Biotronics 20101028

Embed Size (px)

Citation preview

  • 7/31/2019 Biotronics 20101028

    1/36

    Highly sensitivenucleic acid based bacteria detection

    using single chamber system

    Junhong Min

    Laboratory ofMedical andEnvironmentalAnalysis System

    College of Bionano Technology, Kyungwon University

  • 7/31/2019 Biotronics 20101028

    2/36

    Contents

    Introduction

    DNA concentration + amplification + detection

    RNA concentration + amplification + detection

    Bacteria concentration + lysis + amplification + detection

    Conclusions

  • 7/31/2019 Biotronics 20101028

    3/36

    BIOTronics 2010

    Motivation I - Complexity

    Nucleic acid (NA) based bacteria detection requires sophisticated

    serial processes

    Stanford bioengineering

    Professor Stephen Quake.

    Wonderful microchips

    Simple chipI can fabricate

    Sample preparation Amplification

    Detection

    3/36

    CellConcentration

    Celllysis

    NApurification

    NAamplification Detection

    http://news-service.stanford.edu/news/2006/january18/gifs/fluidicschip.jpg
  • 7/31/2019 Biotronics 20101028

    4/36

    BIOTronics 2010

    Motivation II Volume and Sensitivity

    Environmental sample has too large volume to be introduced into

    micochip format sensor.

    4/36

    1LSample volume 100mL ~ 100L

    Sample volume needs to be reduced with sustaining an amount of

    analyte in order to achieve high sensitivity

    SampleLimit

    (MPN)

    Sample

    vol.River (I) < 50 100mL

    Sea Area (I)

  • 7/31/2019 Biotronics 20101028

    5/36BIOTronics 2010

    Purpose

    To develop simple single chamber system

    including functions of

    1. Concentration (Nucleic acid or Bacteria) or Isolation

    2. Lysis ( for bacteria)

    3. Analyte amplification

    4. Signal generation

    5/36

  • 7/31/2019 Biotronics 20101028

    6/36BIOTronics 2010

    Target samples

    E. coli is often preferred as an indicator organism because it is

    specific for and reliably reflects fecal contamination

    Particularly, E.coli O157:H7is one of representing pathogenic

    bacteria.

    6/36

  • 7/31/2019 Biotronics 20101028

    7/36BIOTronics 2010

    Design of Micro Chip

    Conventional fabrication tech. Simple use

    Considerations1. Micro PCR compatible

    2. Chip based

    7/36

    - 0.5 l sample reguired- Detection time : 30 min

    - Si-Water based chip

    - SyBr green based real time detection

    Micro-PCR

    Biosensors and bioelectronics, 21, 2161-2169, 2006

  • 7/31/2019 Biotronics 20101028

    8/36BIOTronics 2010

    Design of Lab In Tube(LIT)

    100m

    Fast sample loading: 2 mL/min No bead loss No chip damage

    1) Sample loading component

    2) Fluorescence signalmeasurement component

    3) RNA or Bacteria adsorption andNASBA reaction component

    Considerations1. Pressure drops

    2. Friendly design (E-tube type)

    1)

    2)

    3)

    8/36

  • 7/31/2019 Biotronics 20101028

    9/36BIOTronics 2010

    Pressure drop 9/36

  • 7/31/2019 Biotronics 20101028

    10/36

    Introduction

    DNA concentration + amplification + detection

    RNA concentration + amplification + detection

    Bacteria concentration + lysis+amplification + detection

    Conclusions

  • 7/31/2019 Biotronics 20101028

    11/36

    BIOTronics 2010

    Concepts_ E.coli detection with DNA

    1. How to adsorb DNA on micro pillars in micro chip

    2. How to amplify DNA adsorbed with microstructure (large surface area)

    11/36

    Sample loading

    NA concentrationSample (1mL)

    NA amplification

    Bacteria lysis

    Fluorescence read out

    Single chamber

  • 7/31/2019 Biotronics 20101028

    12/36

    BIOTronics 2010

    DNA adsorption 12/36

    DNA concentration

    DNA amplification usingmicro PCR

    Fluorescence read out

    Single chamber- Nucleic acid could be fully hydrated in

    presence of kosmotropic salt

    - Nucleic acid can be released from silica

    surface at high pH.

