24
Teresa Montaruli, 5 - 7 Apr. 2005 Teresa Montaruli, 5 - 7 Apr. 2005 5 10 : 2 : 1 τ μ e ν ν ν φ : φ : φ i i U 2 , | | | c = cosθ sol , s = sinθ sol , θ sol ~35 o x = sinθ atm = cosθ atm , θ atm ~ 45 0 Δm atm =2.5 10 -3 eV 2 , Δm sol =710 -5 eV 2 For astrophysical sources L>kpc : Δm 2 L/2E » 1 \ e e 60% 60% 20% 20% 20% 20% 20% 20% 40% 40% 40% 40% 20% 20% 40% 40% 40% 40% Beam dump when all s decay: 2 1 58 . 0 4 . 0 2 1 58 . 0 4 . 0 0 57 . 0 82 . 0 0 x cx sx x cx sx s c U solar CHOOZ (reactor) atmospheric 2 . 0 2 . 0 6 . 0 e e Neutrino oscillations and Neutrino oscillations and astrophysical fluxes astrophysical fluxes at Earth 0 p e e e j i E L m i j j i i j i e U U U U P , 2 , * , * , , 2 , i i i U U P 2 , 2 , ther scenarios: neutron decay 2 . 0 2 . 0 6 . 0 e e % 20 58 . 0 57 . 0 4 . 0 82 . 0 2 2 2 2 e P

c = cos θ sol , s = sin θ sol , θ sol ~ 35 o x = sin θ atm = cos θ atm , θ atm ~ 45 0

  • Upload
    avery

  • View
    34

  • Download
    0

Embed Size (px)

DESCRIPTION

Neutrino oscillations and astrophysical fluxes. CHOOZ (reactor). solar. atmospheric. at Earth. c = cos θ sol , s = sin θ sol , θ sol ~ 35 o x = sin θ atm = cos θ atm , θ atm ~ 45 0 Δ m atm =2.5  10 -3 eV 2 , Δ m sol =7  10 -5 eV 2. For astrophysical sources L>kpc : - PowerPoint PPT Presentation

Citation preview

Page 1: c = cos θ sol , s = sin θ sol ,  θ sol ~ 35 o x = sin θ atm  = cos θ atm ,  θ atm ~ 45 0

Teresa Montaruli, 5 - 7 Apr. 2005Teresa Montaruli, 5 - 7 Apr. 2005

510:2:1 τμe ννν φ:φ:φ

i

ii UUP 2,

2, ||||

c = cosθsol, s = sinθsol, θsol~35o

x = sinθatm = cosθatm, θatm ~ 450

Δmatm=2.5 10-3 eV2, Δmsol=710-5 eV2

For astrophysical sources L>kpc : Δm2 L/2E » 1\\ ee

ee 60%60% 20%20% 20%20%

20%20% 40%40% 40%40%

20%20% 40%40% 40%40%

Beam dump when all s decay:

2158.04.02158.04.0

057.082.00

xcxsxxcxsx

scU

solar CHOOZ (reactor)

atmospheric

2.02.06.0 ee

Neutrino oscillations and astrophysical fluxesNeutrino oscillations and astrophysical fluxes

at Earth

0

p

ee

e

ji

ELmijjii

jieUUUUP,

2,

*,

*,,

2,

i

iiUUP 2,

2,

Other scenarios: neutron decay 2.02.06.0 ee

%2058.057.04.082.0 2222 eP

Page 2: c = cos θ sol , s = sin θ sol ,  θ sol ~ 35 o x = sin θ atm  = cos θ atm ,  θ atm ~ 45 0

Teresa Montaruli, 5 - 7 Apr. 2005Teresa Montaruli, 5 - 7 Apr. 2005

Neutrino production: top downNeutrino production: top downDecay of neutrons in sources Decay or annihilation of supermassive relic of Big Bang 1024 eV = 1015 GeV ~ MGUT (monopoles, topological defects, vibrating strings…)Resonant UHE neutrino interactions on relic neutrinos (Z-bursts)

Guaranteed neutrinos: GZK Guaranteed neutrinos: GZK ssUHECR produce UHECR produce s s s s

s from CR interactions in the s from CR interactions in the Galactic plane Galactic plane

