50
BLACK HOLES AND THE GENERALIZED UNCERTAINTY PRINCIPLE Bernard Carr Queen Mary, University of London Macroscopic Microscopic BLACK HOLES

BLACK HOLES AND THE GENERALIZED UNCERTAINTY … · 2013. 9. 17. · GUP in string theory (Hossain et al. 2010) (Veneziano 1986, Witten 1996)! "x> h "p +# "p h string tension! "~(10R

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • BLACK HOLES ANDTHE GENERALIZED UNCERTAINTY PRINCIPLE

    Bernard CarrQueen Mary, University of London

    Macroscopic MicroscopicBLACK HOLES

  • BLACK HOLE FORMATION

    RS = 2GM/c2 = 3(M/MO) km => ρS = 1018(M/MO)-2 g/cm3

    Higher dimensions => TeV quantum gravity => larger minimum?

    10-5g at 10-43s (minimum)MPBH ~ c3t/G = 1015g at 10-23s (evaporating now) 1MO at 10-5s (maximum)

    Small “primordial” BHs can only form in early Universecf. cosmological density ρ ~ 1/(Gt2) ~ 106(t/s)-2g/cm3=> PBHs have horizon mass at formation

    Good evidence that BHs form at present or recent epochs.Stellar BH (M~101-2MO), IMBH (M~103-5MO), SMBH (M~106-9MO)

  • Planck scale

  • PBH

    SMBHIMBH

    Stellar BH

    Accel’ BH

    WHEN BLACK HOLES FORM

  • PBH EVAPORATION

    Black holes radiate thermally with temperature

    T = ~ 10-7 K (Hawking 1974) => evaporate completely in time tevap ~ 1064 y

    M ~ 1015g => final explosion phase today (1030 ergs)

    !

    M

    M0

    "

    # $

    %

    & '

    (1

    !

    M

    M0

    "

    # $

    %

    & '

    3

    !

    !

    hc3

    8"GkM

    γ-ray bgd at 100 MeV => ΩPBH(1015g) < 10-8(Page & Hawking 1976)

    => explosions undetectable in standard particle physics model

  • PBHs important even if never formed!

  • Microlensing searches => MACHOs with 0.5 MOPBH formation at QCD transition?Pressure reduction => PBH mass function peak at 0.5 MOBut microlensing => < 20% of DM can be in these objects1026-1033g PBHs excluded by microlensing of LMC1017-1020g PBHs excluded by femtolensing of GRBsAbove 105M0 excluded by dynamical effectsBut no constraints for 1016-1017g or 1020-1026g or above 1033gStable Planck-mass relics of evaporated BHs?

  • Will measurements of gamma-ray bursts, like the one shown sterilizing a planet in this artist's rendering, reveal the existence of tiny black holes? We may know soon.

    DETECTION OF 1017G PBHS BY FEMTOLENSING?

    Marani et al. (1999)

  • What Would Happen if a Small Black Hole Hit the Earth?by IAN O'NEILL on FEBRUARY 17, 2008

    Khriplovich et al. (2008)Long tube of radiatively damaged material recognisable for geological time

  • Could Primordial Black Holes Deflect Asteriods on a Collision Course with Earth?by IAN O'NEILL on FEBRUARY 22, 2008

    Shatskiy (2008)Earth-mass PBHs could deflect asteroids onto Earth every 190M years

  • BRANE COSMOLOGY (Bowcock et al. 2000, Mukohyama et al. 2000) Brane can be viewed as moving through 5th dimension in static bulk described by 5D Schwarzschild-anti de Sitter :

    (5)ds2 = -F(R)dT2 + F(R)-1dR2 + R2 [(1-Kr2) -1dr2 + r2dΩ2], F(R) = K - m/R2 + (R/L) 2

    5th dimension is identified with cosmic scale factor R=a(t)0, +1, -1 mass of BH cosm const scale

    m=0, a=const => Randall-Sundrum 1-braneK=1 (closed) and m non-zero => event horizon at “radial” distance

    5D BH F(R)dT2+F(R)-1dR2 4D FRW -dT2+R2 (1-Kr2) -1dr2

    Universe emerges from 5D black hole as a(t) passes through

    Rh = (1/2)[(L4+4mL2)1/2-L2] = m1/2 for Rh

  • 1015g

    1012g

    10-5g

    1 MO

    109 MO QSO

    Stellar

    exploding

    LHC

    Planck Universal

    BLACK HOLES

    extra dimensions

    M-theory Higher dimensions Multiverse

    106 MO MW

    1021glunar

    1022 MO

    102 MO IMBH

    1025gterrestrial

  • L. Modesto & I. Premont-Schwarz,Self-dual Black holes in LQG: Theoryand Phenomenology, Phys. Rev. D. 80, 064041 (2009).

