q( ) − !πM⎡⎣ ⎤⎦

Retailer’s extra profit from contract Manufacturer’s extra profit from contract

Page 78: Bilateral Market Power & Bargaining

78

Nash Bargaining Solution Example 1: Bilateral monopoly

•  Step 2: Set up Nash product

N T ,q( ) = π R T ,q( ) − !π R⎡⎣ ⎤⎦ ⋅ πM T ,q( ) − !πM⎡⎣ ⎤⎦

Nash product - Product of payoff increases

Depends on contract

Page 79: Bilateral Market Power & Bargaining

79

Nash Bargaining Solution Example 1: Bilateral monopoly

•  Step 2: Set up Nash product

N T ,q( ) = π R T ,q( ) − !π R⎡⎣ ⎤⎦ ⋅ πM T ,q( ) − !πM⎡⎣ ⎤⎦

Claim: The contract (T, q) maximizing N is the same contract that the parties would agree upon in an extensive form bargaining game!

Page 80: Bilateral Market Power & Bargaining

80

Nash Bargaining Solution Example 1: Bilateral monopoly

•  Step 2: Set up Nash product

N T ,q( ) = π R T ,q( ) − !π R⎡⎣ ⎤⎦ ⋅ πM T ,q( ) − !πM⎡⎣ ⎤⎦

N T ,q( ) = V q( ) − T⎡⎣ ⎤⎦ ⋅ T − C q( )⎡⎣ ⎤⎦

Page 81: Bilateral Market Power & Bargaining

81

Nash Bargaining Solution Example 1: Bilateral monopoly

•  Maximize Nash product

N T ,q( ) = V q( ) − T⎡⎣ ⎤⎦ ⋅ T − C q( )⎡⎣ ⎤⎦

∂N∂T

= − T − C q( )⎡⎣ ⎤⎦ + V q( ) − T⎡⎣ ⎤⎦ = 0 ⇒ T = 12 V q( ) + C q( )⎡⎣ ⎤⎦

⇒ p = 12V q( )q

+C q( )q

⎣⎢

⎦⎥

Equal profits = Equal split of surplus

Page 82: Bilateral Market Power & Bargaining

82

Nash Bargaining Solution Example 1: Bilateral monopoly

•  Maximize Nash product

N T ,q( ) = V q( ) − T⎡⎣ ⎤⎦ ⋅ T − C q( )⎡⎣ ⎤⎦

∂N∂T

= − T − C q( )⎡⎣ ⎤⎦ + V q( ) − T⎡⎣ ⎤⎦ = 0 ⇒ T = 12 V q( ) + C q( )⎡⎣ ⎤⎦

⇒ p = 12V q( )q

+C q( )q

⎣⎢

⎦⎥

Page 83: Bilateral Market Power & Bargaining

83

Nash Bargaining Solution Example 1: Bilateral monopoly

•  Maximize Nash product

N T ,q( ) = V q( ) − T⎡⎣ ⎤⎦ ⋅ T − C q( )⎡⎣ ⎤⎦

∂N∂T

= − T − C q( )⎡⎣ ⎤⎦ + V q( ) − T⎡⎣ ⎤⎦ = 0 ⇒ T = 12 V q( ) + C q( )⎡⎣ ⎤⎦

⇒ p = 12V q( )q

+C q( )q

⎣⎢

⎦⎥

Convert to price per unit.

Page 84: Bilateral Market Power & Bargaining

84

Nash Bargaining Solution Example 1: Bilateral monopoly

•  Maximize Nash product

N T ,q( ) = V q( ) − T⎡⎣ ⎤⎦ ⋅ T − C q( )⎡⎣ ⎤⎦

∂N∂T

= − T − C q( )⎡⎣ ⎤⎦ + V q( ) − T⎡⎣ ⎤⎦ = 0

∂N∂q

= V ' q( ) ⋅ T − C q( )⎡⎣ ⎤⎦ − C ' q( ) ⋅ V q( ) − T⎡⎣ ⎤⎦ = 0 ⇒ V ' q( ) = C ' q( )

Page 85: Bilateral Market Power & Bargaining

85

Nash Bargaining Solution Example 1: Bilateral monopoly

•  Maximize Nash product

N T ,q( ) = V q( ) − T⎡⎣ ⎤⎦ ⋅ T − C q( )⎡⎣ ⎤⎦

∂N∂T

= − T − C q( )⎡⎣ ⎤⎦ + V q( ) − T⎡⎣ ⎤⎦ = 0

∂N∂q

= V ' q( ) ⋅ T − C q( )⎡⎣ ⎤⎦ − C ' q( ) ⋅ V q( ) − T⎡⎣ ⎤⎦ = 0 ⇒ V ' q( ) = C ' q( )