Can explain EHECRCan explain EHECR

Gelmini et al, PRD70, 2004

Page 3: c = cos θ sol , s = sin θ sol ,  θ sol ~ 35 o x = sin θ atm  = cos θ atm ,  θ atm ~ 45 0

Teresa Montaruli, 5 - 7 Apr. 2005Teresa Montaruli, 5 - 7 Apr. 2005

Radio continuum 408 MHz – Bonn, Jodrell Banks & Parks

Infrared COBE / DIRBE

Near Infrared COBE / DIRBE

Optical Photomosaic - Lausten et al. X-Ray 0.25, 0.75, 1.5 keV – ROSAT / PSPC Gamma Ray >100 MeV – CGRO / EGRET

The Galactic PlaneThe Galactic Plane

Neutrinos ANTARES ?

Page 4: c = cos θ sol , s = sin θ sol ,  θ sol ~ 35 o x = sin θ atm  = cos θ atm ,  θ atm ~ 45 0

Teresa Montaruli, 5 - 7 Apr. 2005Teresa Montaruli, 5 - 7 Apr. 2005

8.5 kpc

15 – 20 kpc

Halo1 – 20 kpc

Galactic plane~ 1 kpc

The GalaxyThe Galaxy

spiral arms

Bulge

Halo

Ring + barGalactic center

Sun

1 pc = 3.3 ly

Theorical hypothesis

Propagation

Equilibrium between CR, B and ISM.

Electromagnetic interactions

• Diffusion on magnetic field and galactic winds

• Reacceleration

• Energy losses

• Spallation

•Neutrinos from pp collisions

• Decays

SunSun

Page 5: c = cos θ sol , s = sin θ sol ,  θ sol ~ 35 o x = sin θ atm  = cos θ atm ,  θ atm ~ 45 0

Teresa Montaruli, 5 - 7 Apr. 2005Teresa Montaruli, 5 - 7 Apr. 2005

observationsobservations EGRET observed a diffuse emission 100MeV-10 GeV from Galactic Centre EGRET observed a diffuse emission 100MeV-10 GeV from Galactic Centre

region (300 pc): excess > factor 10 around 1 GeV region (300 pc): excess > factor 10 around 1 GeV INTEGRAL: resolved 91 point sources. 90% of ‘diffuse’ flux can be due to INTEGRAL: resolved 91 point sources. 90% of ‘diffuse’ flux can be due to

point sources <100 keVpoint sources <100 keV Milagro: discovery of TeV emission (astr-ph/0502303)Milagro: discovery of TeV emission (astr-ph/0502303) 4.54.5 excess from |b|<5˚ and l excess from |b|<5˚ and l[40˚,100˚][40˚,100˚] Covered pond with 2 layers of PMTs, from relative timing 0.75Covered pond with 2 layers of PMTs, from relative timing 0.75˚ shower direction ˚ shower direction

resolution, gamma-hadron discrimination based on shape of Cherenkov light resolution, gamma-hadron discrimination based on shape of Cherenkov light emitted by showersemitted by showers

Milagro(>1TeV)=5.1 ·10-10 cm-2 s-1 sr-1

Steeper than EGRET alone 2.51 0.05

2.612.61±0.07±0.07

Page 6: c = cos θ sol , s = sin θ sol ,  θ sol ~ 35 o x = sin θ atm  = cos θ atm ,  θ atm ~ 45 0

Teresa Montaruli, 5 - 7 Apr. 2005Teresa Montaruli, 5 - 7 Apr. 2005

observationsobservationsExtreme models Extreme models =-(2.4-2.9) (hard electron disfavoured)s follow primary spectrum ( decay dominates over interactions)New model in Strong, Moskalenko, and Reimer, astro-ph/0406254

Figure: Strong, Moskalenko, and Reimer, astro-ph/0406254

red = from 0

INTEGRAL: flux from point sourcesINTEGRAL: flux from point sources

Page 7: c = cos θ sol , s = sin θ sol ,  θ sol ~ 35 o x = sin θ atm  = cos θ atm ,  θ atm ~ 45 0

Teresa Montaruli, 5 - 7 Apr. 2005Teresa Montaruli, 5 - 7 Apr. 2005

Extreme ModelsExtreme ModelsHard nucleus model E-2.4

Model HN

TeV

GeV

γ=2.4

EAdE

Ed .)( Gamma from π0

Nu mu + anti nu mu

Hard electron model E-2.9

Model HEMNTeV

GeV

γ=2.94

For E-2.4 20 years of ANTARES to have 88% discovery prob

Page 8: c = cos θ sol , s = sin θ sol ,  θ sol ~ 35 o x = sin θ atm  = cos θ atm ,  θ atm ~ 45 0