    - Simple

    - No toxic salts such as chaotropic salt

    - No special surface

    Indirect binding of Nucleic acid

    Hydrophilic interaction

    With

    kosmotropic salt

    Without

    kosmotropic salt

    http://images.google.co.kr/imgres?imgurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.gif&imgrefurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.html&h=488&w=610&sz=36&hl=ko&start=3&tbnid=MQIFLXuLMYJ_JM:&tbnh=109&tbnw=136&prev=/images?q=DNA&gbv=2&hl=ko&newwindow=1&sa=Ghttp://images.google.co.kr/imgres?imgurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.gif&imgrefurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.html&h=488&w=610&sz=36&hl=ko&start=3&tbnid=MQIFLXuLMYJ_JM:&tbnh=109&tbnw=136&prev=/images?q=DNA&gbv=2&hl=ko&newwindow=1&sa=Ghttp://images.google.co.kr/imgres?imgurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.gif&imgrefurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.html&h=488&w=610&sz=36&hl=ko&start=3&tbnid=MQIFLXuLMYJ_JM:&tbnh=109&tbnw=136&prev=/images?q=DNA&gbv=2&hl=ko&newwindow=1&sa=Ghttp://images.google.co.kr/imgres?imgurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.gif&imgrefurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.html&h=488&w=610&sz=36&hl=ko&start=3&tbnid=MQIFLXuLMYJ_JM:&tbnh=109&tbnw=136&prev=/images?q=DNA&gbv=2&hl=ko&newwindow=1&sa=G
  • 7/31/2019 Biotronics 20101028

    13/36

    BIOTronics 2010

    DNA Adsorption on silica surface 13/36

    Kosmotropic salt effect Surface effect

    l f ll h

  • 7/31/2019 Biotronics 20101028

    14/36

    BIOTronics 2010

    Amplification in micro pillar chip 14/36

    DNA d i d lifi i i hi

  • 7/31/2019 Biotronics 20101028

    15/36

    BIOTronics 2010

    DNA adsorption and amplification in a chip 15/36

    Chip optimization

    S l l di t l

  • 7/31/2019 Biotronics 20101028

    16/36

    BIOTronics 2010

    Sample loading tools 16/36

    DNA t ti ff t i i l hi

  • 7/31/2019 Biotronics 20101028

    17/36

    BIOTronics 2010

    DNA concentration effect in single chip 17/36

    Lab chip, 2010, accepted

  • 7/31/2019 Biotronics 20101028

    18/36

    Introduction

    DNA concentration + amplification + detection

    RNA concentration + amplification + detection

    Bacteria concentration + lysis+amplification + detection

    Conclusions

    RNA adsorption on microbead in a tube

  • 7/31/2019 Biotronics 20101028

    19/36

    BIOTronics 2010

    RNA adsorption on microbead in a tube

    NA concentration

    NA amplificationby NASBA

    Fluorescence read out

    Single chamber - Silica has very low pKa (pH=2).- Nucleic acid can be absorbed on silica

    surface at low pH.

    - Nucleic acid can be released from silica

    surface at high pH.

    - Simple

    - No special salt

    - No special surface

    Simple binding of Nucleic acid

    Modified Charge Switch Tech.