Efficiency

Page 86: Bilateral Market Power & Bargaining

86

Nash Bargaining Solution Example 1: Bilateral monopoly

•  Conclusion –  Maximizing Nash product is easy way to find equilibrium

–  Efficient quantity

–  Price splits surplus equally

Page 87: Bilateral Market Power & Bargaining

87

Nash Bargaining Solution

•  With different bargaining power

N T ,q( ) = π R T ,q( )− !π R⎡⎣ ⎤⎦β⋅ πM T ,q( )− !πM⎡⎣ ⎤⎦

1−β

Exponents determined by relative patience

Page 88: Bilateral Market Power & Bargaining

88

Nash Bargaining Solution Example 2: Bilateral oligopoly with two retailers

Manufacturer

Retailer 1 Retailer 2

Consumers Consumers

Page 89: Bilateral Market Power & Bargaining

89

Nash Bargaining Solution Example 2: Bilateral oligopoly with two retailers

Manufacturer

Retailer 1 Retailer 2

Consumers Consumers

π1 T1,q1( ) = V q1( ) − T1 π 2 T2 ,q2( ) = V q2( ) − T2

Retailers independent

Page 90: Bilateral Market Power & Bargaining

90

Nash Bargaining Solution Example 2: Bilateral oligopoly with two retailers

Manufacturer

Retailer 1 Retailer 2

Consumers Consumers

π1 T1,q1( ) = V q1( ) − T1 π 2 T2 ,q2( ) = V q2( ) − T2

πM T1,T2 ,q1,q2( ) = T1 + T2 − C q1 + q2( )

Page 91: Bilateral Market Power & Bargaining

91

Nash Bargaining Solution Example 2: Bilateral oligopoly with two retailers

•  Step 1: Describe one of the bargaining situations –  Contracts: (T1, q1)

Page 92: Bilateral Market Power & Bargaining

92

Nash Bargaining Solution Example 2: Bilateral oligopoly with two retailers

•  Step 1: Describe one of the bargaining situations –  Contracts: (T1, q1)

–  Payoffs: •  Retailer:

•  Manufacturer:

π1 T1,q1( ) = V q1( ) − T1πM T1,T2 ,q1,q2( ) = T1 + T2 − C q1 + q2( )

Page 93: Bilateral Market Power & Bargaining

93

Nash Bargaining Solution Example 2: Bilateral oligopoly with two retailers

•  Step 1: Describe one of the bargaining situations –  Contracts: (T1, q1)

–  Payoffs: •  Retailer:

•  Manufacturer:

–  Payoff if no agreement •  Retailer:

•  Manufacturer: !π1 = 0

!πM = T2 − C q2( )

π1 T1,q1( ) = V q1( ) − T1πM T1,T2 ,q1,q2( ) = T1 + T2 − C q1 + q2( )

Manufacturer only supplies other retailer

Page 94: Bilateral Market Power & Bargaining

94

Nash Bargaining Solution Example 2: Bilateral oligopoly with two retailers

•  Step 1: Describe one of the bargaining situations –  Contracts: (T1, q1)

–  Payoffs: •  Retailer:

•  Manufacturer:

–  Payoff while negotiating •  Retailer:

•  Manufacturer:

–  Same patience => same bargaining power

!π1 = 0

!πM = T2 − C q2( )

π1 T1,q1( ) = V q1( ) − T1πM T1,T2 ,q1,q2( ) = T1 + T2 − C q1 + q2( )

Manufacturer only supplies other retailer

Page 95: Bilateral Market Power & Bargaining

95

Nash Bargaining Solution Example 2: Bilateral oligopoly with two retailers

•  Step 2: Set up Nash product

N T1,q1( ) = π R T1,q1( ) − !π R⎡⎣ ⎤⎦ ⋅ πM T1,T2 ,q1,q2( ) − !πM⎡⎣ ⎤⎦

N T1,q1( ) = V q1( ) − T1⎡⎣ ⎤⎦ ⋅ T1 + T2 − C q1 + q2( ){ } − T2 − C q2( ){ }⎡⎣ ⎤⎦

