41
BULETIN APLINDO N0.41/2014, Mei - Juli 2014 Asosiasi Industri Pengecoran Logam Indonesia Gedung Manggala Wanabakti Blok IV Lantai 3 Ruang 303A Jl. Gatot Subroto, Senayan, Jakarta 10270 Telp. 021.573 3832 ; 571 0486; Fax : 021.572 1328 Email : [email protected] Web Site : www.aplindo.web.id APLINDO

BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO41.pdf · memiliki kelonggaran waktu untuk mencicilnya walaupun Kenaikan listrik industri ... data maupun

Embed Size (px)

Citation preview

BULETIN APLINDO N0.41/2014, Mei - Juli 2014

Asosiasi Industri Pengecoran Logam Indonesia

Gedung Manggala Wanabakti Blok IV Lantai 3 Ruang 303A

Jl. Gatot Subroto, Senayan, Jakarta 10270

Telp. 021.573 3832 ; 571 0486; Fax : 021.572 1328

Email : [email protected] Web Site : www.aplindo.web.id

APLINDO

BULETIN - APLINDO No.41/2014

1

DAFTAR ISI

No. Uraian Halaman

1. Pengantar Redaksi 2

2. Kenaikkan Tarif Dasar Listrik Kembali Naik

4

3. Peraturan Menteri Energi dan Sumber Daya Mineral No.9 tahun 2014 Tentang Tarif Tenaga Listrik Yang Disediakan Oleh Perusahaan Perseroan (Persero) PT Perusahaan Listrik Negara

6

4. Roadmap Hilirisasi Minerba 25

5. Reformulasi Roadmap Pengembangan Industri Besi Baja Berbasis Sumber daya Lokal

26

7. Reformulasi Roadmap Pengembangan Industri Aluminium Berbasis Sumber daya Lokal

33

8. Data Kendaraan Bermotor di Indonesia 1. Data kendaraan bermotor roda 4 2. Data kendaraan bermotor roda 2 (sepeda motor)

37 38

9. Informasi Umum dan Pameran 1. Website pemerintah yang dapat diakses 2. Website Asosiasi Industri Pengecoran Logam Indonesia 3. Website Himpunan Ahli Pengecoran Logam Indonesia 4. Pameran dan Seminar

39 39 39 39

BULETIN - APLINDO No.41/2014

2

Pengantar Redaksi

Pada edisi 41/2014 ini, membahas Kenaikan TDL yang terus berlanjut dan telah dikukuhkan

dengan Permen ESDM No.9 tahun 2014 tentang Tarif Tenaga Listrik Yang Disediakan Oleh

Perusahaan Perseroan (Persero) PT Perusahaan Listrik Negara sehingga industri tidak

memiliki kelonggaran waktu untuk mencicilnya walaupun Kenaikan listrik industri dinaikkan

secara bertahap. Dampak kenaikkan ini bagi semua kalangan usaha menyebabkan biaya

produksi industri membengkak dan akan mengganggu cash flow perusahaan yang berujung

pada kenaikan harga barang atau bahkan PHK bagi sebagian karyawan sebagai konsekuensi

kenaikan ongkos produksi dan tentu akan menimpa kinerja industri, menurunkan daya

saing, disisi lain Indonesia akan menghadapi Masyarakat Ekonomi Asean 2015.

Terkait dengan kebijakan pelarangan ekspor (hilirisasi) atau yang lebih dikenal dengan

peningkatan nilai tambah dan sesuai dengan amanat Inpres no.3 tahun 2013 Tentang

Percepatan Peningkatan Nilai Tambah Mineral Melalui Pengolahan Dan Pemurnian Di

Dalam Negeri, maka Kementerian Perindustrian telah membuat roadmap kebijakan

pengembangan industri berbasis mineral logam dan telah dilakukan sosialisasi pada

tanggal 8 April 2014 dengan memprioritas 4 jenis industri yaitu industri besi baja; industri

aluminium; industri nikel dan industri tembaga. Dalam edisi kini dimuat roadmap

alumunium dan roadmap besi baja.

Selanjutnya kami mengharapkan agar buletin ini menjadi media antar anggota maupun

antar industri pengecoran didalam negeri dan diluar negeri. Harapan kami, seluruh anggota

dapat mengisi buletin ini menjadi kenyataan.

Redaksi buletin APLINDO menghimbau anggota APLINDO berpartisipasi dalam mengisi

tulisan/artikel, data maupun informasi lain yang berhubungan dengan industri pengecoran

logam. Naskah tulisan/artikel dapat dikirim ke sekretariat APLINDO, melalui email ataupun

fax.

Redaksi

BULETIN - APLINDO No.41/2014

3

BULETIN - APLINDO No.41/2014

4

Kenaikkan Tarif Dasar Listrik (TDL)

Kembali Naik

Sebagaimana kita tahu bahwa Pemerintah baru saja melakukan kebijakan menaikan TDL

yang diperkuat dengan Peraturan Menteri Energi dan Sumber Daya Mineral no.9 tahun 2014

tertanggal 1 April 2014 yang menetapkan 2 macam tariff dengan dalih ingin mencabutan

subsidi sehingga ada penghematan sebesar Rp. 5 triliun. Bagi pelanggan industri (I-3)

berdaya pasang diatas 200 KVA khusus untuk perusahaan berstatus terbuka ditetapkan 8,6

persen per dua bulan sekali dan untuk pelanggan industri (I-4) berdaya pasang di atas

30.000 KVA ditetapkan 13,3 persen per dua bulan sekali sebanyak empat kali dalam 2014

yaitu 1 Mei, 1 Juli, 1 September, dan 1 November 2014 dengan total pada 2014, tarif I3 tbk

akan naik 38,9 persen dan I4 naik 64,7 persen. dengan dalih ingin mencabutan subsidi

sehingga ada penghematan sebesar Rp. 5 triliun.

Sekarang Pemerintah melalui Kementerian Energi dan Sumber Daya Mineral (ESDM) dan Dewan

Perwakilan Rakyat (DPR) kembali menaikkan tarif listrik bagi enam golongan pelanggan

rumah tangga dan pelanggan industri I3 non terbuka (tbk) mulai berlaku 1 Juli 2014, dengan

alasan menyama-ratakan antara I3 terbuka dan I3 bukan Terbuka dan aka nada penghematan

anggaran subsidi listrik di Anggaran Pendapatan Belanja Negara (APBN) Perubahan 2014

sebesar Rp 8,51 triliun.

Berikut daftar enam golongan pelanggan yang mengalami kenaikan tarif listrik mulai 1

Juli 2014:

1. Pelanggan industri I3 non terbuka (tbk) dinaikkan secara bertahap 11,57 persen setiap dua

bulan terhitung 1 Juli 2014. Perkiraan penghematan subsidi kenaikan ini sebesar Rp 4,78

triliun.