    At low pH At high pH

    19/36

    RNA Adsorption on 100um beads in tube

    http://images.google.co.kr/imgres?imgurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.gif&imgrefurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.html&h=488&w=610&sz=36&hl=ko&start=3&tbnid=MQIFLXuLMYJ_JM:&tbnh=109&tbnw=136&prev=/images?q=DNA&gbv=2&hl=ko&newwindow=1&sa=Ghttp://images.google.co.kr/imgres?imgurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.gif&imgrefurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.html&h=488&w=610&sz=36&hl=ko&start=3&tbnid=MQIFLXuLMYJ_JM:&tbnh=109&tbnw=136&prev=/images?q=DNA&gbv=2&hl=ko&newwindow=1&sa=Ghttp://images.google.co.kr/imgres?imgurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.gif&imgrefurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.html&h=488&w=610&sz=36&hl=ko&start=3&tbnid=MQIFLXuLMYJ_JM:&tbnh=109&tbnw=136&prev=/images?q=DNA&gbv=2&hl=ko&newwindow=1&sa=Ghttp://images.google.co.kr/imgres?imgurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.gif&imgrefurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.html&h=488&w=610&sz=36&hl=ko&start=3&tbnid=MQIFLXuLMYJ_JM:&tbnh=109&tbnw=136&prev=/images?q=DNA&gbv=2&hl=ko&newwindow=1&sa=G
  • 7/31/2019 Biotronics 20101028

    20/36

    BIOTronics 2010

    RNA Adsorption on 100um beads in tube

    0

    20

    40

    60

    80

    100

    3 5 7 9

    RNA

    adsorption

    rate

    [%]

    Buffer solution [pH]

    250 500

    1000 5000

    The number of beads

    Amplicon

    concentration[ng/l] 50

    40

    30

    20

    10

    0

    pH 3 pH 5

    -100-200-300 100 200 3000

    1000

    2000

    3000

    4000

    FluorescenceIntensity(A

    .U.)

    x (m)

    20/36

    NASBA in conical tube with micro beads

  • 7/31/2019 Biotronics 20101028

    21/36

    BIOTronics 2010

    NASBA in conical tube with micro beads

    200 bases

    200 bases

    200 bases

    Beads number

    BSA

    concentration

    Beads number

    with BSA 0.3%

    PC 250 500 1000 5000 NC

    PC 0.5% 0.3% 0.1% 0.05% 0% NC

    PC S 250 500 1000 5000 NC

    21/36

    Sensitivity test

  • 7/31/2019 Biotronics 20101028

    22/36

    BIOTronics 2010

    Sensitivity test

    L 1 2 3 4 5 6 7 8 910 11 12

    Before After

    PC 102 101 102 101 100 NC

    Sample : 100mL of rain water

    102CFU/100mL 100 CFU/100mL

    22/36

    w/o concentration With concentration

    Direct detection of E coli O157:H7

  • 7/31/2019 Biotronics 20101028

    23/36

    BIOTronics 2010

    Direct detection ofE.coli O157:H7

    0

    10000

    20000

    30000

    NC 0 1 2

    Fluorescen

    ce

    Intensity

    [A.

    U.]

    Cell Concentration [c.f.u/100ml]

    Rain-100nMRain-200nM

    River-200nM

    *

    NC 100 101 102

    23/36

    Biosensors and bioelectronics, 26, 112-117, 2010

    Gathering environmental

    sample at Han Liver

  • 7/31/2019 Biotronics 20101028

    24/36

    Introduction

    DNA concentration + amplification + detection

    RNA concentration + amplification + detection

    Bacteria concentration + lysis + amplification + detection

    Conclusions

    Bacteria concentration

  • 7/31/2019 Biotronics 20101028

    25/36

    BIOTronics 2010

    Bacteria concentration

    Bacteria concentration

    RNA amplificationby NASBA with molecular

    probe

    Fluorescence read out

    Single chamber

    Bacteria lysis

    25/36

    - Simple binding of bacteria

    - IF at low pH, Bacteria tends to be

    aggregated on hydrophilic surfaces.

    - Some salt can help bacteria fusion.

