20
El diesel y su historia Todo el mundo sabe que el diesel es económico y de larga duración. Sin embargo muy pocos saben que Robert Bosch fue el pionero de su aplicación al automóvil. Corría el año 1895 cuando Rudolf Diesel presento su invento al publico un motor encendido por compresión que poseía, con respecto al ya consagrado motor Otto (de gasolina) las ventajas de que consumía menos combustible, funcionaba con un carburante relativamente mas barato y por ultimo, estaba diseñado para potencias mucho mayores. El invento de diesel se impuso con rapidez y en poco tiempo se convirtió en la alternativa ideal para motores navales y estacionarios. Por contra el motor diesel tenia un gran inconveniente: el de no poder alcanzar regimenes elevados. Pero a medida que se iban difundiendo, gracias a su popularización, las ventajas del sistema diesel, mayores iban siendo las exigencias de que se diseñase un motor de autoencendido pequeño y rápido. El principal impedimento para que el motor diesel alcanzase un régimen elevado lo representaba la alimentación de combustible. El procedimiento de soplado utilizado hasta entonces, mediante el cual se insuflaba el combustible con aire comprimido a la cámara de combustión, no permitía el correspondiente aumento del régimen. Además la bomba de aire requería una construcción complicada, lo que impedía reducir el tamaño y el peso del conjunto. A finales de 1922, Robert Bosch decidió dedicar sus esfuerzos a desarrollar un sistema de inyección para motores diesel. Las condiciones técnicas eran favorables, pues la experiencia con motores de combustión era ya considerable. Además las técnicas de fabricación estaban muy

Bombas de inyección rotativas

Embed Size (px)

Citation preview

El diesel y su historia

Todo el mundo sabe que el diesel es económico y de larga duración. Sin embargo muy pocos saben que Robert Bosch fue el pionero de su aplicación al automóvil.

Corría el año 1895 cuando Rudolf Diesel presento su invento al publico un motor encendido por compresión que poseía, con respecto al ya consagrado motor Otto (de gasolina) las ventajas de que consumía menos combustible, funcionaba con un carburante relativamente mas barato y por ultimo, estaba diseñado para potencias mucho mayores.

El invento de diesel se impuso con rapidez y en poco tiempo se convirtió en la alternativa ideal para motores navales y estacionarios.

Por contra el motor diesel tenia un gran inconveniente: el de no poder alcanzar regimenes elevados.

Pero a medida que se iban difundiendo, gracias a su popularización, las ventajas del sistema diesel, mayores iban siendo las exigencias de que se diseñase un motor de autoencendido pequeño y rápido.

El principal impedimento para que el motor diesel alcanzase un régimen elevado lo representaba la alimentación de combustible. El procedimiento de soplado utilizado hasta entonces, mediante el cual se insuflaba el combustible con aire comprimido a la cámara de combustión, no permitía el correspondiente aumento del régimen.

Además la bomba de aire requería una construcción complicada, lo que impedía reducir el tamaño y el peso del conjunto.

A finales de 1922, Robert Bosch decidió dedicar sus esfuerzos a desarrollar un sistema de inyección para motores diesel.

Las condiciones técnicas eran favorables, pues la experiencia con motores de combustión era ya considerable. Además las técnicas de fabricación estaban muy desarrolladas y, sobre todo, podía aplicarse el caudal de conocimientos sobre fabricación de bombas de lubricación que se había ido acumulando.

A principios de 1923 se disponía de una docena, mas o menos, de proyectos distintos para bombas de inyección, y a mediados de dicho año se efectuaron los primeros experimentos con motor. En el verano de 1925 ya estaba en marcha el proyecto definitivo sobre el tipo de construcción de la bomba de inyección, y, en 1927 salieron de fábrica las primeras unidades fabricadas en serie. Esta bomba de inyección desarrollada por Bosch permitió, finalmente, que el motor de Rudolf Diesel alcanzase los elevados regimenes necesarios, asegurándose, así un lanzamiento cuyas consecuencias eran difíciles de prever. El motor diesel fue conquistando paulatinamente campos de aplicación cada vez más amplios, sobre todo en el sector automóvil.

