18
CALA and Garching plans S Karsch Max-Planck-Institut für Quantenoptik Ludwig-Maximilians-Universität München (Germany) EuroNNAc Workshop, CERN, Geneva, May 3-6, 2011 Montag, 2. Mai 2011

CALA and Garching plans - Indico...• CALA aims at combining medical diagnosis and therapy, and at developing new imaging/treatment techniques early on • Key electron parameters

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

  • CALA and Garching plans

    S Karsch

    Max-Planck-Institut für Quantenoptik Ludwig-Maximilians-Universität München

    (Germany)

    EuroNNAc Workshop, CERN, Geneva, May 3-6, 2011

    Montag, 2. Mai 2011

  • ALA

    MAP  -‐  Munich  Centre  for  Advanced  Photonics

    Munich Center forIntegrated ProteinScience (CIPSM)

    Munich Centre for Advanced

    Photonics (MAP)

    Nanosystems InitiativeMunich (NIM)

    Origin and Structure ofthe Universe

    Cognition for TechnicalSystems (CoTeSys)

    Munich Research Network

    Montag, 2. Mai 2011

  • What is CALA?

    TUM Maschinenwesen

    TUM Physik

    Max-Planck-Inst. f. Quantenoptik (MPQ)

    FRM II

    TUM Informatik

    LMU Physik TUM Chemie

    CALA

    Montag, 2. Mai 2011

  • ALAStep 1: Pre-CALA until mid 2011

    Pre-CALA until mid 2011

    Pre-CALA• 500-m² laser-/experimental hall• Transfer of the MPQ-high-intensity laser

    ATLAS-100 and its upgrade to 300TW

    cost: 5 M€financed by LMU and MAP

    Pre-CALA allows the continuation and

    expansion of MAP-activities until 2014

    Montag, 2. Mai 2011

  • ALAStep 2: CALA

    Pre-CALA until mid 2011

    CALA until 2014

    Forschungsbauantrag CALA• 1600 m² experimental/laser hall • 500 m² office- and 600 m² laboratory

    space

    total cost: ca. 63 Mio €Funded by Land Bayern and Germany

    CALA as a whole

    2100 m² laser- and experimental area +

    500 m² offices+

    600 m² support laboratories

    Montag, 2. Mai 2011

  • ALAUltimate goal: Improve and combine both diagnostics and therapy

    Conventional CT

    Heart

    LungPhase-contrast CT

    Diagnostics: Phase-contrast imaging dramatically improves visibility of structures (F. Pfeiffer et al.)

    Therapy: Ion therapy promises higher irradiation accuracy with lower dose to healthy tissue (Molls et al.)

    Proton therapy

    Photon therapy

    High-quality laser-driven beams may become an attractive

    alternative for large-scale

    conventional facilities

    Montag, 2. Mai 2011

  • AAC  2010  Karsch

       primary  sources

    synchronized  femto-‐  and  a=osecond  secondary  sources

    bio-‐medical  applica@ons

    synchr.

    ATLAS-‐30001  Hz  Ti:Sa  laser

    60  J,  20  fs800  nm3000  TW

    BRIXThomson  source1011ph/s20-‐35  keV

    Tumour  therapy  with  laser-‐accelerated  

    par@cles

    Ultrafast  @me-‐resolved  radia@on  

    biology1-‐25  keV

    brilliant  X-‐ray  imaging70-‐200  keV

    electrons:50-‐300  MeV10-‐100  pC<  10  fs

    ΔE/E  <  5%

    electrons:0.5-‐5  GeV

    100  pC  –  1(10)  nC<  10  fs

    ΔE/E  0.1-‐1%

    ions:250  MeV  protons

    >400  MeV  /amu  C6+

    PFS-‐prokHz  OPCPA0.5J,  5fs

    700-‐1400  nm100  TW

    LIONLaser-‐driven  

    ions

    ETTFGeV,  high  charge  beams  

    LUX1-‐25  keV  Undulator  X-‐rays

    HHG1  keV  

    a=osecond  X-‐rays

    SPECTRE>  50  keV  Thomson  source

    LXL:  free  electron  laser

    Montag, 2. Mai 2011

  • ALAALA

    X-rays: Description of beamlines

    Name Applica@on electron  energy

    photon  energy

    photonnumber

    SPECTRESource  for  Powerful,  Energe@c,  Compact  Thomson  Radia@on  Experiments

    biomedical  imaging  with  phase  contrast  method 50-‐100  MeV >  70  keV 1010  ph/s  @  1  kHz  