2. Pelanggan rumah tangga R3 dengan 3.500-5.500 voltampere (VA), naik bertahap 5,7

persen setiap dua bulan mulai 1 Juli 2014. Potensi penghematan subsidi dari kenaikan ini

sebesar Rp 370 miliar.

3. Pelanggan pemerintah (P2) dengan daya di atas 200 kilovoltamper (kVA). Kenaikan

secara bertahap setiap dua bulan sebesar 5,36 persen mulai 1 Juli 2014. Potensi

penghematan subsidi dari kenaikan golongan ini sebesar Rp 100 miliar.

BULETIN - APLINDO No.41/2014

5

4. Pelanggan rumah tangga (R1) dengan daya 2.200 VA yang kenaikan bertahap rata-rata

10,43 persen setiap dua bulan. Kenaikan mulai 1 Juli dengan perkiraan penghematan

sebesar Rp 990 miliar.

5. Pelanggan penerangan jalan umum (P3) dengan kenaikan bertahap sebesar 10,69 persen

setiap dua bulan mulai 1Juli 2014. Potensi penghematan subsidi dari pelanggan ini

sebesar Rp 430 miliar.

6. Pelanggan rumah tangga (R1) dengan daya 1.300 VA yang kenaikan bertahap 11,36

persen setiap dua bulan mulai 1 Juli 2014. Dengan potensi penghematan subsidi dari

pelanggan ini sebesar Rp 1,84 triliun.

Seharusnya Pemerintah lebih memilih kenaikan BBM dengan mengurangi subsidi BBM

dibanding dengan TTL, karena kenaikan BBM lebih efisien dan dampaknya tidak luas.

Kenaikan TTL dapat mempengaruhi perekonomian Indonesia dan membuat menurunnya

penyerapan tenaga kerja karena banyak industri yang mengalami kerugian.

Industri merupakan sektor yang paling penting dalam pertumbuhan ekonomi nasional yang

dapat menciptakan lapangan kerja, menghasilkan produk yang bisa diekspor, dan bayar pajak.

Dengan kenaikan tarif listrik ini, tidak heran jika nantinya banyak industri yang gulung tikar

atau memindahkan pabriknya ke negara lain yang biaya produksinya lebih murah.

Dengan semakin sedikitrnya lapangan kerja yang dapat menyerap tenaga kerja maka daya

beli akan menurun karena tidak ada penghasilan, tentunya akan berpengaruh pada barang

yang diproduksi.

Bagi kalangan industri kenaikkan ini akan menyebabkan naikknya biaya produksi industri

dan akan mengganggu cash flow perusahaan yang berujung pada kenaikan harga barang

atau bahkan PHK bagi sebagian karyawan sebagai konsekuensi kenaikan ongkos produksi,

termasuk konsekwensi di masyarakat yang berpotensi melemahnya daya beli. Dampak

tersebut tentu akan menimpa kinerja industri, melemahkan daya saing, disisi lain Indonesia

akan menghadapi Masyarakat Ekonomi Asean 2015.

---ooo---

BULETIN - APLINDO No.41/2014

6

Reformulasi Roadmap Pengembangan Industri

Nikel Berbasis Sumber daya Lokal

Pada edisi 40/2014 telah dibahas reformulasi pengembangan industri besi baja dan industri

alumunium berbasis sumber daya lokal yang telah dilakukan oleh Kementerian Perindustrian

dalam program hilirisasi industri berbasis migas dan bahan tambang mineral serta

peningkatan daya saing industri berbasis sumber daya mineral (SDM) sebagai amanat dari

Intruksi Presiden Instruksi Presiden Republik Indonesia Nomor 3 Tahun 2013 Tentang

Percepatan Peningkatan Nilai Tambah Mineral Melalui Pengolahan Dan Pemurnian Di Dalam

Negeri.

Produksi Nikel Ore Indonesia

Total produksi bijih nikel (Ore) Indonesia pada tahun 2012 adalah sebesar 41 Juta ton,

atau setara dengan 320.000 ton Niikel yang terkandung didalam bijih nikel (Ni Metal).

Indonesia menyumbang sekitar 15% dari produksi bijih nikel dunia atau peringkat

kedua setelah Filipina (16%)

Total Produksi nikel Dunia pada tahun 2012 adalah sebesar 2,1 Juta ton (berdasarkan

kandungan nikel didalam Ore)

Produksi Nikel Intermediet

BULETIN - APLINDO No.41/2014

7

Selain memproduksi bijih nikel, Indonesia juga memproduksi nikel intermediet/nikel

olahan, yaitu berupa feronikel (20% Ni) dan nikel matte (78% Ni)

Kapasitas produksi nikel intermediete Indonesia saat ini adalah sekitar 89.000 ton

(ekuivalen dengan 34.900 ton nikel murni) atau hanya sekitar 2% dari kapasitas

produksi nikel intermediete Dunia yang sebesar 1,7 juta ton

Semua hasil produksi nikel intermediete Indonesia digunakan untuk diekspor ke luar

negeri

Ekspor Bijih Nikel dan Produk Turunannya

BULETIN - APLINDO No.41/2014

8

Catatan : Untuk ekspor FeNi ke Belanda, digunakan oleh negara di Eropa Barat. Seperti : Belgia, Swedia, dll yang memiliki industri stainless steel. Sedangkan di Belanda hanya sebagai pelabuhan transit distribusi.

Pohon Industri Nikel

Keterangan :

: Ada industri dalam negeri : Pengguna Akhir

: Belum ada industrinya didalam negeri KBLI : Klasifikasi Baku Lapangan Usaha Indonesia

BULETIN - APLINDO No.41/2014

9

Segmen Penggunaan Nikel dan Stainless Steel di Indonesia (2012)

Estimasi Besaran Biaya Investasi Pabrik Pengolahan Nikel

Jenis Produk Olahan Kapasitas Produksi

(ton/tahun)

Besaran Investasi (US$/ton)

Nikel Pig Iron (NPI) 100.000 2.650 – 3.300

200.000 2.650 – 3.300

Crude Ferronikel 50.000 1.200 – 1.500

100.000 1.200 – 1.500

Ferronikel 5.500 24.000 – 30.000

15.000 26.600 – 33.300

Nikel Matte 40.000 27.500 – 32.500

Heap Luach 24.500

(Ni = 39%)

20.326

Sumber : Kementerian Enerrgi dan Sumber Daya Mineral, diolah

Estimasi Besaran Biaya Operasi Pabrik Pengolahan Nikel

Jenis Produk Olahan Besaran Biaya Operasi

(US$/ton)

Nikel Pig Iron (NPI) 16.500

Ferronickel 11.250

Nikel Matte 11.250

BULETIN - APLINDO No.41/2014

10

HPAL 8.600 Sumber : USAID, Economic Effects of Indonesia Mineral Processing Requirements for Export, 2013 Catatan : Masih perlu dilakukan kajian yang lebih mendalam

Struktur Biaya Smelter Nikel

Produk Keterangan

A. Feronikel dan Nikel Matte

NPV 639 Juta dollar

IRR 20%

Payback Period 8 tahun

B. Nikel Hydroxide

NPV 284 juta dollar

IRR 15%

Payback Period 12 tahun Keterangan :

NPV adalah arus kas yang diperkirakan pada masa yang akan datang yang didiskonkan

pada saat ini.