    Self aggregations by hydrationsLysis by micro Inductive heating

    At low pH

    Metal

    Hydrophilic surface

    Bacteria

    Sample

    Bacteria lysis Induction heating

  • 7/31/2019 Biotronics 20101028

    26/36

    BIOTronics 2010

    Bacteria lysis _ Induction heating

    Bacteria concentration

    RNA amplificationby NASBA with molecular

    probe

    Fluorescence read out

    Single chamber

    Bacteria lysis

    26/36

    - No need to perfect contact

    - Local heating available

    - Multifunctional micro-beads

    - Local heat generation

    - No RNA degradations

    Micro Induction Heatings

    micro heat induction

    Sample

    Metal

    Hydrophobicity on bacteria adsorption 27/36

    http://images.google.co.kr/imgres?imgurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.gif&imgrefurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.html&h=488&w=610&sz=36&hl=ko&start=3&tbnid=MQIFLXuLMYJ_JM:&tbnh=109&tbnw=136&prev=/images?q=DNA&gbv=2&hl=ko&newwindow=1&sa=Ghttp://images.google.co.kr/imgres?imgurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.gif&imgrefurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.html&h=488&w=610&sz=36&hl=ko&start=3&tbnid=MQIFLXuLMYJ_JM:&tbnh=109&tbnw=136&prev=/images?q=DNA&gbv=2&hl=ko&newwindow=1&sa=Ghttp://images.google.co.kr/imgres?imgurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.gif&imgrefurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.html&h=488&w=610&sz=36&hl=ko&start=3&tbnid=MQIFLXuLMYJ_JM:&tbnh=109&tbnw=136&prev=/images?q=DNA&gbv=2&hl=ko&newwindow=1&sa=Ghttp://images.google.co.kr/imgres?imgurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.gif&imgrefurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.html&h=488&w=610&sz=36&hl=ko&start=3&tbnid=MQIFLXuLMYJ_JM:&tbnh=109&tbnw=136&prev=/images?q=DNA&gbv=2&hl=ko&newwindow=1&sa=Ghttp://images.google.co.kr/imgres?imgurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.gif&imgrefurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.html&h=488&w=610&sz=36&hl=ko&start=3&tbnid=MQIFLXuLMYJ_JM:&tbnh=109&tbnw=136&prev=/images?q=DNA&gbv=2&hl=ko&newwindow=1&sa=Ghttp://images.google.co.kr/imgres?imgurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.gif&imgrefurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.html&h=488&w=610&sz=36&hl=ko&start=3&tbnid=MQIFLXuLMYJ_JM:&tbnh=109&tbnw=136&prev=/images?q=DNA&gbv=2&hl=ko&newwindow=1&sa=Ghttp://images.google.co.kr/imgres?imgurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.gif&imgrefurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.html&h=488&w=610&sz=36&hl=ko&start=3&tbnid=MQIFLXuLMYJ_JM:&tbnh=109&tbnw=136&prev=/images?q=DNA&gbv=2&hl=ko&newwindow=1&sa=Ghttp://images.google.co.kr/imgres?imgurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.gif&imgrefurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.html&h=488&w=610&sz=36&hl=ko&start=3&tbnid=MQIFLXuLMYJ_JM:&tbnh=109&tbnw=136&prev=/images?q=DNA&gbv=2&hl=ko&newwindow=1&sa=Ghttp://images.google.co.kr/imgres?imgurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.gif&imgrefurl=http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.html&h=488&w=610&sz=36&hl=ko&start=3&tbnid=MQIFLXuLMYJ_JM:&tbnh=109&tbnw=136&prev=/images?q=DNA&gbv=2&hl=ko&newwindow=1&sa=G
  • 7/31/2019 Biotronics 20101028

    27/36

    BIOTronics 2010

    Hydrophobicity on bacteria adsorption

    0

    20

    40

    60

    80

    100

    TEOS APTS TEB TDF HDF

    E.coliadso

    rption

    rate[%]

    5 30 60 85 110

    1m

    Contact

    angle

    0

    20

    40

    60

    80

    100

    20 50 100 200 500 1000

    E.coliadsorption

    rate[%]