    ETTFElectron  and  Thomson  Test  Facility

    development  of  electron  accelera@on:  basic  research  for  LUX  and  LXL,  high  energy  Thomson  sca=ering

    1-‐5  GeV >  1  MeV 106-‐107  ph  in  5fs

    LUXLaser-‐driven  Undulator  X-‐ray  source

    ion  pump  /  X-‐ray  probe:  preliminary  studies  for  ultrafast  radia@on  biologyions  from  “mini-‐LION”

    0.5-‐5  GeV <  25  keV 108  ph  in  ~5  fs

    LXLLaboratory-‐scale  X-‐ray  free  electron  Laser

    ion  pump  /  X-‐ray  probe  for  ultrafast  radia@on  biology

    0.5-‐5  GeV ~  5  keV 1012  ph  in  5  fscoherent!

    1. magnets2. electrons3. undulator radiation

    1. laser field2. electrons3. Thomson radiation

    λU ≫ λL

    GeV- 70 MeV-electrons electrons

    LUX/LXL SPECTRE

    Montag, 2. Mai 2011

  • ALAALAElectron acceleration for SPECTRE: 50 – 300 MeV, 1kHzFew-cycle-pulses (8 fs, 50 mJ) drive quasi-monoenergetic electrons with low background:

    Stable 200 MeV electron beams with 40fs, 800 mJ pulses:Beams with low energy and charge fluctuation are created with every laser shot:

    J. Osterhoff et al, Phys. Rev. Lett. 101, 085002 (2008)

    K. Schmid et al, Phys. Rev. Lett. 102, 124801 (2009)

    50-250 MeVhigh-quality electrons need a

    0.5-1J few-cycle-laser at 1 kHz repetition rate

    PFS-pro

    ALA

    Montag, 2. Mai 2011

  • ALAkHz

    amplifier200 mJ

    kHz amplifier

    1J

    kHz amplifier

    4x1Jpump laser

    pulse generation

    OPA amplification

    • Upgraded pump laser drives OPA stages at 1 kHz up to the 1 J-level

    • remaining last 5 J stage operates at 10 Hz• Pump upgrade uses disk laser technology

    PFS-pro

    Montag, 2. Mai 2011

  • ATLAS

    Preamp

    Stretche

    r

    Regen

    Mul@p

    ass  1

    Mul@p

    ass  2

    Mul@p

    ass  3

    (3x)

    Mul@p

    ass  4

    (2x)

    Compressor

    5nJ

    20fs

    70MHz

    50µJ

    20fs

    70MHz

    3µJ

    300ps

    70MHz

    2mJ

    300ps

    10Hz

    25mJ

    300ps

    10Hz

    0.5J

    300ps

    5Hz

    1.5J

    300ps

    5Hz

    3J

    300ps

    5Hz

    2J

    20fs

    5Hz

    Minilite

    20mJ

    Bigsky

    40mJ

    Surelite

    40mJ

    Powerlite

    800m

    J

    Powerlite

    800m

    J

    Macho

    lite

    2J

    Macho

    lite

    2J

    Prop

    ulse

    2J

    Prop

    ulse

    2J

    Prop

    ulse

    2J

    Oscillator

    Energy (compressed/on target) (J) 2 / 1,6

    pulse duration (fs) 25

    contrast @ -10 ps (with absorber) 108 (1010)

    Strehl ratio 0,7

    new cryocooled last amplifier under development (Amplitude)

    ensures future upgradeablility

    Montag, 2. Mai 2011

  • 200MeV

    600MeV800MeV

    400MeV

    Shot  #

    300pC

    200pC

    100pC

    e-beams from gas cell: 600 MeV, 200 pC:allows LUX experiments into water window

    Montag, 2. Mai 2011

  • injected beams, gas jet: 50 MeV, 100 pC:target parameters for SPECTRE

    a0=2.5, ne= 1.2x1018 cm-3

    Montag, 2. Mai 2011

  • Optical to THz CTR spectra of electrons crossing a metal foil (very preliminary)