    B. Carr, L. Modesto & I. Premont-Schwarz, Generalized UncertaintyPrinciple and Self-Dual Black Holes, arXiv: 1107.0708 [gr-qc] (2011).

    B. Carr, Black Holes, the Generalized Uncertainty Principle and HigherDimensions, Phys. Lett. A 28, 134001 (2013).

    B. Carr, L. Modesto & I. Premont-Schwarz, Loop Black Holes and theBlack Hole Uncertainty Principle Correspondence (2013).

    GENERALIZED UNCERTAINTY PRINCIPLE - link with loop quantum gravity

    See talks by M. Isi, A. Kempf, R. Casadio, A.Bonanno, F.Scardigli

  • !

    "#x >h

    (2)#p

    UNCERTAINTY PRINCIPLE

    Photon of momentum p determines position to precision

    !

    "x > # = h / p

    !

    "p ~ pbut imparts momentum

    !

    RP

    = Gh /c3~ 10

    "33cm,

    !

    MP = hc /G ~ 10"5g,

    !

    "P =c5

    h2G~ 10

    94gcm

    #3

    BLACK HOLE EVENT HORIZON

    (Schwarzschild radius)R < RS= 2GM/c2

    Intersect at Planck scales

    !

    " RC

    =h

    Mc

    Particle production for QFT

    !

    R < RC"

    (Compton wavelength)

    !

    h" h

  • QUANTUM DOMAIN

    RELATIVISTIC DOMAIN

    even

    t hori

    zon

    log (R/cm)

    log (M/gm)

    Planck scale

    -5

    proton

    LHC

    -24 -20 15

    -13

    -18

    -33

    Compton wavelength

    CLASSICAL DOMAIN

    time f

    unny

    space funny

    evaporating black hole

    !

    RC

    =h

    Mc

    !

    RS

    =2GM

    c2

    Elementary Black particles holes

  • QUANTUM GRAVITY REGIMES

    !

    " R <3M

    4#$P

    %

    & '

    (

    ) *

    1/ 3

    ~ (M /MP)1/ 3RP

    !

    R < RP• (spacetime foam)

    • (above Planck density)!

    "R3(#$)2

    8%G>hc

    R"$ & R#$ >

    hcG

    R

    !

    "g

    g#$

    c2

    >RP

    R

    Energy density in gravitational field

    !

    "g =(#$)2

    8%G

    => spacetime distortion

    Eg. black hole or big bang singularity!

    " > "P

  • ?

    What happens to Compton and Schwarzschild lines near MP…

    …is important feature of theory of quantum gravity.

  • Newtonian heuristic argument

    Photon of frequency ω approaching to distance R induces=> acceleration over time=> uncertainty in momentum and in position

    !

    a ~ Gh" /(cR)2

    !

    t ~ R /c

    !

    "xg > at2~ Gh# /c 4 ~ G"p /c 3 ~ RP

    2

    "p /h

    !

    "p ~ p ~ h# /c

    Einstein heuristic argument

    Metric fluctuation δgµν on scale R is

    !

    "gµ#R2

    =8$G

    c4

    %

    & '

    (

    ) * pc

    R3

    !

    "#xg ~ R$gµ% ~ G#p /c3~ RP

    2

    #p /h

    !

    "x >h

    "p+ RP

    2 "p

    h> 2RPBoth suggest

    GENERALIZED UNCERTAINTY PRINCIPLE

    (GUP)

    Adler, Am. J. Phys. 78, 925 (2010)

  • !

    "x >h

    2"p1#

    $2

    2("p)2 +O($4 )

    %

    & '

    (

    ) *

    Polymer corrections in loop quantum gravity

    GUP in string theory

    (Hossain et al. 2010)

    (Veneziano 1986, Witten 1996)

    !

    "x >h

    "p+#

    "p

    hstring tension

    !

    " ~ (10RP)2

    Experimental probes of GUP (Pikowski et al 2012))

    Minimal length considerations (Maggiore 1993)

    Principle of relative locality (Doplicher 2010)

    Modifications of commutator [x,p] (Magueio & Smolin 2002)

    Link with back holes (Scardigli 1999, Calmet et al. 2004)

  • !