N T1,q1( ) = V q1( ) − T1⎡⎣ ⎤⎦ ⋅ T1 − C q1 + q2( ) − C q2( ){ }⎡⎣ ⎤⎦

Incremental cost

Page 96: Bilateral Market Power & Bargaining

96

Nash Bargaining Solution Example 2: Bilateral oligopoly with two retailers

•  Step 2: Set up Nash product

N T1,q1( ) = π R T1,q1( ) − !π R⎡⎣ ⎤⎦ ⋅ πM T1,T2 ,q1,q2( ) − !πM⎡⎣ ⎤⎦

N T1,q1( ) = V q1( ) − T1⎡⎣ ⎤⎦ ⋅ T1 + T2 − C q1 + q2( ){ } − T2 − C q2( ){ }⎡⎣ ⎤⎦

N T1,q1( ) = V q1( ) − T1⎡⎣ ⎤⎦ ⋅ T1 − C q1 + q2( ) − C q2( ){ }⎡⎣ ⎤⎦

Incremental cost

Page 97: Bilateral Market Power & Bargaining

97

Nash Bargaining Solution Example 2: Bilateral oligopoly with two retailers

•  Step 2: Set up Nash product

N T1,q1( ) = π R T1,q1( ) − !π R⎡⎣ ⎤⎦ ⋅ πM T1,T2 ,q1,q2( ) − !πM⎡⎣ ⎤⎦

N T1,q1( ) = V q1( ) − T1⎡⎣ ⎤⎦ ⋅ T1 + T2 − C q1 + q2( ){ } − T2 − C q2( ){ }⎡⎣ ⎤⎦

N T1,q1( ) = V q1( ) − T1⎡⎣ ⎤⎦ ⋅ T1 − C q1 + q2( ) − C q2( ){ }⎡⎣ ⎤⎦

Incremental cost

Page 98: Bilateral Market Power & Bargaining

98

Nash Bargaining Solution Example 2: Bilateral oligopoly with two retailers

•  Step 2: Set up Nash product

N T1,q1( ) = π R T1,q1( ) − !π R⎡⎣ ⎤⎦ ⋅ πM T1,T2 ,q1,q2( ) − !πM⎡⎣ ⎤⎦

N T1,q1( ) = V q1( ) − T1⎡⎣ ⎤⎦ ⋅ T1 + T2 − C q1 + q2( ){ } − T2 − C q2( ){ }⎡⎣ ⎤⎦

N T1,q1( ) = V q1( ) − T1⎡⎣ ⎤⎦ ⋅ T1 − C q1 + q2( ) − C q2( ){ }⎡⎣ ⎤⎦

Incremental cost

Page 99: Bilateral Market Power & Bargaining

99

Nash Bargaining Solution Example 2: Bilateral oligopoly with two retailers

•  Maximize Nash product

N T1,q1( ) = V q1( ) − T1⎡⎣ ⎤⎦ ⋅ T1 − C q1 + q2( ) − C q2( ){ }⎡⎣ ⎤⎦

∂N∂T1

= T1 − C q1 + q2( ) − C q2( ){ }⎡⎣ ⎤⎦ − V q1( ) − T1⎡⎣ ⎤⎦ = 0

⇒ T1 = 12 V q1( ) + C q1 + q2( ) − C q2( ){ }⎡⎣ ⎤⎦

⇒ p1 = 12

V q1( )q1

+C q1 + q2( ) − C q2( )

q1

⎣⎢

⎦⎥

Average incremental cost

Page 100: Bilateral Market Power & Bargaining

100

Nash Bargaining Solution Example 2: Bilateral oligopoly with two retailers

p1 = 12 6 +

C q1 + q2( )−C q2( )q1

⎣⎢

⎦⎥

Example -  V(q) = 6 q -  C(q) = ½ q2

0 1 2 3 4 5 6 7 8 9 10

10

0

1

2

3

4

5

6

7

8

9

Quantity

MC(q)

MV(q)

Average incremental cost

Page 101: Bilateral Market Power & Bargaining

101

Nash Bargaining Solution Example 2: Bilateral oligopoly with two retailers

0 1 2 3 4 5 6 7 8 9 10

10

0

1

2

3

4

5

6

7

8

9

Quantity

MC(q)

MV(q)

Incremental Cost

Units sold to other firm

Retailer 1buys 4 units

Example - Retailer 1 buys 4 units - Retailer 2 buys 2 units

p1 = 12 6 +

C q1 + q2( )−C q2( )q1

⎣⎢

⎦⎥ = 1

2 6 +164

⎡⎣⎢

⎤⎦⎥= 5

Page 102: Bilateral Market Power & Bargaining

102

•  Compare prices when retailer 1 buys more than 2

Nash Bargaining Solution Example 2: Bilateral oligopoly with two retailers

Page 103: Bilateral Market Power & Bargaining

•  Average incremental cost is lower for supplying 1!

