Click here to load reader

CALETCollaboraon& - TAUP · PDF fileFRGF( Flight Releasable Grapple Fixture) CGBM/ HXM CALORIMETERMODULE CHD+IMC+TASC CHD IMC TASC " Standard Payload Size " Mass: 612.8 kg

  • Upload
    vuquynh

  • View
    214

  • Download
    2

Embed Size (px)

Citation preview

  • CALET A high energy astropar3cle physics experiment on the ISS

    TAUP 2015 Torino, September 8, 2015

    Pier Simone Marrocchesi Univ. of Siena and INFN Pisa

  • CALET Collabora3on O. Adriani19, Y. Akaike3, K. Asano17, Y. Asaoka23, M.G. Bagliesi22, G. Bigongiari22, W.R. Binns24, S. Bonechi22, M. Bongi19, J.H. Buckley24, A. Cassese19, G. Castellini19, M.L. Cherry9, G. Collazuol26, K. Ebisawa5, V. Di Felice21, H. Fuke5, T.G. Guzik9, T. Hams30, N. Hasebe23, M. Hareyama6, K. Hibino7, M. Ichimura2, K. Ioka8, M.H. Israel24, A. Javaid9, E. Kamioka15, K. Kasahara23, Y. Katayose25, J. Kataoka23, R. Kataoka32, N. Kawanaka33, H. Kitamura11, T. Kotani23, H.S. Krawczynski24, J.F. Krizmanic31, A. Kubota15, S. Kuramata2, T. Lomtadze20, P. Maestro22, L. Marcelli21, P.S. Marrocchesi22, J.W. Mitchell10, S. Miyake28, K. Mizutani14, A.A. Moiseev30, K. Mori5,23, M. Mori13, N. Mori19, H.M. Motz23, K. Munakata16, H. Murakami23, Y.E. Nakagawa5, S. Nakahira5, J. Nishimura5, S. Okuno7, J.F. Ormes18, S. Ozawa23, F. Palma21, P. Papini19, B.F. Rauch24, S. Ricciarini19, T. Sakamoto1, M. Sasaki30, M. Shibata25, Y. Shimizu4, A. Shiomi12, R. Sparvoli21, P. Spillan3ni19, I. Takahashi1, M. Takayanagi5, M. Takita3, T. Tamura4,7, N. Tateyama7, T. Terasawa3, H. Tomida5, S. Torii4,23, Y. Tunesada17, Y. Uchihori11, S. Ueno5, E. Vannuccini19, J.P. Wefel9, K. Yamaoka29, S. Yanagita27, A. Yoshida1, K. Yoshida15, and T. Yuda3 1) Aoyama Gakuin University, Japan 2) Hirosaki University, Japan 3) ICRR, University of Tokyo, Japan 4) JAXA/SEUC, Japan 5) JAXA/ISAS, Japan 6) St. Manianna University School of Medicine, Japan 7) Kanagawa University, Japan 8) KEK, Japan 9) Louisiana State University, USA 10) NASA/GSFC, USA 11) Na3onal Inst. of Radiological Sciences, Japan 12) Nihon University, Japan 13) Ritsumeikan University, Japan 14) Saitama University, Japan 15) Shibaura Ins3tute of Technology, Japan 16) Shinshu University, Japan 17) Tokyo Ins3tute of Technology, Japan

    18) University of Denver, USA 19) University of Florence, IFAC (CNR) and INFN, Italy 20) University of Pisa and INFN, Italy 21) University of Rome Tor Vergata and INFN, Italy 22) University of Siena and INFN, Italy 23) Waseda University, Japan 24) Washington University-St. Louis, USA 25) Yokohama Na3onal University, Japan 26) University of Padova and INFN, Italy 27) Ibaraki University, Japan 28) Ibaraki Na3onal College of Technology, Japan 29) Nagoya University, Japan 30)CRESST/NASA/GSFC and University of Maryland, USA 31)CRESST/NASA/GSFC and Universi3es Space Research Associa3on, USA 32) Na3onal Ins3tute of Polar Research, Japan 33) The University of Tokyo, Japan

    P. S. Marrocchesi TAUP - Torino, September 8, 2015

    2

  • CALorimetric Electron Telescope (CALET): INSTRUMENT OVERVIEW

    - CHarge Detector (CHD) (Charge Measurement Z=1-40) - Imaging Calorimeter (IMC) (Par3cle ID, Direc3on) Total Thickness of Tungsten (W) 3 X0 , 0.1 Layer Number of Scifi Belts 8 Layers 2(X,Y)

    - Total AbsorpAon Calorimeter (TASC) (Energy Measurement, Par3cle ID) PWO20mm 20mm 320mm Total Depth of PWO 27 X0 (24 cm) , 1.2

    CHD (Charge Detector)

    IMC (Imaging Calorimeter)

    TASC (Total Absorption Calorimeter)

    Function Charge Measurement (Z = 1 - 40) Arrival Direction, Particle ID Energy Measurement, Particle ID

    Sensor (+ Absorber)

    Plastic Scintillator : 2 layers Unit Size: 32mm x 10mm x 450mm

    SciFi : 16 layers Unit size: 1mm2 x 448 mm

    Total thickness of Tungsten: 3 X0

    PWO log: 12 layers Unit size: 19mm x 20mm x 326mm

    Total Thickness of PWO: 27 X0

    Readout PMT+CSA 64 -anode PMT+ ASIC APD/PD+CSA PMT+CSA ( for Trigger)

    P. S. Marrocchesi 3 TAUP - Torino, September 8, 2015

  • Gamma-ray 10 GeV Electron 1 TeV Proton 10 TeV

    Proton rejec3on power of 105 can be achieved with IMC and TASC shower imaging capability. Charge of incident par3cle is determined to Z= 0.15-0.3 with the CHD.