Teresa Montaruli, 5 - 7 Apr. 2005Teresa Montaruli, 5 - 7 Apr. 2005

Galactic CentreGalactic Centre High matter density and activityHigh matter density and activity compact radio source Sgr A* possibly associated to black hole ~3 10compact radio source Sgr A* possibly associated to black hole ~3 106 6 MMsunsun in in

the centerthe center Sgr A East SNRSgr A East SNR

HESS (6.1 4.7h/9.2 11.8 h)

HESS TeV- spectrum in disagreement with the other experiments Variability? localization? HESS 1 arcmin around Sgr A*

Sgr A EastChandra & Radio

Sgr A*

95%68%

astro-ph/0408145

Page 9: c = cos θ sol , s = sin θ sol ,  θ sol ~ 35 o x = sin θ atm  = cos θ atm ,  θ atm ~ 45 0

Four 12 m diameter telescopes running since ~ 1yr in Namibia (16 in the future?) Eth 100 GeV

Cherenkov light is emitted by showers induced by high-energy gamma rays This light is very faint - about 10 s/m2 at E=100 GeV - and the duration of the light flash is only a few nsec. Large mirrors, fast photon detectors and short signal-integration times are required to collect enough light from the shower, with minimal contamination from night-sky background light.

direction < 0.1

High Energy Stereoscopic System

Page 10: c = cos θ sol , s = sin θ sol ,  θ sol ~ 35 o x = sin θ atm  = cos θ atm ,  θ atm ~ 45 0

Galactic point SourcesGalactic point SourcesThe case of RXJ1713.7-The case of RXJ1713.7-39463946

Open problem: elusive 0 produced in accelerated nuclei collisions with SN ambient material. Still not a clear evidence BUT…CANGAROO claim

ControversialReimer et al., A&A390,2002Incompatible with EGRET

Enomoto et al, Nature 2002

0

Page 11: c = cos θ sol , s = sin θ sol ,  θ sol ~ 35 o x = sin θ atm  = cos θ atm ,  θ atm ~ 45 0

RXJ1713.7-3946RXJ1713.7-3946

RXJ1713.7-3946RXJ1713.7-3946Seen by HESSSeen by HESS

H.E.S.S.: full remnantCANGAROO: hotspot

Index 2.2±0.07±0.1

preliminary

Index 2.84±0.15±0.20

NBCANGAROO measures

the spectrum for the NW part of the rim, HESS for

the entire region

No cut-off in the HE tail of HESS spectrum favors 0 decay scenario respect to the case of em processesStudy of electron density and B can help

Page 12: c = cos θ sol , s = sin θ sol ,  θ sol ~ 35 o x = sin θ atm  = cos θ atm ,  θ atm ~ 45 0

Teresa Montaruli, 5 - 7 Apr. 2005Teresa Montaruli, 5 - 7 Apr. 2005

MicroquasarsMicroquasarsGalactic X-ray binaries with radio relativistic jets Their structure make them similar to quasars but ~106 times smaller Most have bursting activity (hrs-days)Persistent: SS433 GX339-4

Neutrinos from p- interactions (photons from synchr. emissionof electrons accelerated in jet or from accretion disc)

Ljet : jet kinetic power (erg/s) δ : jet Doppler factor δ= γ(1- β cosθ) ηp : fraction of jet energy transferred to protons (~0.1) fπ : fraction of p energy transferred pions D : source distance

Page 13: c = cos θ sol , s = sin θ sol ,  θ sol ~ 35 o x = sin θ atm  = cos θ atm ,  θ atm ~ 45 0

Teresa Montaruli, 5 - 7 Apr. 2005Teresa Montaruli, 5 - 7 Apr. 2005

Predictions Galactic sources Predictions Galactic sources SourceSourceTypeType

DistanceDistance(kpc)(kpc)

EE

(GeV)(GeV)NNμμ

(km(km-2-2 yr yr-1-1 ) )Ref.Ref.