IRR (Internal Rate of Return) ialah indikator tingkat efisiensi dari suatu investasi.

Payback Period : suatu periode yang diperlukan untuk dapat menutup kembali

pengeluaran investasi dengan menggunakan proceed atau net cash flow.

Peningkatan Nilai Tambah Produk Pengolahan Nikel

Sumber : Mineral&Energi, Maret 2013, Tekmira, ESDM

Catatan : Perbandingan harga produk turunan nikel tersebut adalah terhadap harga bijih nikel/nickel ore

BULETIN - APLINDO No.41/2014

11

Sebaran Potensi Nikel Indonesia

Province

Nikel

Sumber Daya (juta ton) Cadangan (juta ton)

Ore Metal Ore Metal

1

2

3

4

5

6

7

Kalimantan Timur

Sulawesi Selatan

Sulawesi Tenggara

Sulawesi Tengah

Maluku Utara

Papua Barat

Papua

36,0

330,1

687,0

231,1

795,5

294,4

474,1

0,6

4,9

10,3

4,0

11,4

4,2

5,7

-

128,7

384,1

94,8

334,2

241,7

-

-

1,9

6,1

1,2

8,2

3,5

-

Total 2.849,1 41,8 1.178,7 21,2

Sumber : Statistic Mineral and Coal 2012, diolah

Impor Nikel dan Produk Turunannya

BULETIN - APLINDO No.41/2014

12

Sumber : BPS, 2012, diolah

Proyeksi Kebutuhan Stainless Steel Indonesia

Sumber : BPS dan MP3EI, 2012, diolah Asumsi PDB dan Jumlah Penduduk Indonesia berdasarkan MP3EI yaitu :

Jumlah PDB Indonesia adalah :2010:$3.005; 2015:$5.300; 2020:$9.000 ; dan 2025:$14.900, sedangkan jumlah penduduk Indonesia yaitu : 2010: 237 Juta Jiwa; 2015 :253 Juta Jiwa; 2020:269 Juta Jiwa: dan 2025:286 Juta Jiwa

Proyeksi Kebutuhan Nikel Indonesia

BULETIN - APLINDO No.41/2014

13

Rencana Pembangunan Smelter Nikel Domestik

BULETIN - APLINDO No.41/2014

14

Proyeksi Pengembangan Industri Nikel Domestik

Ketersediaan Cadangan Nikel Ore Untuk Produksi Smelter Domestik

BULETIN - APLINDO No.41/2014

15

Kebutuhan Bahan Baku Pendukung, Energi dan Investasi Smelter Nikel

Proyeksi Kebutuhan Bahan Baku Pendukung

Proyeksi Kebutuhan Listrik Untuk Smelter Nikel (Kapasitas Terpasang)

BULETIN - APLINDO No.41/2014

16

Proyeksi Kebutuhan Investasi Untuk Pembangunan Smelter

Potensi Demand Produksi Olahan Nikel Indonesia

BULETIN - APLINDO No.41/2014

17

Teknologi

Indonesia Energy-saving seminar

The Joint Crediting Mechanism (JCM) and

Energy saving by introducing high efficiency induction furnace

Energi merupakan kebutuhan dasar dalam pembangunan berkelanjutan oleh

Karena itu, energi harus digunakan secara hemat, rasional dan bijaksana agar

kebutuhan energi pada masa sekarang dan masa datang dapat terpenuhi.

Efisiensi penggunaan energi merupakan salah satu langkah penting yang harus

dilakukan baik untuk mengatasi masalah perubahan iklim, masalah krisis energi

dan masalah kesinambungan hidup.

Terkait penggunaan energi, pemerintah telah mengeluarkan PP No. 70 Tahun

2009 tentang konservasi energi yang mengharuskan pengguna sumber energi

dan penggunan energi yang menggunakan energi lebih besar atau sama dengan

6.000 setara ton minyak (TOE) per tahun wajib melakukan konservasi energi

melalui manajemen energi dengan menunjuk manager energi.

upaya konservasi dan efisiensi energi yang dilakukan dunia usaha tentu saja

membutuhkan sejumlah investasi untuk teknologi.

Sejalan dengan dengan kebijakan Konservasi Energi dan Pengurangan Emisi

CO2 di Sektor Industri, Aplindo bekerjasama dengan PT Fuji Electrik menyelenggarakan

“Indonesia Energy-saving seminar” pada tanggal 13 Mei 2014 di Hotel Sahid, Jababeka.

Dalam seminar ini ada program bantuan dari Jepang untuk pembelian alat

konversi energi untuk industri pengecoran logam (lihat makalah pada halaman

berikut)

BULETIN - APLINDO No.41/2014

18

BULETIN - APLINDO No.41/2014

19

BULETIN - APLINDO No.41/2014

20

BULETIN - APLINDO No.41/2014

21

Researchers at Missouri S&T analyze methods for improving melting efficiency.

A Global Casting Staff Report

This article is based on a research paper, “Increasing Melting Energy Efficiency in Steel Foundries,” presented at the 2012 AFS Metalcasting Congress.

The high temperatures required to melt steel result in significantly higher energy

losses in comparison with melting other cast alloys. The energy costs associated with

heat losses during melting are significantly higher for steel casting facilities than for

those melting other alloys. Today’s steel casting facilities use induction furnaces (IF)

and electric arc furnaces (EAF) to melt steel.

Siddhartha Biswas, Kent Peaslee and Simon Lekakh of Missouri University of Science

& Technology, Rolla, Mo., conducted a benchmarking survey on current energy use

among U.S. steel casting facilities. They investigated opportunities for energy

improvement through a series of industrial trials involving chemical energy and ladle

practice development.

BULETIN - APLINDO No.41/2014

22

Background

Furnace capacity, power supply, age of equipment, rate of production, melting

schedule and operating practice all have major influences on energy consumption. A

study of 19 North American steel casting facilities included a combination of

historical data and industrial measurements on the type of melting equipment,

refractory practices (Fig. 1), energy use and ladle practices. (See Tables 1, 2 and 3.)