    "x >h

    "p+#RP

    2 "p

    h

    !

    =h

    "p1+#

    "p

    cMP

    $

    % &

    '

    ( )

    2*

    + , ,

    -

    . / /

    !

    "x# R

    !

    h

    Mc1+"

    M

    MP

    #

    $ %

    &

    ' (

    2)

    * + +

    ,

    - . .

    Compton irrelevant for M>>MP since RC

  • GENERALIZED EVENT HORIZON

    !

    R > RS

    /

    =2GM

    c21+ "

    MP

    M

    #

    $ % %

    &

    ' ( (

    2)

    *

    + +

    ,

    -

    .

    .

    !

    RC

    /

    " RS

    /

    #

    !

    2GM /c2

    !

    h /(Mc)

    For M>>MP we obtain generalized event horizon

    This becomes Compton wavelength for M

  • GUPGEH

    HUP

    Interesting alternative

    α < 0 => cusp rather than smooth minimum

    !

    h" 0#

    !

    G" 0# asymptotic safety (Bonanno & Reuter 2006)classical theory (Scardigli et al. 2009)

  • !

    "x >h

    "p

    #

    $ %

    &

    ' (

    2

    + )RP2 "p

    h

    #

    $ %

    &

    ' (

    2

    !

    " RC

    /

    =h

    Mc

    #

    $ %

    &

    ' (

    2

    +)GM

    c2

    #

    $ %

    &

    ' (

    2

    !

    "h

    Mc1+

    # 2

    2

    M

    MP

    $

    % &

    '

    ( )

    4*

    + , ,

    -

    . / /

    !

    "x >h

    "p

    #

    $ %

    &

    ' (

    n

    + )RP2 "p

    h

    #

    $ %

    &

    ' ( n*

    + , ,

    -

    . / /

    1/ n

    !

    " RC

    /

    =h

    Mc

    #

    $ %

    &

    ' ( n

    +)GM

    c2

    #

    $ %

    &

    ' ( n*

    + ,

    -

    . /

    1/ n

    !

    "h

    Mc1+

    # n

    n

    M

    MP

    $

    % &

    '

    ( )

    2n*

    + , ,

    -

    . / /

    Root-mean-square error would give

    More generally

    DO GUP UNCERTAINTIES ADD LINEARLY?

    !

    " RS

    /

    =2GM

    c2

    #

    $ %

    &

    ' ( n

    +)h

    Mc

    #

    $ %

    &

    ' ( n*

    + ,

    -

    . /

    1/ n

    !

    "2GM

    c21+

    #

    n

    n

    MP

    M

    $

    % & &

    '

    ( ) )

    2n*

    +

    , ,

    -

    .

    / /

    !

    Rmin

    = 21/ n

    2"RP,

    !

    Mmin

    = " /2MP

    Minimum at

    !

    " RS

    /

    =2GM

    c2

    #

    $ %

    &

    ' (

    2

    +)h

    Mc

    #

    $ %

    &

    ' (

    2

    !

    "2GM

    c21+

    #

    8

    2

    MP

    M

    $

    % & &

    '

    ( ) )

    4*

    +

    , ,

    -

    .

    / /

  • n=1

    n=20

    n=2

    • Can there be black holes for M

  • Pikowski et al. Nature Phys. 8 39 (2012)Probing Planck-scale physics with quantum optics

  • “Generalized Uncertainty and Self-dual Black Holes” Carr, Modesto & Premont-Schwarz, arXiv: 1107.0708

  • At large r

    Metric

    implies

    LOOP BLACK HOLES

    Immirzi parameter 1

  • => another asymptotic infinity (r=0) with BH mass MP2/m

    Physical radial coordinate

    !

    " RS

    =2Gm

    c2

    #

    $ %

    &

    ' (

    2

    +c2ao

    2Gm

    #

    $ %

    &

    ' (

    2

    )!

    R = H(r) = r2

    +ao

    r2

    2

    !

    3"#

    4

    h

    mc

    Introduce dual coordinates

    !

    r = ao/r" R = r

    2+ r

    2

    !

    t = tr*

    2

    /ao

    !

    2Gm

    c2

    Metric has self-duality with dual radius

    !

    r = r = ao

    This removes the singularity, permits existence of black holeswith m MP)

    !