SupernovaeSupernovaeShocksShockspulsarspulsars

10 10 101033

10102 2 101066

101055 101088

10 10 101088

10010050 50 1000 1000

100 100 1000 1000 10001000

Waxman & Loeb 2001Waxman & Loeb 2001Protheroe et al. 1998Protheroe et al. 1998

Beall & Bednarek 2002Beall & Bednarek 2002Nagataki 2004Nagataki 2004

PlerionsPlerions

CrabCrab

0.5 0.5 4.4 4.4

22

<< 10 103 3 101055

10103 3 55··101055

10103 3 55··101055

10103 3 55··10105 5

1010 101066

1 1 12 12 11a fewa few 11

4 4 14 14

Guetta & Amatto 2003Guetta & Amatto 2003Bednarek 2003Bednarek 2003

Bednarek & Protheroe 1997Bednarek & Protheroe 1997Bednarek 2003Bednarek 2003

Amato et al. 2003Amato et al. 2003

Shell SNRsShell SNRsSNR RX J1713.7SNR RX J1713.7

Sgr A EastSgr A East6688

101044

101055

4040 140140

Alvarez-Muñiz & Halzen 2002Alvarez-Muñiz & Halzen 2002

Pulsars + CloudsPulsars + CloudsGalactic CentreGalactic Centre

Cygnus OB2Cygnus OB288

1.71.7101044 101077

>> 10 1033

10104 4 101077

<< 101066

2 2 30 30a fewa few 0.50.544

Bednarek 2002Bednarek 2002Torres et al. 2004Torres et al. 2004Bednarek 2003Bednarek 2003

Anchordoqui et al. 2003Anchordoqui et al. 2003

Binary systemsBinary systemsA0535+26A0535+26 2.62.6 3 3 · · 10102 2 101033 a fewa few Anchordoqui et al. 2003Anchordoqui et al. 2003

MicroquasarsMicroquasars 1 1 10 10 101033 101055 1 1 300 300 Distefano et al. 2002Distefano et al. 2002

MagnetarsMagnetars 3 3 16 16 << 101055 1.7 (0.1/∆1.7 (0.1/∆Ω) (5/dΩ) (5/d22)) Zhang et al. 2003Zhang et al. 2003

Page 14: c = cos θ sol , s = sin θ sol ,  θ sol ~ 35 o x = sin θ atm  = cos θ atm ,  θ atm ~ 45 0

Teresa Montaruli, 5 - 7 Apr. 2005Teresa Montaruli, 5 - 7 Apr. 2005

Isotropic Angular Distribution

Gamma-Ray BurstsGamma-Ray Bursts

Bimodal duration distribution

long to short bursts 3:1

Counting rates with time variable from GRB to

GRB

Vela-4 detects the 1Vela-4 detects the 1stst emission E emission E>0.1 MeV on July 2>0.1 MeV on July 2ndnd,1967 ,1967

BATSE (1 GRB/d, 3° error box, FoV 4 sr)EGRET (1 GRB/yr, 10 arcmin, E>30 MeV,FoV 0.6 sr)

1 arcmin = 1/60 deg1 arcmin = 1/60 deg

Page 15: c = cos θ sol , s = sin θ sol ,  θ sol ~ 35 o x = sin θ atm  = cos θ atm ,  θ atm ~ 45 0

Teresa Montaruli, 5 - 7 Apr. 2005Teresa Montaruli, 5 - 7 Apr. 2005

BATSE observations on GRBsBATSE observations on GRBs

0EE

α

E

EE,EEE,eEEN 0

Spectra

Parametri: , e E0

E0

Band et al.

E0200 keV

-2

-1

Page 16: c = cos θ sol , s = sin θ sol ,  θ sol ~ 35 o x = sin θ atm  = cos θ atm ,  θ atm ~ 45 0

Teresa Montaruli, 5 - 7 Apr. 2005Teresa Montaruli, 5 - 7 Apr. 2005

BeppoBeppo-SAX and afterglows-SAX and afterglows

Determined in 5-8 h precise GRB position thanks to detection in X (WFC)

From optical afterglow spectrum redshift cosmological distance Emitted energy (isotropic) 1054 erg Beaming (light curve changes in slope):

= 1/EobsEemitted ~102-103

Eemitted~ 5 ·1050 erg

Beppo-SAX (54 GRBs/6yrs, 5’ error box, 40-700 keV, FoV 20 ˚ 20 ˚)