Table 1. Installation year by type of melting furnace

Furnace Type No. Average year Installad Oldest year Installad

Newest year Installad

ALL 58 1977 1938 2003

EAF 24 1980 1938 1977

IF 34 1992 1976 2003

Table 2. Capacities of steel melting furnace

Furnace Type No. Average Capacity (lb) Minimum Capacity (lb)

Maximum Capacity (lb)

ALL 58 12.368 400 110.000

EAF 24 26.433 6.000 110.000

IF 34 2.440 400 9.000

Table.3 Energy consumption (Kwh/t) for steel melting

Average Standard Deviation Minimum Maximum

58 12.368 400 110.000

24 26.433 6.000 110.000

34 2.440 400 9.000

A multiple regression analysis using commercially available statistics software allowed the

researchers to evaluate the influence of the melting furnace (type, size, age and transformer

power) and operating parameters such as tap temperature, tap to tap time and furnace

productivity on the energy consumption for melting steel.

Successful energy management in steel casting facilities is difficult without monitoring

energy consumption. Unfortunately, this is an area where the steel casting industri is poorly

equipped. Only 38% of EAFs and 15% of IFs in operation are equipped with electric meters

for monitoring electric consumption. More than one third of the plants surveyed have no

equipment for monitoring their energy consumption during steel melting.

BULETIN - APLINDO No.41/2014

23

Multiple regression analyses determined how operating practice variables and equipment

type influence the energy consumption in kWh/ton for melting steel. The analysis showed

the following independent variables had an influence on the energy consumption for melting

steel (from strong to weak influence):

Increasing “tap temperature”

increased energy consumption

(strong influence).

Increasing “tap to tap time”

increased energy consumption

(strong influence).,

EAF has lower energy consumption

than IF (strong influence).

Newer equipment decreased energy

consumption (strong influence).

Increasing “furnace capacity”

decreased energy consumption

(weak influence).

In addition to the statistical data collected, operators were asked to report what they

considered to be major factors with the greatest influence on energy losses during melting

at their facilities. The three most frequently cited were: refractory (75%), scheduling (70%)

and casting yield (25%).

Procedure

The MS & T team visited five metalcasting facilities, observed the melting of several heats

and calculated heat balances. Figure 2 shows an example of the heat balance from an

electric arc furnace.

Supplemental chemical energy is one way to decrease electrical energy consumption and

increase the efficiency and productivity of melting steel in EAFs. Many technologies can

introduce supplemental chemical energy into the process. Preheating of the scrap charge

and using oxyfuel burners can increase melting efficiency of the solid scrap charge. Two

supplementary chemical energy methods, post-combustion of CO in the furnace to CO2 and

exothermic heat from oxidation reactions to the melt, could increase energy efficiency

during the flat bath period.

Fig 1. This chart shows the refractory linings used in melting furnaces in the 19 facilities surveyed

BULETIN - APLINDO No.41/2014

24

Fig. 2. This Sankey diagram (energy flows) depicts melting steel in a 15-ton EAF.

Opportunities to increase energy efficiency are greatest during the superheating and

correction period because the electrical energy efficiency drops significantly when

heating liquid steel with an open arc in air. A significant portion of the arc energy is

reflected from the arc and bath surface to the sidewalls and roof where the energy is

lost in heating (and often melting) refractory rather than steel. In addition to using

chemical energy, there is a future potential for increasing arc efficiency by utilizing

more energy efficient long arcs (higher voltage and lower current) with a foamy

slag, to decrease the heat losses by blanketing the arc.

In an industrial trial, chemical energy from oxygen combustion of natural gas was

introduced in a 4 ton EAF through installation of an oxyfuel

burner through the door. Effective combustion of natural gas provides energy to the

solid charge during the melting period. The electrical energy consumption was

decreased from 480-500 kWh/ton without oxyfuel burners to 400-420 kWh/ton with

burners.

Direct injection of oxygen by a lance to the solid charge and melted steel can reduce

electrical energy consumption by decreasing scrap melting time and direct

generation of chemical energy from oxidation reactions in the melt. The introduction

of coherent jet has decreased electrical energy consumption 10% and also reduces

melt down time 13%.

BULETIN - APLINDO No.41/2014

25

Scrap preheating systems, oxyfuel burners and postcombustion of CO require additional

capital investment. By comparison, the addition of a material such as SiC, which produces

exothermic reactions during the oxygen blow, does not require any capital investment (Fig.

3).

Fig. 3. This Sankey diagram shows the decrease in electrical energy consumption by the

addition of chemical energy (0.4% SiC in charge).

Because the heat of oxidation reaction is generated within the liquid steel, heat transfer

efficiency from exothermic reactions should be nearly 100%. This expected efficiency is

much higher than the typical 40% efficiency for post-combustion of CO above the bath. In

the study, the amount of exothermic heat generated during oxygen boiling was increased by

adding SiC with the solid charge. The energy and operational effects of adding enough SiC

with the scrap charge to represent 0.4% to 0.6% of the charge weight was investigated in a

20-ton acid-lined EAF. The addition of SiC reduced electrical energy consumption by 7.1%

and increased productivity by nearly 5%.

Effective ladle design, preheat practices and use are important for steel casting production.

The tap temperature of the liquid steel typically is superheated 250F to 500F (121C to 260C)

above the steel’s liquidus to compensate for heat losses during tapping and holding in small

ladles with large surface area to volume ratios.

In spite of the relatively short time the steel is in contact with the ladle lining, the huge

thermal gradients in the lining drive high values of heat flux through the refractory surface.

Initial information about heat losses during steel ladling was taken from a survey of steel

casting facilities and from industrial measurements at seven plants.

The influence of the thermal properties of different ceramic materials typically used for steel

ladle linings on heat losses during use was analyzed. From this work, a new type of ladle

lining was developed at Missouri University S&T. It was based on porous ceramics with the

potential to significantly decrease heat losses and save considerable ladle preheat energy.

BULETIN - APLINDO No.41/2014

26

The data collected through the survey and trials was analyzed to determine the factors that

were most important to energy losses in the ladle. One of the most important factors was

found to be the ladle capacity. The tap temperature was found to be significantly lower for

higher capacity ladles. A computational fluid dynamics (CFD) model was used to study the

effects of ladle size and validate the industrial measurements.

The temperature of the liquid steel at tap typically varies between 2,950F (1,621 C) and

3,200F (1,760C) at steel casting facilities. These temperatures are close to the softening

temperature of the complex Al, Ca, Si, and Mg oxide compounds which are often used for

ceramic linings. Also, the high rate of chemical reactions between the lining and components

of the liquid steel and slag takes place at these temperatures. As a rule, ladles are not fully

soaked even when used multiple times and are therefore used under unsteady state heat

transfer conditions. Even in cases where the lining is preheated prior to tap, a significant

part of the heat energy from the liquid steel accumulates inside the lining during the first 5-

30 minutes after tap.