    (m < MP)

  • Penrose diagrams for Schwarzschild and LBH metric

    cf. Reissner-Nordstrom

  • L. Modesto & I. Premont-Schwarz, Phys. Rev. D. 80, 064041 (2009)

  • GUP AND BLACK HOLE THERMODYNAMICS

    Heuristic argument

    !

    kTBH ="c#p ="hc

    #x="hc 3

    2GM~MP

    2

    Mη=1/(4π)

    !

    " TBH

    =#Mc 2

    $k1% 1%

    $MP

    2

    M2

    &

    ' ( (

    )

    * + + ,

    hc3

    8-GkM1+

    $MP

    2

    4M2

    .

    / 0

    1

    2 3

    Complex for

    !

    "p ~ T

    !

    "x ~ GM /c2

    => Planck mass relics.

    Putting and in linear GUP (Adler & Chen)

    !

    M < "MP

    !

    "2GM

    c2

    =#hc

    kT+$R

    P

    2

    kT

    h#c

    !

    (M >> MP)

    !

    (M >> MP)

  • Quadratic GUP

    !

    " TBH

    =2#Mc 2

    $k1% 1%

    $ 2MP

    4

    4M4

    &

    ' ( (

    )

    * + +

    1/ 2

    ,hc

    3

    8-GkM1+

    $ 2MP

    4

    32M4

    .

    / 0

    1

    2 3 (M >> MP )

    !

    "2GM

    c2

    =#hc

    kT

    $

    % &

    '

    ( ) 2

    +*R

    P

    2kT

    h#c

    $

    % &

    '

    ( )

    2+

    ,

    - -

    .

    /

    0 0

    1/ 2

    Complex for

    !

    M < " /2MP

    Minus sign gives T>TPwhich may be unphysical

    -

    !

    Tmax

    ="MPc2/ #

    => smaller relics

  • Quadratic GUP + GEH

    !

    "2GM

    c2

    #

    $ %

    &

    ' ( 2

    +h)

    Mc

    #

    $ %

    &

    ' ( 2*

    + ,

    -

    . /

    1/ 2

    =0hc

    kT

    #

    $ %

    &

    ' ( 2

    +1R

    P

    2kT

    h0c

    #

    $ %

    &

    ' (

    2*

    +

    , ,

    -

    .

    / /

    1/ 2

    !

    " TBH

    =2#Mc 2

    $k1+

    % 2MP

    4

    4MP

    4& 1+

    (2% 2 &$ 2)MP

    4

    4M4

    +% 4M

    P

    8

    16MP

    8

    '

    ( ) )

    *

    + , ,

    1/ 2

    Real for all M if

    !

    " < 2#

    !

    "Mc 2

    #k1+

    $ 2 % 4# 2

    2# 4&

    ' (

    )

    * + M

    4

    MP

    4

    ,

    - . .

    /

    0 1 1

    !

    "hc 3

    2GkM1+

    # 2 $ 4% 2

    32

    &

    ' (

    )

    * + M

    P

    4

    M4

    ,

    - . .

    /

    0 1 1

    !

    " TBH#

    Regard α are β as independent

    BHUP => α = 2β

    !

    " TBH

    =h#c 3

    2kGMor

    !

    TBH

    ="

    #Mc

    2 Exact!

    !

    (M >> MP)

    !

    (M

  • SURFACE GRAVITY ARGUMENT

    !

    T "GM

    RS

    2"

    M3n / 2

    M2n

    + (# /2)n MP

    2n

    $

    % &

    '

    ( )

    2 / n

    "

    !

    M"1(M >> M

    P)

    !

    M3(M different prediction in sub-Planckian range!

    (n=2)

    (area)

    +

  • !

    "#R

    BH

    #rBH

    $

    !

    (M /MP)"2(M

  • More precise surface gravity argument

    !

    " 2 = #gµ$ gµ$%µ&'%$ &

    (

    !

    r"#$ g00"1$ % µ = (1,0,0,0)$

    !

    "# =4G

    3m3c4P4

    16G4m4P8

    + aoc8

    !

    "+ =4G

    3m3c4

    16G4m4

    + aoc8

    !

    r" 0# g00" r

    *

    4/a

    0

    2= P 4 (m /MP )

    4 # $ µ = P%2(m /MP )%2(1,0,0,0)#

    !

    T" = T0P2(m /M

    P)2

    This reconciles to the two arguments!

    T = hκ/(2πkc)

  • Three mass regimes

    !

    M > P"2M

    P# r

    P< r" < r+ # T$ %M

    "1,T0%P

    "6M

    "3

    !

    M < MP" r# < r+ < rP " T$ %M

    3,T0%P

    2M

    !