103

Nash Bargaining Solution Example 2: Bilateral oligopoly with two retailers

0 1 2 3 4 5 6 7 8 9 10

10

0

1

2

3

4

5

6

7

8

9

Quantity

MC(q)

MV(q)

Incremental Cost

Units sold to other firm

Retailer 2buys 2 units

0 1 2 3 4 5 6 7 8 9 10

10

0

1

2

3

4

5

6

7

8

9

Quantity

MC(q)

MV(q)

Incremental Cost

Units sold to other firm

Retailer 1buys 4 units

Page 104: Bilateral Market Power & Bargaining

•  Retailer 1 will pay a lower price per unit

104

Nash Bargaining Solution Example 2: Bilateral oligopoly with two retailers

0 1 2 3 4 5 6 7 8 9 10

10

0

1

2

3

4

5

6

7

8

9

Quantity

MC(q)

MV(q)

Incremental Cost

Units sold to other firm

Retailer 2buys 2 units

0 1 2 3 4 5 6 7 8 9 10

10

0

1

2

3

4

5

6

7

8

9

Quantity

MC(q)

MV(q)

Incremental Cost

Units sold to other firm

Retailer 1buys 4 units

Page 105: Bilateral Market Power & Bargaining

105

Nash Bargaining Solution Example 2: Bilateral oligopoly with two retailers

0 1 2 3 4 5 6 7 8 9 10

10

0

1

2

3

4

5

6

7

8

9

Quantity

MC(q)

MV(q)

Incremental Cost

Units sold to other firm

Retailer 2buys 2 units

0 1 2 3 4 5 6 7 8 9 10

10

0

1

2

3

4

5

6

7

8

9

Quantity

MC(q)

MV(q)

Incremental Cost

Units sold to other firm

Retailer 1buys 4 units

p1 = 12 6 +

C q1 + q2( )−C q2( )q1

⎣⎢

⎦⎥ = 1

2 6 +12 ⋅36 − 1

2 ⋅44

⎡⎣⎢

⎤⎦⎥= 1

2 6 +164

⎡⎣⎢

⎤⎦⎥= 5 p2 = 1

2 6 +C q1 + q2( )−C q1( )

q1

⎣⎢

⎦⎥ = 1

2 6 +12 ⋅36 − 1

2 ⋅162

⎡⎣⎢

⎤⎦⎥= 1

2 6 +102

⎡⎣⎢

⎤⎦⎥= 5.5

Page 106: Bilateral Market Power & Bargaining

106

Nash Bargaining Solution Example 2: Bilateral oligopoly with two retailers

•  Maximize Nash product

N T1,q1( ) = V q1( ) − T1⎡⎣ ⎤⎦ ⋅ T1 − C q1 + q2( ) − C q2( ){ }⎡⎣ ⎤⎦

∂N∂q1

= V ' q1( ) ⋅ T1 − C q1 + q2( ) − C q2( ){ }⎡⎣ ⎤⎦ + C ' q1 + q2( ) ⋅ V q1( ) − T1⎡⎣ ⎤⎦ = 0

⇒ V ' q1( ) = C ' q1 + q2( )

Bilateral Efficiency

Page 107: Bilateral Market Power & Bargaining

107

Nash Bargaining Solution Example 2: Bilateral oligopoly with two retailers

•  Maximize Nash product

V ' q1( ) = C ' q1 + q2( )

V ' q2( ) = C ' q1 + q2( )

⎬⎪⎪

⎭⎪⎪

⇒V ' q1( ) = V ' q2( )

Bilateral efficiency 1

Bilateral efficiency 2

Page 108: Bilateral Market Power & Bargaining

108

Nash Bargaining Solution Example 2: Bilateral oligopoly with two retailers

•  Maximize Nash product

V ' q1( ) = C ' q1 + q2( )

V ' q2( ) = C ' q1 + q2( )

⎬⎪⎪

⎭⎪⎪

⇒V ' q1( ) = V ' q2( )

Overall market efficiency - Efficient distribution of goods

Page 109: Bilateral Market Power & Bargaining

109

•  Conclusions –  Prices of homogenous goods may differ

•  Quantity discounts if producer has increasing MC

–  Market with bilateral market power may be efficient

Nash Bargaining Solution Example 2: Bilateral oligopoly with two retailers