Foundry ladle operations require special ceramic lining materials. A specially designed low

density porous alumina castable was introduced. It has very low thermal conductivity and

was determined to improve energy efficiency in the ladle (Table 4).

Results and Conclusions

Major opportunities for energy savings were identified as: improvement in scheduling and

decreasing delays while liquid metal is in the furnace; addition of chemical energy for melting

steel; and improvement in ladle practice. CFD modeling, and industrial and laboratory trials

determined the effects of these changes in reducing electrical power consumption. This data will be

used in the future for development of a spreadsheet type model to allow metalcasters to calculate

energy usage and melt temperature losses.

BULETIN - APLINDO No.41/2014

27

The Future of Light Metal Die Casting

Foundries

Fig. 1. Shown are options for application and possible savings in weight when aluminum die cast structural

components are used for the body structure of cars. (Source: Bühler, Annual Report 2010)

The optimization of energy consumption and the associated reduction of CO2 emissions are

top priorities for our society in the 21st century. In addition, the world’s resources are finite

which is why it is important to search for opportunities to use them as efficiently as possible.

The governmental regulation of emissions standards for vehicles in particular has led to a

paradigm change resulting in the promotion of innovative concepts for light construction.

Despite global efforts to reduce the use of non-renewable energy, the worldwide demand for

individual mobility has been unrelenting. Independent studies of trends and markets

conducted by well-known automobile manufacturers and research institutes have shown this

to be true. Optimistic predictions talk about a doubling of production volume for automobiles

within the next 20 years, whereby the classic drive technologies will be replaced with new,

future-oriented technologies. Regardless, an increased use of light and highly resilient

materials is to be expected. Aluminum and magnesium will play a crucial role in this.

With the demand for efficiency and sustainability, diecasters have encountered new and

recently yet unknown challenges, not least of which is to master the diecasting process and

ensure the required level of quality. An overall trend is moving toward more complex

components with increased functionality and lower weight at lower costs.

In addition to substituting heavy materials such as steel with lighter metals, the use of

structural components contributes to reducing the weight of automobiles. This makes it

BULETIN - APLINDO No.41/2014

28

possible to effectively reduce fuel consumption and, as a result, CO2 emissions. However,

vehicles running on gasoline or diesel are not the only ones to benefit from lighter

construction. Electric or hybrid vehicles also benefit: batteries and additional drive elements

such as electric motors increase the weight. This can be compensated for by the strict use of

light construction for the bodies of the vehicles. Structural components made of die cast

aluminum provide additional options. They play an ever-increasing key role in the

construction of new vehicles now and in the future.

Fig. 2. The estimated worldwide production of automobiles (Source: PwC) is compared to the forecast use of

materials. (Source: McKinsey, Advanced Industries 2012)

Difficult Challenges

The requirements placed on such components are high: particularly in the area of support

structures and vehicle bodies, they have to withstand highly dynamic stresses and meet the

strict requirements of the vehicle manufacturers in terms of crash safety and joining

technology. This requires a consistent, high-level uniform process to be implemented. Only

then can the good mechanical properties be reliably maintained. In addition, structural

components must be easy to weld, clinch and bond. Despite strict requirements of the

automotive industri, production must be cost-efficient. This means the entire diecasting

process chain must be carried out and monitored within narrow boundaries—from the

selection and handling of the melt through die design and casting technology to clear labeling

of each individual casting.

BULETIN - APLINDO No.41/2014

29

The Right Process, the Right Plant Engineering

Structural components unify the function of many metal component parts, thereby reducing

the complexity required for body construction. By integrating many components into a single

casting, they continue to become larger and more complex. In order to minimize their weight,

wall thicknesses have been reduced from the 2.5-3 mm range to less than 2 mm and are only

reinforced according to local requirements. In order to ensure reliable production of such

components, having the right process run on machines and systems designed for that process

is critical.

Thinner wall thicknesses call for shorter die filling times; even larger castings with long flow

paths for the molten metal require very accurately dimensioned locking units. In order to

fulfill these tasks, very efficient and highly dynamic shot ends with little scattering of the

process parameters are required. Hydraulic clamping cylinders directly on the tie-bars allow

for each tie-bar to be clamped individually and therefore promote homogenous distribution of

the locking force. This results in little flashing or need for post-processing. In addition, the

unique control of the casting process in real-time ensures an extraordinarily high degree of

reproducibility over the entire production process.

Air-Tight and Free of Turbulence

To achieve the low vacuum in the cavity that determines the component properties in

diecasting, properly designed dies and high-performance die vacuum technology are required.

Wear resistance and thermal insulation of the shot sleeve are crucial: they guarantee the

tightness of the vacuum system between the shot sleeve and the plunger and reduce the heat

loss of the molten metal in the shot sleeve. Turbulence must be reduced for ladling metal

from the dosing furnace to ensure the molten metal in the shot sleeve is low in oxide and

hydrogen and ready for the next die filling process.

Precision in Post-Processing

In addition to how the material is molten and die cast, post-processing, thermal treatment and

logistics of the components must also be taken into consideration. Errors made when the die

releasing agent is applied could increase porosity due to gas which would have a negative

effect on the quality of the weld. For this reason, there is a clear trend for such castings

toward using a minimum of die releasing agent when spraying. However, this requires the

temperature control concept be adjusted for the die inserts in order to dissipate the process

energy efficiently.

The ejection and extraction of the castings in particular and the subsequent cooling has a

significant effect on warping. The large-scale dimensions of structural components present a

new challenge for high-volume production: trimming of components in the die casting cell

requires large trimming presses and an optimized flow of material for the cast part as well as

for recycled materials. A thermal treatment process that is not set correctly could lead to an

increase in rejects during production since the required mechanical properties cannot be

attained in a reproducible manner.

BULETIN - APLINDO No.41/2014

30

Fig. 3. An example of typical use of the lost core technology is this closed deck motor block

to increase the structural strength of highly charged diesel engines. (Source: Volkswagen

AG), on the right: salt core insert.

Keyword: Lost Core

The potential for light construction has been

further expanded with a process that has

been advanced by pioneers for years: lost

core technology. The internal design of a

casting can be more complex with

geometric undercuts, which allows for a

previously unknown component design and

a higher degree of functional integration.

For example, cylinder crankcases with closed deck construction can take advantage.

In this process, the water jacket is formed with a salt core that is flushed out later with water

under high pressure. The use of salt cores in a diecasting machine does not pose any

problems since, in contrast to sand cores, they are not abrasive and do not cause any wear.