    MP

    < M < P"2M

    P# r" < rP < r+ # T$ %M

    "1,T0%P

    2M

    our space other space

  • CAN SUB-PLANCKIAN RELICS PROVIDE DARK MATTER?

    cooler than CMB for

    !

    M <TCMB

    TP

    "

    # $

    %

    & '

    1/ 3

    MP ~ 10(16g

    !

    T "M3#

    !

    dM

    dt"R

    #2T4"M

    10$ M(t)" t

    #1/ 9

    => never evaporate but current mass

    !

    M ~tP

    t0

    "

    # $

    %

    & '

    1/ 9

    MP ~ 10(12g

    => current temperature

    !

    T ~tP

    to

    "

    # $

    %

    & '

    1/ 3

    TP~ 10

    12K

    => same observational effects as PBHs with M~1015g!

    stableunstable

  • BLACK HOLES AS A PROBE OF HIGHER DIMENSIONS

  • BLACK HOLES AND EXTRA DIMENSION

    Higher dimensions => MDn +2Vn ~ Mp2

    Vn is volume of compactified or warped space

    Standard model => Vn ~ MP-n , MD ~ Mp, Large extra dimensions => Vn >> MP-n, MD

  • Forming black holes by collisions

    Cross-section σ(ij BH) = πrS2Θ(E - MBHmin)Schwarzschild radius rS= MP-1(MBH/MP)1/(1+n)Temperature TBH = (n+1)/rS < 4D caseLifetime τBH =MP-1(MBH/MP)(n+3)/(1+n) > 4D case

    centre of mass energy

  • BLACK HOLES AND HIGHER DIMENSIONS

    Gauss law

    !

    Fgrav =GDm1m2

    R2+n

    !

    Fgrav =G m

    1m2

    R2

    !

    G =G

    D

    RC

    2

    (RRC)

    3D black hole smaller than RC for

    !

    M < MC

    =c2RC

    2G

    Black hole condition

    !

    R <

    Intersects Compton boundary at higher dimensional Planck scale

    !

    MD

    = MP

    RP

    RC

    "

    # $

    %

    & '

    n /(n+2)

    ,

    !

    RD

    = RP

    RC

    RP

    "

    # $

    %

    & '

    n /(n+2)

    Assume D=3+n dimensions for R MC)

    !

    (M < MC)

  • QUANTUM DOMAIN

    RELATIVISTIC DOMAIN

    6D 5D 4D

    3D

    even

    t hori

    zon

    log (R/cm)

    log (M/gm)Planck scale

    revised Planck scale

    -5

    LHC

    -24 -20 15

    -13

    -18

    -33

    Compton wavelength

    CLASSICAL DOMAIN

    scale of extra dimensions

    BH radius RS= MP-1(MBH/MP)1/(1+n)

    Hierarchy of compactified dimensions

    Ri=αiRP => (RP’/RP)(d+2)/(d+1) = α11/2 α21/6.....αd1/d(d+1)

    αi = α => RP’ = RPαd(/d+2) !

    " RC

    / #h

    Mc1+

    M

    MP

    $

    % &

    '

    ( )

    (n+2)/(n+1)*

    + , ,

    -

    . / /

    cf. 2D black holes (Mureika & Nicolini 2013)

  • DETECTABLE AT LHC?

    !

    MD~ TeV " R

    C~ 10

    (32 / n )#17cm ~

    1016 cm (n=1)10-1 cm (n=2)10-6 cm (n=3)10-13 cm (n=7)

    Dark energy

    !

    "U ~ 10#120"U ~ 10

    #29gcm

    #3

    => intersects Compton line at

    !

    M ~ MPtP

    tU

    "

    # $

    %

    & '

    1/ 2

    ~ 10(30MP ~ 10

    (35g,

    !

    R ~ RURU~ 100µm

    excludeddark energy?

  • QUANTUM DOMAIN

    RELATIVISTIC DOMAIN

    log (R/cm)

    log (M/gm)

    -5

    collapsing star

    -24 -20 15

    -13

    -18

    -33

    CLASSICAL DOMAIN

    HIGHER-DIMENSIONAL DOMAIN

    4D5D6D

    Planck d

    ensity

  • DARK ENERGY M~10-35g, R~10-2cm M~1055g, R~1027cm

  • CONCLUSIONS

    • Both black holes and Generalized Uncertainty Principleprovide important link between micro and macro physics.

    • They are themselves linked and black holes with sub-Planckian mass may play a role in quantum gravity.