El desarrollo del motor diesel y de la instalación de inyección prosiguió sin interrupción.

Un vehiculo de ensayo diesel equipado con una instalación de inyección Bosch. Demostró con una velocidad punta superior a 360Km/h, lo que un propulsor diesel es capaz de rendir normalmente no suele mencionarse el consumo en los vehículos dedicados a batir record. Sin embargo cuando se trata del diesel sucede todo lo contrario el vehiculo que vatio el record consumió solo 13.6 ltr/100Km a la velocidad máxima de 360 Km/h y a 250 Km /h al diesel de carreras le bastaron 6 ltr/100Km. Simplemente.

Todavía se sigue demostrando después de haber pasado decenios la capacidad de adaptación y de evolución de la herencia de rudolf diesel, especialmente en los turismos de los que el porcentaje equipado con motor diesel aumenta de año a año. Puede decirse que casi todos los fabricantes europeos de automóviles disponen en su programa de un vehiculo equipado con motor diesel, por lo menos, o lo están desarrollando.

Bombas de inyección rotativas"Mecánicas y electrónicas"

Este tipo de bombas se viene usando desde hace bastante tiempo en los motores diesel, su constitución básica no ha cambiado, las únicas variaciones han venido dadas por la aplicación de la gestión electrónica en los motores diesel.

En un principio para la alimentación de los motores diesel se utilizaban bombas de inyección en línea que eran voluminosas y pesadas debido a que necesitan un pistón de bombeo por cada cilindro del motor, hoy se siguen utilizando estas bombas en motores grandes (camiones, tractores, etc.).

Bomba de inyección en línea Simms para 6 cilindros

Bomba de inyección en línea Bosch del tipo PE

Después marcas de componentes como BOSCH, CAV desarrollaron las bombas de inyección rotativas que se adaptaban mejor al mayor número de revoluciones de los motores de los automóviles y tenían con respecto a las bombas en línea las siguientes ventajas: - menor peso y volumen. - Los caudales inyectados en cada cilindro son iguales.- La velocidad de rotación máxima es elevada.

- La inversión del giro del motor es imposible.- Menor precio.

En la figura se pueden ver las “partes comunes” de una bomba de inyección rotativa del tipo VE usada tanto con gestión electrónica (bomba electrónica) como sin gestión electrónica (bomba mecánica).

1- Válvula reductora de presión2- Bomba de alimentación3- Plato porta-rodillos4- Plato de levas5- Muelle de retroceso6- Pistón distribuidor7- Corredera de regulación8- Cabeza hidráulica9- Rodillo10- Eje de arrastre de la bomba11- Variador de avance de inyección12- Válvula de reaspiración13- Cámara de combustible a presión14- Electroválvula de STOP

El pistón distribuidor (6) es solidario a un plato de levas (4) que dispone de tantas levas como cilindros alimentar tiene el motor. El plato de levas es movido en rotación por el eje de arrastre (10) y se mantiene en apoyo sobre el plato porta-rodillos (3) mediante unos muelles de retroceso (5). La mayor o menor presión de inyección viene determinada por la forma de la leva del disco de levas. Además de influir sobre la presión de inyección también lo hace sobre la duración de la misma.

Las bombas de inyección rotativas aparte de inyectar combustible en los cilindros también tienen la función de aspirar gas-oil del depósito de combustible. Para ello disponen en su interior, una bomba de alimentación (6) que aspira combustible del deposito (3) a través de un filtro (2). Cuando el régimen del motor (RPM) aumenta: la presión en el interior de la bomba asciende hasta un punto en el que actúa la válvula reductora de presión (4), que abre y conduce una parte del combustible a la entrada de la bomba de alimentación (6). Con ello se consigue mantener una presión constante en el interior de la bomba.

En la figura se ve el circuito de combustible exterior a la bomba de inyección así como el circuito interno de alimentación de la bomba.