This is how components from gravity and sand diecasting can be substituted and produced

even more economically with pressure diecasting: pressure die castings are near net-shape

and require fewer post-processing steps. Another advantage of the lost core technology is the

excellent quality of the surface of the cast wall by the salt core, comparable to the roughness

of a diecast component. Lost core is particularly well-suited for manufacturing components

for guiding flowing media, such as water and oil.

Aluminum castings with salt recesses demonstrate very little flow resistance.

When the salt core that determines the internal shape of the component is created, the

appropriate salt solution and process parameters play a crucial role. This guarantees the

stability of the core while making it possible to extract the core subsequently. The diecasting

machine manufacturer becomes the technology partner who supports customers throughout

the entire process, from the initial idea to the production stage, and from component design

for the salt core application to the die and salt core concept in the die casting process.

Keyword: Improving the Efficient Use of Resources

Special attention must be paid to the use of energy and materials during diecasting. The die

and the gating system play a crucial role here. The melting and holding processes alone use

between 50 and 70 percent of the energy required for the entire process. A lot of energy is

consumed initially to melt and overheat the metal to then solidify it in the die shortly

afterwards and cool and extract the casting. The die temperature control concept plays a

critical role in determining the cooling time and, consequently, the cycle time of the casting

process. The classic surface cooling by spraying with water-soluble die releasing agents uses

up to 50% of the entire cycle—and the same in terms of energy and resources.

BULETIN - APLINDO No.41/2014

31

In turn, the design of the shot system is critical for the amount of material used. Thin-walled

castings use the greatest portion of material for the gating proportionally. The material must

be returned and melted down again, which results in additional use of energy and, at the same

time, loss of material due to slagging. Cost-effectiveness demands sophisticated gating

concepts that make it possible to substantially reduce the amount of returns. Consistent

optimizing at an early stage of the concept is key to sustainable, economic success. More

precise and faster filling and solidifying simulations are created to find the right gating,

ventilating and cooling systems. These methods will grow in importance along with the

practical experience of the caster. In addition to the material and its solidification and casting

properties, post-processing, thermal treatment and logistics of the components are also taken

into consideration for the overall analysis. Knowledge of the individual process steps and

how they affect costs and function should be learned through well-founded training. The only

way to prevent costly mistakes is to have well-trained experts.

Fig. 4. Tools such as Bühler’s «Event Analyzer» support foundries in their strategic optimization of the OEE

(Overall Equipment Efficiency). The process data from the die casting machine are analyzed, statistically

evaluated and made available to the user as well-founded analyses.

Keyword: Increasing Productivity

The best indicator of the productivity of a diecasting cell are uptime and the efficiency of the

die casting process, i.e. the number of castings produced per unit of time. However, how can

we measure this as objectively as possible? The OEE (Overall Equipment Efficiency) method

of measurement was recently recommended throughout the industri and compares the

theoretical output capacity and actual capacity of the plant. Of particular interest is the fact

that this method of calculation includes the performance of the entire diecasting cell, i.e. the

diecasting machine and peripherals, while taking into account the factors of time, velocity

and quality in a meaningful and reliable manner. The reliability and uptime of individual

components is therefore less important for the output capacity of the diecasting cell. It is

BULETIN - APLINDO No.41/2014

32

much more determined by the weakest link and the interaction of the individual components

and sub-processes of the production chain. A clear connection between all components that

are relevant to the process is the key to uninterrupted and cost-efficient production.

The cell control system of current diecasting machines integrates all the activities of the

system peripherals throughout the process in monitoring and documenting the process.

Interfaces to higher level systems make it possible to collect, analyze and safeguard all the

data in a central location over the long term. Furthermore, they support the operator with a

sophisticated diagnosis system in optimizing the entire diecasting process and, therefore, the

OEE. The control system logs important information regarding the operating status of the

machine and its peripheral equipment, and any alarms that may have been sounded.

These logs should then be used actively for continuous improvement of the process and for

understanding the most common sources of error. Using specialized software packages, it is

possible to evaluate the data as needed. Downtimes can be assigned to corresponding alarms,

and any process errors can be identified. This is a key benefit to a diecasting facility: it can

increase the productivity and quality of its process in a targeted manner while improving

profitability.

The challenges of the future for diecasting can be met with new innovative concepts and

consistent implementation, along with existing expertise. These challenges are a result of

requirements for weight reduction, expanded functionality of components and improved

resource and cost efficiency of the castings to be produced. Machine concepts and

technologies continuously are being improved. However, as diecasters are confronted with

changing processing conditions, they need to rethink how they operate. In order to

manufacture components of the highest quality in a cost-efficient manner, all measures must

be coordinated individually to meet the different requirements of the component to be

produced and the particular production process.

BULETIN - APLINDO No.41/2014

33

Keys to Success in Semi-Permanent Mold

Casting

Developing a successful, repeatable, reliable process for pouring aluminum into a permanent

mold is no simple task. The many variables include metal and mold temperatures, shrink

factors, mold coatings, casting cycle times and melt quality. Considering the numerous

factors that influence quality and quantity, introducing sand cores to permanent molds only

complicates matters.

Figs. 1a-b: A metal ball detent pin (right) and bushing can help lift and set heavy cores (left).

Beyond the obvious issues of cost and binder material, a sand core can slow the heat transfer

(and extend solidification time for the casting), change shrinkage factors for the casting,

introduce potential core coatings and require additional venting for gases in semi-permanent

molds—so-called because of the disposable core. Additional issues arise in handling cores,

such as trimming, insertion and removal from the metal mold. Sand cores also require added

tooling, which includes validation and maintenance. The corebox itself is only one concern.

Tooling includes trimming methods, c ore assembly fixtures, transport materials, material

handling components and verification fixtures.

Fig. 2: A stripper plate can be used to

remove core fins and parting lines in higher

volume applications

The core’s effect on dimensional accuracy is a

critical consideration for components with

tight dimensional requirements. One

determination for any given casting part is

whether the mold or the sand core will have

the more significant influence on dimensional

shrinkage. Among the determining factors are

the core material, resin percentage, casting

size, geometry, wall thickness and whether the

core is knocked out after solidification or

remains in the casting during cooling.

Additionally, some castings may include axis-

specific shrink factors.

BULETIN - APLINDO No.41/2014

34

Gas and Venting

All sand cores generate gas due to binder decomposition when contacting molten metal; the

amount depends on the binder system and coating. Various core binders not only generate

different amounts of gas, but also show different gas evolution profiles (i.e., when and at

what rate gas is released). The gas amount and its evolution rate are affected by binder type,

melt temperature, core geometry and processing conditions. Binders that generate more gas

need increased venting—in total number and/or size—to allow for proper gassing of the mold

cavity. Vents should be placed to ease cleaning of core gas residue. Engineers also must

determine if the mold requires active or passive gas venting, that is, if the mold design and

filling pattern will push the gas out naturally or a more aggressive vacuum assist is necessary.