    The number of beads

    TEOS

    105 c.f.u/10 mL ofE.coli

    27/36

    Low concentration E.coli adsorption

    28/36

  • 7/31/2019 Biotronics 20101028

    28/36

    BIOTronics 2010

    Low concentration E.coli adsorption

    0

    20

    40

    60

    80

    100

    102cfu 101cfu 100cfu

    Bacteria

    adsorp

    tion

    rate

    [%]

    Bacteria concentration [c.f.u]

    E.coli

    Bacillus

    102 101 100

    O157:H7

    B.cereus

    105 cfu E.coli

    concentration rate

    In case of 102 c.f.u/10mL,

    28/36

    Aquatic chemistry optimization 29/36

  • 7/31/2019 Biotronics 20101028

    29/36

    BIOTronics 2010

    Aquatic chemistry optimization

    0

    20

    40

    60

    80

    100

    0 10 100 0 10 100

    Bacteria

    ads

    orption

    rate

    [%]

    MgCl2 [mM] Na2SO4 [mM]

    0% PEG

    1% PEG

    E.coli O157:H7 B.cereus

    29/36

    Cell lysis on micro bead 30/36

  • 7/31/2019 Biotronics 20101028

    30/36

    BIOTronics 2010

    Cell lysis on micro bead 30/36

    NikelIron

    Copper

    Lab chip, 10, 909~917, 2010

    Measuring device 31/36

  • 7/31/2019 Biotronics 20101028

    31/36

    BIOTronics 2010

    Measuring device 31/36

    Pump

    Micro induction heating device

    Optical device

    - 30 X 30 X 20 cm3

    - Battery operated

    - Temp. and flow rate controllable- LCD Display

    E.Coli Measurement 32/36

  • 7/31/2019 Biotronics 20101028

    32/36

    BIOTronics 2010

    Before After

    PC 102 102 101 100 NC101

    E. coli in the concentration of 101 c.f.u/100 ml could be detected by bacteria

    concentration using the single plastic tube chamber

    Chop &stomach

    32/36

    In Situ Detection ofE.coli Using Beacon

    33/36

  • 7/31/2019 Biotronics 20101028

    33/36

    BIOTronics 2010

    g

    NC 0 1 2

    Fluoresce

    nce

    intensity

    [A.U

    .]

    E.coli concentration [c.f.u/100ml]

    100 101 102

    Signal : 22795 A.U.

    S&R : 50.88

    The proposed method (bacteria concentration, cell lysis, mRNA amplification and signaling in single

    chamber) could successfully detect less than 10 E.coli O157:H7 in 1 g of beef (averaged SNR = 7.7).

    33/36

    Biosensors and bioelectronics, 2010, In press

    Conclusion 34/36

  • 7/31/2019 Biotronics 20101028

    34/36

    BIOTronics 2010

    Sample concentration, cell lysis, amplification, and detection

    processes could be performed with single chamber containingmicro beads or micro pillar chips.

    Low concentration (~100

    c.f.u/100ml) of pathogenic bacteria (E.coli O157:H7)in large volume could be detected with single

    polymer chamber within 3 hours.

    34/36

    Acknowledgment 35/36

  • 7/31/2019 Biotronics 20101028

    35/36

    BIOTronics 2010

    g

    Korea Environmental Industry and Technology Institute Ministry of Environment as

    The Eco-Technopia 21 project

    Korea Research Foundation Grant funded by the Korea Government (MOEHRD)

    35/36

    Students

    Ji-Yeong WonSoyeon KimBinh TranSohye Han

    ResearchersJa Yeon KimSeung Hee Chung

    Collaborators

    Prof. Jung-Hwan Park (Kyungwon U.)Prof. Sang Jun Son (Kyungwon U.)Prof. Young Rok Kim (Kyunghee U.)

    Funds

  • 7/31/2019 Biotronics 20101028

    36/36

    Thanks for your attention