Xray afterglow discovery: delayed emission even after ~ 1d optical counterparts SN association: GRB980425-SN1998bw GRB030329-SN2003dh position coincidence and SN like spectrum in afterglowLong GRBs: stellar core collapse into a BH,accretes mass driving a relativistic jet thatpenetrates the mantle and produces GRBControversial: observation off-axis suppresses flux

Page 17: c = cos θ sol , s = sin θ sol ,  θ sol ~ 35 o x = sin θ atm  = cos θ atm ,  θ atm ~ 45 0

Teresa Montaruli, 5 - 7 Apr. 2005Teresa Montaruli, 5 - 7 Apr. 2005

Current and future missionsCurrent and future missionsMissionMission Error box Rate Error box Rate

((˚) (GRB/yr)) (GRB/yr)GLASTGLAST <0.125 300<0.125 300

SWIFTSWIFT ~~0.004 2000.004 200

HETE-2HETE-2 ~~0.03 250.03 25

INTEGRALINTEGRAL <0.2 35<0.2 35

The Gamma-ray bursts Coordinate network GCN: The Gamma-ray bursts Coordinate network GCN: Distribution of alertsDistribution of alerts

Delay of satelliteDelay of satellitedata processing anddata processing andtransmission+transmissiontransmission+transmissionof alertsof alerts

Page 18: c = cos θ sol , s = sin θ sol ,  θ sol ~ 35 o x = sin θ atm  = cos θ atm ,  θ atm ~ 45 0

Teresa Montaruli, 5 - 7 Apr. 2005Teresa Montaruli, 5 - 7 Apr. 2005

The fireball modelCompactness problem: the optical depth for pair production very high if initial energy Compactness problem: the optical depth for pair production very high if initial energy emitted from a volume with radius R emitted from a volume with radius R <c dt ~300 km with dt = variability time scale ~ ms <c dt ~300 km with dt = variability time scale ~ ms in in photons photons with the observed spectrum with the observed spectrum this would imply thermal spectra contrary t this would imply thermal spectra contrary t observationsobservations

Solution: relativistic motion Solution: relativistic motion dimension of source R dimension of source R <<22 c dt and E c dt and Eobsobs = = E Emitted mitted

A fireball (A fireball (, e, e, baryon loading <10, baryon loading <10-5 -5 MMsunsun to reach observed to reach observed ) forms due to the high ) forms due to the high energy density, that expands. When it becomes optically thin it emits the observed energy density, that expands. When it becomes optically thin it emits the observed radiation through the dissipation of particle kinetic energy into relativistic shocksradiation through the dissipation of particle kinetic energy into relativistic shocks

External shocks:External shocks: relativistic matter runs on external medium, interstellar or wind earlier relativistic matter runs on external medium, interstellar or wind earlier emitted by the progenitoremitted by the progenitor

Internal shocks:Internal shocks: inner engine emits inner engine emits many shells with different Lorentz many shells with different Lorentz factors colliding into one another, and factors colliding into one another, and thermalizing a fraction of their kinetic thermalizing a fraction of their kinetic energy energy

Review

Page 19: c = cos θ sol , s = sin θ sol ,  θ sol ~ 35 o x = sin θ atm  = cos θ atm ,  θ atm ~ 45 0

Teresa Montaruli, 5 - 7 Apr. 2005Teresa Montaruli, 5 - 7 Apr. 2005

Active Galactic NucleiActive Galactic Nuclei

VLA image of Cygnus A

Rotating massive BH with jets along rotation axis with matter outflow + accretion disc Spectra have a thermal part due to synchrotron radiation of electrons in a magnetic field (UV bump at optical-UV frequencies)+non thermal componentextending up to 20 orders of magnitudeexplained by leptonic/hadronic modelsNeutrino production in p or pp processes

Page 20: c = cos θ sol , s = sin θ sol ,  θ sol ~ 35 o x = sin θ atm  = cos θ atm ,  θ atm ~ 45 0

Teresa Montaruli, 5 - 7 Apr. 2005Teresa Montaruli, 5 - 7 Apr. 2005

Upper bounds on X-galactic fluxesUpper bounds on X-galactic fluxes

This bound does not apply to harder This bound does not apply to harder spectra or optically thickspectra or optically thick