    Preliminary wide-bandwidth data:

    indicate approx. 5 fs duration 4.5 fs gaussian spectrum

    at high pressure and/or long gas cell:

    oscillations with a period ~16µm

    Montag, 2. Mai 2011

  • ALAALAElectron acceleration for LUX and LXL: >> 1 GeVScaling of electron acceleration to higher energies and charge

    (0.5 GeV>5 GeV, 100 pC>1 nC):

    • Energy conservation: 100x higher laser energy needed (0.6 J > 60 J)

    • analytical scaling laws have been confirmed experimentally

    Boosted-Frame Particle-in-Cell simulations recently have demonstrated the ability to simulate m-scale laser-wakefield interactions with multi-PW lasers:

    laserelectrons

    Montag, 2. Mai 2011

  • ALA

    20fs

    5Hz

    twin

    - mul

    tipas

    s 5

    (10x

    )

    0.5ns

    5Hz

    90Jmax

    260J

    8Jmax

    0.5ns

    5Hz com

    pres

    sor 60Jmax

    3 P

    W b

    eam

    Ti:Sapphire amplifier

    pump laser (Nd:YAG 532nm) new components: CALA

    new components: pre-CALA

    2mJ

    0.5ns

    10Hz

    osci

    llato

    r

    prea

    mpl

    ifier

    (100

    0x)

    stre

    tche

    r

    rege

    n (4

    00x)

    mul

    tipas

    s 1

    (12x

    )

    mul

    tipas

    s 2

    (20x

    )

    mul

    tipas

    s 3

    (3x)

    mul

    tipas

    s 4

    (5x)

    com

    pres

    sor

    5nJ

    20fs

    70MHz

    5µJ 3µJ 25mJ

    20fs

    10Hz

    0.5J

    0.5ns

    5Hz

    1.5J

    0.5ns

    5Hz

    8J

    0.5ns

    5Hz

    10m

    J

    30m

    J

    100m

    J

    1.6J 4J 6J

    varia

    ble

    beam

    dis

    tribu

    tion

    6Jmax

    0.5ns

    5Hz

    0.5ns

    5Hz

    20fs

    5Hz

    300

    TW b

    eam

    puls

    e cl

    eani

    ng

    12J

    8Jmax

    Seed from PFS-pro

    ATLAS-3000: schematic layout

    ELI and its spin-offs started several new enabling technologies for large-scale Ti:Sa lasers:

    Large Ti:Sacrystals:

    192 mm dia. Ti:Sa crystal(image courtesy Crystal Systems)

    high-power, rep-rated pump lasers

    15 J, 1 Hz green pump laser(image courtesy Thales laser)

    new large-size, high-efficiency gratings

    direct-etched gratings(image courtesy Plymouth grating labs)

    Montag, 2. Mai 2011

  • ALAALAbrilliance

    [ph/ (sec mm2 mrad2 0.1% BW)]

    costs (size)[M€ (meter)]1 10 100 1000

    1022

    1015

    107

    1011

    undulator

    deflecting magnet

    rotating anode 100 kW,Bremsstrahlung

    CALA: BRIX, laser driven sources

    brilliance comparison (© F. Pfeiffer)

    CALA: peak brilliance of laser driven sources

    Montag, 2. Mai 2011

  • Conclusions

    • CALA is going to become the backbone for laser acceleration research in Munich from 2014/15 onwards

    • CALA applications focus on compact accelerators for medical purposes - but with EuroNNAc, we are keen for more...

    • CALA aims at combining medical diagnosis and therapy, and at developing new imaging/treatment techniques early on

    • Key electron parameters for CALA projects have been realized even with the current laser systems at MPQ

    • Access to CALA is possible through collaboration with Munich groups in the MAP framework

    Montag, 2. Mai 2011