Gas evolution also can correlate with condensation in the mold cavity.

Core Handling and Placement

Handling sand cores and placing them into a hot metal mold can be sources of trouble. Some

practical suggestions include:

Figs. 3a-b: Large shell cores present

unique challenges for aluminum

permanent molders. Fig. 3a (left)

weighed 46 lbs. (20.9 kg) with 32 in.

(81 cm) between core prints. Fig. 3b

was 14 in. (35.5 cm) tall, 22 in. (55.9

cm) wide and weighed 20 lbs. (9.1

kg).

Core Positioning: A cold core may fit differently into

a cold mold versus a hot one. The core should be

positioned in the mold so it’s fully supported during

pouring. Core prints should locate the core without

constraining it in a way that could lead to fracture.

Prints should be easy to clean and discourage residue

buildup, which could lead to misalignment. Core

prints also must allow for the thickness of the mold

core coating and ensure adequate core print

clearances. It is important to focus on both halves of

the mold and include proper core clearances, at least

0.005–0.015 in. (0.127–0.381 mm) per side. Some

metalcasting facilities provide additional close-over

clearances of 0.005–0.01 in. (0.127–0.254 mm).

Because prints wear excessively, they should be easy

to access and repair. Also, since closing the mold will

likely shave some sand from the core, prepare for

residue in the mold. The core print may be an ideal

spot for venting. Because there is no liquid metal

surrounding the core print, it provides an easier path

for venting core gasses that won’t mark the casting

surface.

Core Handling: Handling is a concern with cores that are heavy, fragile, easily contaminated

and/or prone to damage resulting in a defective casting. One option includes molding a steel

bushing into the core and using a ball detent pin to lift and place the core into the mold (Fig.

1a-1b).

Trimming: Hand trimming is an economical approach for low quantities of cores, but trim

plates and stripping dies can be helpful (Fig. 2) when dealing with larger volumes or trying to

BULETIN - APLINDO No.41/2014

35

limit hand trimming variability. Automation, including CNC machines and robotics, is

another viable option for higher volume cores.

Core Coating: The first consideration is to determine if a coating is needed, with the surface

finish of the casting around the core the essential factor. Coatings usually are added in areas

that require a smoother casting surface finish, or to prevent molten metal penetration issues

such as erosion, veining or burn-in-type defects. Coating also can help direct the core gas

toward vents.

Core Removal: How the core will be removed from the casting and how soon after

solidification can affect casting dimensions. Most metalcasting facilities use a combination of

vibration, abrasion (e.g., hammers, drills, blasting) and bake-out ovens. Knockout is faster

and allows for quicker inspection times. Shot blasting removes final residues after knockout.

Large Shell Cores

Large shell cores—those weighing more than 10 lbs. (4.54 kg), longer than 24 in. (61 cm) or

with a length-to-diameter ratio greater than four (Figs. 3a-3b)—present a special set of

challenges, including the potential for core breakage, cracking, distortion and gas-related

porosity. When a core is damaged, the casting must undergo excessive cleaning room

operations, which can increase costs significantly, or be scrapped entirely. Such damage can

be caused by core and molten metal issues such as the pressure of the molten metal on the

core, insufficient core strength, excessive metal temperature, thermal shock or mold-related

issues like excessively tight core prints. Insufficient shell core curing or improper venting

will lead to gas porosity. A majority of issues relating to large shell cores can be resolved

with proper engineering controls and continual process review.

Here are a few basic steps to deal with large shell cores:

Core and Mold Alignment: Maintain proper mold and machine alignment by minimizing

contact points in core prints. Establish a formal preventative maintenance program on all

permanent mold machines. Use shell core cooling fixtures to maintain dimensional accuracy.

Fig. 4: The large flat section

on this 26-in. (66-cm) core

developed cracks regularly.

Core Integrity: Determine the parameters for optimal resin

content to maximize core integrity, wall thickness, cure time,

temperature, etc. Ensure the core is cured fully.

Gating: Review the gating system to avoid excessive stress on

the core.

Core Gas: Provide adequate venting for the removal of core

gases.

Core Strength: Add features as needed to improve strength,

such as a tie bar between the legs of a U-shaped core to

prevent distortion. Modify the core binder system and change

the resin composition of the shell core as needed to improve

strength. Work with the sand provider on new formulations.

BULETIN - APLINDO No.41/2014

36

Even after implementing these suggestions, large shell cores can remain difficult to use in

permanent mold applications. For example, at Wisconsin Aluminum Foundry Co. (WAFCO),

Manitowoc, Wis., the large cylindrical core in Figure 3a failed at a 75% rate due to a number

of problems. Engineers filled the 46-lb. (20.87-kg) shell core with air-set sand to produce

castings, but this process increased both core weight and knockout costs. Similarly, the core

in Figure 4, at nearly 26 x 6 in. (66.7 x 15.2 cm), featured a large flat section that developed

cracks regularly. While not leading to outright failure, as in the cylindrical core, it required

additional inspection to verify the surface finish in the cored casting cavity and extra cleaning

room labor to remove flashing caused by broken and cracked cores.

WAFCO continues to minimize variation in the core and molding process by working with

suppliers to modify sand recipes to improve core integrity, discussing necessary core support

prints with clients and avoiding new high risk jobs based on experience. Though networking

with other metalcasting facilities is helpful in learning techniques to overcome challenges,

large shell cores remain a complex endeavor.

BULETIN - APLINDO No.41/2014

37

Data Kendaraan Bermotor Indonesia

1. Data Kendaran Roda 4

a. Penjualan Kendaraan roda 4 (unit) tahun 2010-2014

No. Bulan Penjualan (Unit)

2010 2011 2012 2013 2014

1 Januari 52,831 73,990 76.427 96.718 103.595

2 Februari 55,688 69,591 86.486 103.278 111.880

3 Maret 65,555 82,166 87.917 95.996 113.096

4 April 65,232 60,728 87.144 102.257 106.096

5 Mei 60,520 61,055 95.541 99.697 97.136

6 Juni 70,388 70,157 101.746 104.268 110.560

7 Juli 72,100 89,056 102.511 112.178 91.393

8 Agustus 64,779 73,279 76.445 77.964 9 September 49,147 79,835 102.100 115.974 10 Oktober 69,160 86,345 106.754 112.039 11 Nopember 69,249 67,656 103.703 111841 12 Desember 70,061 80,325 89.456 97.691 Total 764,710 894,183 1.116.230 1.229.901 733.716

Sumber : Gaikindo

b. Produksi Kendaraan roda 4 (unit) tahun 2010-2014

No. Bulan Produksi (Unit)