1- Inyector2- Filtro de combustible3- Deposito de combustible4- Válvula reductora de presión5- Conexión de retorno6- Bomba de alimentación

En la parte más alta de la bomba de inyección hay una conexión de retorno (5) con una estrangulación acoplada al conducto de retorno para combustible. Su función es la de, en caso necesario, evacuar el aire del combustible y mandarlo de regreso al deposito,

Como generan presión las bombas de inyección rotativas

La alta presión se genera por medio de un dispositivo de bombeo que además dosifica y distribuye el combustible a los cilindros.

1- Cilindro2- Pistón3- Cámara de expulsión4- Entrada de combustible5- Salida de gas-oil a alta presión hacia el inyector.6- Corredera de regulación

En la figura se ve el dispositivo de bombeo de alta presión. El pistón retrocede hacia el PMI llenándose la cámara de expulsión de combustible.

El dispositivo de bombeo de alta presión esta formado por:

Cilindro o cabezal hidráulico (1): Por su interior se desplaza el pistón. Tiene una serie de orificios uno es de entrada de combustible (4) y los otros (5) para la salida a presión del combustible hacia los inyectores. Habrá tantos orificios de salida como cilindros tenga el motor.

Un pistón móvil (2): Tiene dos movimientos uno rotativo y otro axial alternativo. El movimiento rotativo se lo proporciona el árbol de la bomba que es arrastrado a su vez por la correa de distribución del motor. Este movimiento sirve al pistón para la distribución del combustible a los cilindros a través de los inyectores.El movimiento axial alternativo es debido a una serie de levas que se aplican sobre el pistón. Tantas levas como cilindros tenga el motor. Una vez que  pasa la leva el pistón retrocede debido a la fuerza de los muelles.El pistón tiene unas canalizaciones interiores que le sirven para distribuir el combustible y junto con la corredera de regulación también para dosificarlo.

Sirve para dosificar la cantidad de combustible a inyectar en los cilindros. Su movimiento es controlado principalmente por el pedal del acelerador. Dependiendo de la posición que ocupa la corredera de regulación, se libera antes o después la canalización interna del pistón.

Funcionamiento del dispositivo: Cuando el pistón se desplaza  hacia el PMI, se llena la cámara de expulsión de gas-oil, procedente del interior de la bomba de inyección. Cuando el pistón inicia el movimiento axial hacia el PMS, lo primero que hace es cerrar la lumbrera de alimentación, y empieza a comprimir el combustible que esta en la cámara de expulsión, aumentando la presión hasta que el pistón en su movimiento rotativo encuentre una lumbrera de salida. Dirigiendo el combustible a alta presión hacia uno de los inyectores, antes tendrá que haber vencido la fuerza del muelle que empuja la válvula de reaspiración. El pistón sigue mandando combustible al inyector, por lo que aumenta notablemente la presión en el inyector, hasta que esta presión sea tan fuerte que venza la resistencia del muelle del inyector. Se produce la inyección en el cilindro y esta durara hasta que el pistón en su carrera  hacia el PMS no vea liberado el orificio de fin de inyección por parte de la corredera de regulación.

Cuando llega el fin de inyección hay una caída brusca de presión en la cámara de expulsión, lo que provoca el cierre de la válvula de reaspiración empujada por un muelle. El cierre de esta válvula realiza una reaspiración de un determinado volumen dentro de la canalización que alimenta al inyector, lo que da lugar a una expansión rápida del combustible provocando en consecuencia el cierre brusco del inyector para que no gotee.

El pistón se desplaza hacia el PMS comprimiendo el gas-oil de la cámara de expulsión y lo distribuye a uno de los inyectores.

En la figura se produce el final de la inyección, debido a que la corredera de regulación libera la canalización interna del pistón a través de la lumbrera de fin de inyección.

La corredera de regulación cuanto mas a la derecha este posicionada, mayor será el caudal de inyección.