Cosmic p accelerators produce CRs, ’s and ’s Ultimate bound of any scenario involving and production from s: diffuse extra-galactic background E2F< 6 10-7 GeV /cm2 s sr (EGRET) Measured UHECR flux provides most restrictive limit (Waxman & Bahcall (1999) - optically thin sources: nucleons from photohadronic interactions escape - CR flux above the ankle (>3 ·1018eV) are extragalactic protons with E-2 spectrum E2F< 4.5 10-8 GeV /(cm2 s sr)

Mannheim, Protheroe & Rachen (2000): Magnetic fields and uncertainties in photohadronic interactions of protons can largely affect the bound as these effects restrict number of protons able to escape

CR rate evolves with z

Page 21: c = cos θ sol , s = sin θ sol ,  θ sol ~ 35 o x = sin θ atm  = cos θ atm ,  θ atm ~ 45 0

Teresa Montaruli, 5 - 7 Apr. 2005Teresa Montaruli, 5 - 7 Apr. 2005

Suggested referencesSuggested references

Halzen and Hooper, Rept.Prog.Phys.65:1025-1078,2002 Learned and Mannheim, Ann.Rev.Nucl.Part.Sci.50:679-749,2000 Burgio, Bednarek, TM, New Astron. Rev. 49, 2005 (galactic

point sources) http://arxiv.org/PS_cache/astro-ph/pdf/0405/0405503.pdf (GRBs) Books: Longair, High Energy Astrophysics Berezinski, Neutrino

Astrophysics 1995 These transparencies:

http://www.icecube.wisc.edu/~tmontaruli/

Page 22: c = cos θ sol , s = sin θ sol ,  θ sol ~ 35 o x = sin θ atm  = cos θ atm ,  θ atm ~ 45 0

Teresa Montaruli, 5 - 7 Apr. 2005Teresa Montaruli, 5 - 7 Apr. 2005

Neutrino Detection PrincipleNeutrino Detection Principles are weekly interacting require large target mass andrequire large target mass andconversion into charged particleMarkov/ Greisen idea (1960)Markov/ Greisen idea (1960)

Target is surrounding matterTarget is surrounding matter M =M = RRS (ES (E = 1 TeV : R = 1 TeV : R = 2.5 = 2.5

km)km)

Events are upgoingEvents are upgoing

XN

)(

Muon neutrinosMuon neutrinosare the only topologyare the only topologyto allow source pointingto allow source pointingBut since But since s oscillate s oscillate other topologies shouldother topologies shouldbe considered thatbe considered thatallow to observe upper allow to observe upper skysky

Page 23: c = cos θ sol , s = sin θ sol ,  θ sol ~ 35 o x = sin θ atm  = cos θ atm ,  θ atm ~ 45 0

Teresa Montaruli, 5 - 7 Apr. 2005Teresa Montaruli, 5 - 7 Apr. 2005

Energy lossesEnergy lossesIonization and atomic excitationIonization and atomic excitation: interactions with electrons in the media: interactions with electrons in the mediaContinuous processContinuous processmip: particles at the minimum of ionization mip: particles at the minimum of ionization 2 MeV/g/cm2 MeV/g/cm22

Radiative: discrete process and stochasticRadiative: discrete process and stochasticBremmsstrahlung:Bremmsstrahlung: radiation emitted by an radiation emitted by anaccelerated or decelerated particle throughaccelerated or decelerated particle throughthe field of an atomic nucleithe field of an atomic nucleiEnergy emitted Energy emitted 1/m1/m22

Pair production:Pair production: +N +N e e++ee--

Photonuclear : Photonuclear : inelastic interaction ofinelastic interaction ofmuons with nuclei, produces hadronic muons with nuclei, produces hadronic showersshowers

Page 24: c = cos θ sol , s = sin θ sol ,  θ sol ~ 35 o x = sin θ atm  = cos θ atm ,  θ atm ~ 45 0

Teresa Montaruli, 5 - 7 Apr. 2005Teresa Montaruli, 5 - 7 Apr. 2005

The target massThe target mass

)/1log(11

00c

EE

EEb

dEbEa

dEdEdxR

Ionization Stochastic losses ~2 MeV/g/cm2 (dominate > 1TeV )

baEc / critical energy

Upgoing muons: much larger interaction volume than what is in the instrumented region

Pair production

bremsstrahlung

rockrock

ionizationphotonuclear