2010 2011 2012 2013 2014

1 Januari 49,818 70,715 77.036 97.793 104.728

2 Februari 48,780 63,928 86.469 100.491 112.501

3 Maret 57,354 74,308 85.507 89.073 123.007

4 April 59,493 54,556 84.426 101.805 121.114

5 Mei 55,758 54,637 97.367 99.661 94.353

6 Juni 65,589 64,454 94.400 97.939 117.309

7 Juli 68,306 83,591 97.330 106.519 93.610

8 Agustus 60,939 69,107 71.113 77.354 9 September 44,348 77,349 94.488 116.974 10 Oktober 66,262 81,265 100.298 115.533 11 Nopember 63,919 64,687 99.168 110.570 12 Desember 61,942 79,669 77.955 94.499 Total 702,508 838.266 1.065.557 1.208.211 768.622

Sumber : Gaikindo

BULETIN - APLINDO No.41/2014

38

2. Data Kendaraan Roda 2 / Sepeda Motor

a. Penjualan sepeda motor 2010-2014

No. Bulan Penjualan (Unit)

2010 2011 2012 2013 2014

1 Januari 503,840 667,124 652.601 649.983 580.288 2 Februari 540,067 613,449 670.757 653.357 681.267 3 Maret 608,142 713,672 626.689 657.483 728.820 4 April 657,185 709,177 622.929 660.505 729.279 5 Mei 641,871 709,122 619.540 647.215 734.030 6 Juni 655,363 661,304 550.468 661.282 753.789 7 Juli 701,432 740,121 585.658 704.019 539.171 8 Agustus 734,439 681,444 433.741 490.824

9 September 481,619 723,906 628.739 678.139 10 Oktober 698,342 717,514 634.575 717.272 11 Nopember 656,597 643,271 627.048 688.527 12 Desember 516,751 463,431 488.841 552.408 Total 7,395,648 8,043,535 7.141.586 7.771.014 4.755.644

sumber : AISI Diolah

b. Produksi sepeda motor 2010-2014

No. Bulan Produksi (Unit)

2010 2011 2012 2013 2014

1 Januari 515,962 677,356 685.688 662.920 595.636

2 Februari 528,303 621,988 665.570 659.417 659.258

3 Maret 628,967 720,284 606.984 654.760 729.476

4 April 650,001 715,864 619.839 672.370 748.401

5 Mei 636,023 698,427 619.829 644.881 722.192

6 Juni 664,767 645,975 535.621 653.384 761.117

7 Juli 695,974 722,184 577.488 694.492 553.626

8 Agustus 733,021 671,506 428.662 484.428 9 September 476,354 713,061 620.250 683.066 10 Oktober 690,194 725,036 627.352 729.876 11 Nopember 682,363 646,510 625.865 691.115 12 Desember 513,461 446,102 466.573 549.586 Total 7,415,390 8,004,293 7.079.721 7.780.295 4.769.706

sumber : AISI Diolah

BULETIN - APLINDO No.41/2014

39

Informasi Umum & Pameran

A. Web site Pemerintah yang dapat diakses :

1. www.setneg.go.id (Sekretariat Negara)

2. www.kemenperin.go.id (Kementerian Perindustrian)

3. www.kemenkeu.go.id (Kementerian Keuangan)

4. www.kemendag.go.id (Kementerian Perdagangan)

5. www.beacukai.go.id (Direktorat Bea & Cukai, Kementerian Keuangan)

6. www.esdm.go.id (Kementerian ESDM)

7. www.bkpm.go.id (Badan Koordinasi Penanaman Modal)

8. www.bps.go.id (Biro Pusat Statistik)

B. Web site Asosiasi Industri Pengecoran Logam Indonesia (APLINDO)

Kini APLINDO telah tersedia Web site sendiri :

www.aplindo.web.id, mohon dukungan partisipasi aktif Bapak-bapak sekalian dan

diharapkan saran, masukan, permasalahan dan perkembangan yang terjadi di industri

pengecoran logam di Indonesia. Saran dan masukan anda dapat berupa artikel ke

alamat [email protected]

C. Web site Himpunan Ahli Pengecoran Logam Indonesia

Kini HAPLI telah tersedia Web-site sendiri :

http://hapli.wordpress.com/ , mohon dukungan partisipasi aktif Bapak-bapak

sekalian dan diharapkan saran serta masukan anda berupa artikel sesuai page yang

tersedia dalam format *.doc ke alamat [email protected] untuk

diupload, ataupun komentar langsung anda pada Blog.

D. Pameran dan Seminar

1. 11 Sep 2014 - 13 Sep 2014

Ankiros/Annofer/Turkcast 2014

Tuyap Centre, Istambul

www.ankiros.com/

2. Korea Metal Week 2014: 16 Sep 2014 - 19 Sep 2014

Kintex, South Korea

As the specialised leading international trade fair in Korea, Korea Metal Week provides the best

BULETIN - APLINDO No.41/2014

40

marketplace with the latest technology for suppliers, manufacturers and traders in the metal and

machinery industries around the world.

www.korea-metal.com

3. 54th International Foundry Conference - Slovenia: 17 Sep 2014 - 19 Sep 2014

Portorož, Slovenia

Contact: Mirjam Jan-Blažic, Slovenian Foundrymen Society, email: [email protected]

www.drustvo-livarjev.si

4. Fundiexpo 2014: 24 Sep 2014 - 26 Sep 2014

Cintermex Convention Centre

Congress and international exhibition.

http://www.fundiexpo2014.com/en/

5. International Foundry Forum: 26 Sep 2014 - 27 Sep 2014

Venice, Italy

www.international-foundry-forum.org

6. Midest 2014: 4 Nov 2014 - 7 Nov 2014

Paris Nord Villepinte - France

MIDEST is a key platform for international suppliers of industrial subcontracting, offering

manufacturers, component suppliers and assemblers the chance for face to face meetings with

suppliers of solutions in the fields of metals, plastics, electronics or industri services.

http://www.midest.com/site/GB,C6374,I6374.htm

7. Indometal 2014: 11 – 13 Des 2014

A robust intergrated platform for the metal and steel industries

JIEXPO, PRJ Kemayoran Jakarta

For enquiries, please contact : PT. Wahana Kemala Niaga,

telp. +6221.53660804 Fax. +6221.5325587/90

email : [email protected]

http://www.indometal.net

8. 27 Feb 2015 - 1 Mar 2015, FEX 2015

Greater Noida, Gautam Buddh Nager, UP, India

Alongside 63rd Indian Foundry Congress, IFEX 2015 – 11th edition of International Exhibition on

Foundry Technology, Equipment Supplies.

www.ifexindia.com

9. 16-20 June 2015

GIFA, METEC, THERMPROCESS and NEWCAST

Düsseldorf, Germany

Websites: www.gifa.de, www.metec.de, www.thermprocess.de and www.newcast.de.