Bomba mecánica

Bomba de inyección rotativa con corrector de sobrealimentación para motores turboalimentados sin gestión electrónica. En la parte alta de la bomba se ve el corrector de sobrealimentación para turbo nº 1, 2, 3, 4, 5, 6, 7. Los nº 8, 9, 10 forman parte del regulador  mecánico de velocidad que actúa por la acción de la fuerza centrifuga en combinación con las palancas de mando (11 y 12) de la bomba, sobre la corredera de regulación (18) para controlar el caudal a inyectar en los cilindros, a cualquier régimen de carga del motor y en función de la velocidad de giro. El resto de los componentes son los comunes a este tipo de bombas.

1- Presión turbo2- Muelle de compresión3. Eje de reglaje4- Membrana5- Tuerca de reglaje6- Dedo palpador7- Palanca de tope móvil8- Contrapesos conjunto regulador9- Rueda dentada10- Rueda dentada11- Palanca de arranque12- Palanca de tensión13- Eje de arrastre14- Bomba de alimentación15- Plato porta-rodillos16- Regulador de avance a la inyección17- Plato de levas18- Corredera de regulación19- Pistón distribuidor20- Válvula de reaspiración21- Salida hacia los inyectores

Bomba electrónicaBomba de inyección rotativa para motores diesel con gestión electrónica.

1- Eje de arrastre2- Bomba de alimentación3- Regulador de avance a la inyección4- Plato de levas5- Válvula magnética6- Corredera de regulación7- Válvula de reaspiración8 y 10- Salida hacia los inyectores9- Pistón distribuidor11- Entrada de combustible al pistón12- Electrovalvula de STOP13- Servomotor14- Retorno de gas-oil al deposito decombustible.15- Sensor de posición16- Perno de excéntrica17- Entrada de combustible18- Plato porta-rodillos19- Sensor de temperatura de

combustible

 

Despiece de una bomba electrónica

1.- Rueda dentada de arrastre.2.- Chaveta.3.- Bomba de inyección.4.- Dispositivo de avance de la inyección.5.- Electroválvula de paro.6.- Soporte de bomba.7.- Tapa.8.- Válvula de caudal.9.- Válvula de principio de inyección.10.- Regulador de caudal.11.- Tubo de inyector.12.- Inyector del cilindro nº 3 con transmisor de alzada de aguja.13.- Brida de fijación.

Dispositivo de parada

El dispositivo de parada del motor va instalado en la bomba de inyección (este dispositivo se usa tanto en bombas mecánicas como electrónicas). Se trata de una electrovalvula (de STOP) (12) que abre o cierra el circuito de entrada de combustible (11) al pistón distribuidor (9), con lo que permite o imposibilita la inyección de combustible por parte de la bomba.La electrovalvula  se acciona cuando se gira la llave de contacto, dejando libre el paso de combustible y se desconecta al quitar la llave de contacto cerrando el paso de combustible.

Sensor de temperaturaDebido a que el contenido de energía del combustible depende de su temperatura, hay un sensor de temperatura (19), del tipo NTC, instalado en el interior de la bomba de inyección (este sensor solo se usa en bombas electrónicas) que envía información a la ECU. La ECU puede entonces calcular exactamente el caudal correcto a inyectar en los cilindros incluso teniendo en cuenta la temperatura del combustible.

Reglajes de las bombas de inyección

En las bombas mecánicas: A medida que pasa el tiempo o cada vez que se desmonta para hacer una reparación, hay que hacer una serie de reglajes de los mandos, además de hacer el calado de la bomba sobre el motor.

En la figura vemos una bomba mecánica con sus mandos de accionamiento exteriores.

1- Tope de ralentí acelerado2- Palanca de ralentí3- Tope de ralentí4- Tope de reglaje de caudal residual5- Palanca de aceleración6- Mando manual de STOP

Los reglajes que se efectúan en las bombas mecánicas son:- Reglaje de ralentí.- Reglaje de caudal residual.- Reglaje de ralentí acelerado,- Reglaje del mando del acelerador.

En las bombas electrónicas: No es necesario hacer reglajes, ya que no dispone de mandos mecánicos. A la vez que no necesita hacer el calado de la bomba, ya que se monta en una posición fija en el motor.El único reglaje al que es susceptible la bomba electrónica, es el que viene motivado por un caudal de inyección a los cilindros diferente al preconizado por el fabricante, que se verificara en el banco de pruebas.

- Si e valor del caudal medido es menor que el indicado por el fabricante, tiene que modificarse la posición del mecanismo de ajuste de caudal (servomotor). Golpeándose, muy ligeramente, con un mazo de plástico en dirección  hacia las salidas de alta presión, se consigue un aumento de caudal.

- Cuando el caudal de inyección medido es mayor que el indicado por el fabricante, tiene que modificarse la posición del

mecanismo del ajuste de caudal (servomotor). Golpeando con mucho cuidado, con una maza de plástico en dirección contraria a la anterior se consigue una disminución de caudal.

 

BOMBA DE INYECCIÓN ROTATIVA BOSCHEVOLUCIÓN DESDE EL INICIO A NUESTROS DÍAS

En un principio para la alimentación de los motores diesel se utilizaban bombas de inyección en linea que eran voluminosas y pesadas debido a que necesitan un pistón de bombeo por cada cilindro del motor, hoy se siguen utilizando estas bombas en motores grandes (camiones, tractores, etc.).

Bomba de inyección en linea Simms para 6 cilindros

Bomba de inyección en linea Bosch del tipo PE

Para ver bombas en linea, así como su esquema interno visita esta pagina.

Después marcas de componentes como BOSCH, CAV desarrollaron las bombas de inyección rotativas que se adaptaban mejor al mayor numero de revoluciones de los motores de los automóviles y tenían con respecto a las bombas en linea las siguientes ventajas: - menor peso y volumen. - Los caudales inyectados en cada cilindro son iguales.- La velocidad de rotación máxima es elevada.- La inversión del giro del motor es imposible.- Menor precio.

BOSCH desde hace 30 años utiliza bombas rotativas de pistón axial. El principio mediante el cual un único pistón genera por su movimiento longitudinal la presión de inyección para todos los cilindros del motor, distribuyendo al mismo tiempo por su movimiento giratorio el combustible por las salidas de la bomba.

 

  Bomba rotativa Bosch del tipo VE

La necesidad de una dosificación de combustible y ajuste del inicio de la inyección cada vez mas flexibles y exactos, supuso el desarrollo de un gran numero de elementos de regulación adicionales. De esta forma se puede ajustar, por poner un ejemplo, la cantidad de inyección máxima en función del numero de rpm, de la presión de carga y de la temperatura del combustible, con lo que se consigue en todas las condiciones de servicio un funcionamiento del motor sin humo, al mismo tiempo que se alcanza el máximo numero de revoluciones posibles. Para impedir que se pare el motor, al conectar, por ejemplo el aire acondicionado, un regulador corrige el numero de revoluciones en vació. Para facilitar un buen arranque en frió así como para optimizar las emisiones y el nivel de ruido se pueden realizar en el regulador de inyección diversas intervenciones.

En la figura de la derecha se ve una bomba rotativa tipo VE como la vista anteriormente, se diferencia de en disponer en su parte superior de un corrector de sobrealimentación para motores diesel turboalimentados.

 

Estos elementos de regulación adicionales, que como mecanismos de precisión mecánicos, trabajan especialmente de forma mecánica o hidráulica, han hecho que las bombas sean cada vez mas complejas. Aunque técnicamente están bastante perfeccionadas, su flexibilidad y precisión son limitadas, por lo que se ha hecho necesario la utilización de elementos de regulación adicionales de carácter electrico-electrónico que puedan configurar circuitos de regulación cerrados con una precisión elevada.

Lo primero que se hizo con el fin de avanzar en estas mejoras fue regular de forma electrónica el inicio de la inyección y mantener la dosificación de combustible como hasta entonces. Para

ello se monto en el portainyector un sensor que registra el movimiento de la aguja, por lo tanto se sabe el inicio real de la inyección. La unidad de control electrónica ECU compara el valor real con el valor nominal, que depende del numero de rpm, de la carga, de la temperatura del agua de refrigeración y de otros parámetros. En caso de desviaciones, el regulador electrónico modifica el comienzo de la inyección hasta que se alcanza el valor nominal.

Evolución de la bomba rotativa de pistón axial: izquierda.- Bomba mecánica del tipo VEcentro.- Bomba electrónica VP37; derecha.- Bomba electrónica VP30 PSG5.

La primera utilización del control electrónico diesel fue en un prototipo de Peugeot en 1982, luego fue introducido a los modelos de serie por BMW y Daimler-Benz algunos meses más tarde. La casa Bosch empezó por primera vez la fabricación en serie de estos sistemas en el año 1984. Desde 1986 Bosch también ha utilizado el EDC en los sistemas de inyección de vehículos comerciales.

Desde 1987 Bosch fabrica en serie los sistemas de inyección totalmente electrónicos (EDC: Electronic Diesel Control), en los que ademas del comienzo de inyección, también se regula electrónicamente la dosificación, mediante un sistema de medida basado en un imán giratorio eléctrico que sustituye en esta función al regulador mecánico. También la electrónica permite la realización de otras funciones en el ámbito de la gestión del motor y del vehículo, por ejemplo, la regulación de la reglamentación de los gases de escape para reducir a un mínimo las emisiones de óxido nítrico, así como la regulación de la presión del turbo, la autodiagnosis, el control de tiempo de incandescencia, así como la asociación con otros elementos del vehículo como el inmovilizador, el cambio automático.

El sistema EDC que primero se utilizo en motores de inyección indirecta, a partir de 1989 se utiliza también para motores diesel de inyección directa. Las presiones de inyección alcanzan 700 bar en la bomba y aproximadamente 1000 bar en el inyector. Para minimizar el ruido se emplea un inyector con dos muelles conectados en linea. Durante el inicio de la inyección, la aguja del inyector se abre solamente unas pocas centésimas de milímetro, de modo que en la cámara de combustible solo penetra una parte mínima de la cantidad de combustible. La sección de inyector completa solo se abre en el proceso de inyección subsiguiente, inyectando la parte principal de la cantidad de combustible. Con este procedimiento de inyección escalonada la combustión se realiza de forma mucho mas suave y silenciosa.

Hasta ahora hemos hablado de bombas de pistón axial pero a partir de 1996 Bosch fabrica en serie bombas de pistones radiales. Con esta configuración se consigue mayores presiones de inyección, hasta 1500 bar en las bombas utilizadas en motores de vehículos comerciales de tamaño medio (furgonetas). La bomba radial VP44 permite ajustar el avance y el caudal inyectado a través de electroválvulas de rápida actuación, consiguiendo un control exacto y flexible de todos los parámetros de la inyección. Las válvulas electromagnéticas es una mejora con respecto a las bombas de pistón axial y sirven para abrir y cerrar la cámara de presión de la bomba con lo que se consigue una dosificación de combustible mas exacta y flexible. Estas válvulas son accionadas dos veces en milisegundos, consiguiendo que aproximadamente unos 1,5 milímetros cúbicos de combustible alcancen la cámara de combustión antes de la inyección principal. Esta pre-inyección reduce considerablemente el ruido. La VP44 se aplica principalmente a los motores diesel de turismos y de pequeños y medianos vehículos comerciales.

 

Esquema de una bomba VP44

Foto bomba VP44 PSG5

Foto bomba VP44 PSG16 con ECU

integrada.Ver el esquema de una bomba de pistón axial VP29/30 con todo detalle.Ver el esquema de una bomba de pistón radial VP44 con todo detalle.

Nota: Si alguien se a fijado en el esquema de la bomba rotativa de pistón axial VP29/30 se habrá dado cuenta que no es igual que la bomba estudiada en el articulo de gestión electrónica diesel, esto es debido a que la VP29/30 es una evolución de la otra (VP37), se diferencia en que no utiliza un motor paso a paso para mover la corredera de regulación que dosifica la cantidad de combustible. La VP29/30 suprime el motor paso a paso y la corredera de regulación y la sustituye por una electroválvula de actuación rápida que actúa sobre la cámara de presión donde el combustible es comprimido por el pistón. Con este sistema la bomba VP29/30 consigue mayores presiones de inyección que van de de 800 a 1400 bar.