    CALET/CAL Shower Imaging Capability (Simulation)

    In Detector Space

    P. S. Marrocchesi 4 TAUP - Torino, September 8, 2015

  • CALET

    #9

    - 5 - - 5 - P. S. Marrocchesi 5

    ASC(Advanced Stellar Compass)

    Geometric Factor 1200 cm2sr for electrons, light nuclei 1000 cm2sr for gamma-rays 4000 cm2sr for ultra-heavy nuclei E/E : ~2% (>10 GeV) for e, gamma ~30-35 % for protons, nuclei e/p separaAon : 10-5 Charge resoluAon : 0.15 - 0.3 e Angular resoluAon : 0.2 for gamma-rays > ~50 GeV

    FRGF (Flight Releasable Grapple Fixture)

    TAUP - Torino, September 8, 2015

  • CGBM (Calet Gamma-ray Burst Monitor)

    HXM x2

    LaBr3(Ce)

    SGM x1

    BGO

    7keV-1MeV

    0.1-20MeV

    P. S. Marrocchesi 6

    ASC(Advanced Stellar Compass)

    GPSR(GPSReceiver)

    CGBM/SGM

    MDC(Mission Data Controller)

    FRGF( Flight Releasable Grapple Fixture)

    CGBM/HXM

    CALORIMETER MODULE CHD+IMC+TASC

    CHDIMC

    TASC

    Standard Payload Size Mass: 612.8 kg Power: 507 W (Max) Telemetry: o Medium rate: 600 kbps o Low rate: 50 kbps

    CALET System Overview (Final)

    TAUP - Torino, September 8, 2015

  • An electron/gamma calorimetric telescope with charge iden3fica3on

    q The unique feature of CALET is its thick, homogeneous calorimeter that allows to extend electron measurements into the TeV energy region with excellent energy resolu3on, coupled with a high granularity imaging pre-shower calorimeter to accurately iden3fy the star3ng point of electromagne3c showers. Combined, they powerfully separate electrons from the abundant protons: rejec3on power 105.

    q A dedicated charge detector + mul3ple dE/dx track sampling in the IMC allow to iden3fy

    individual nuclear species.

    Science ObjecAves ObservaAon Targets

    Nearby Cosmic-ray Sources Electron spectrum in trans-TeV region

    Dark Maper Signatures in electron/gamma energy spectra in the 10 GeV 10 TeV region

    Origin and Accelera3on of Cosmic Rays p-Fe up to the mul3-TeV region, Ultra Heavy Nuclei

    CosmicRay Propaga3on in the Galaxy B/C ra3o up to a few TeV /n

    Solar Physics Electron flux below 10 GeV

    Gamma-ray Transients Gamma-rays and X-rays in 7 keV 20 MeV

    P. S. Marrocchesi 7 TAUP - Torino, September 8, 2015

  • CALET Main Target: Identification of Electron Sources

    Expected flux"for 5 year mission "

    Expected Anisotropy"from Vela SNR

    ~10% @1TeV

    > 10 GeV ~ 2.7 x 107

    >100 GeV ~ 2.0 x 105

    >1000 GeV ~ 1.0 x 103

    Some nearby sources, e.g. Vela SNR, might have unique signatures" in the electron energy spectrum in the TeV region (Kobayashi et al. ApJ 2004)

    Identification of the unique signature from nearby SRNs, "such as Vela in the electron spectrum by CALET

    P. S. Marrocchesi 8 TAUP - Torino, September 8, 2015

  • Indirect Dark Maper Search with Electrons

    2yr (BF=40) or 5yr (BF=16)

    Simulated e++e- spectrum for 2yr from Kaluza-Klein dark matter annihilations with m=620GeV and BF=40.

    Simulated e++e- spectrum for 2yr from decaying dark matter for a decay channel of D.M.-> l+l- with m=2.5TeV and = 2.1x1026 s.

    CALET has the poten3al to detect signals from dark maper annihila3on/decay from the shape of the inclusive electron + positron spectrum.

    (A.Ibarra et al. 2010)

    P. S. Marrocchesi 9 TAUP - Torino, September 8, 2015

  • l 690 GeV neutralino annihilating to l Clumpy halo as realized in N-body simulation of Moore et al. (ApJL 1999) l Simulated Signal in CALET for 3 years

    Example:

    CALET has a beper energy resolu3on than FERM above 10 GeV. Therefore it can provide a HIGH RESOLUTION measurement of the line-shape of possible signals that FERMI might discover.

    better than FERMI above 10 GeV

    Gamma-ray Line shape

    P. S. Marrocchesi 10

    Indirect Dark Maper Search with Gamma rays

    Energy Resolution Angular Resolution

    TAUP - Torino, September 8, 2015

  • q The break also appears in the spectra of NUCLEI measured by CREAM up to several TeV/n

    The slope of Z>2 NUCLEI at high energy looks similar to He and different from protons

    q PAMELA detected a spectral break in PROTON and HE spectra at R ~ 240 GV

    A single power-law seems inadequate to fit the spectra of nuclei

    Measurements of cosmic nuclei spectra - I

    P. S. Marrocchesi 11 TAUP - Torino, September 8, 2015

  • Recent measurements by AMS-02 with p and He below MDR ~ 2 TV seem to confirm the presence of a spectral break in the same region as reported by PAMELA and CREAM

    p He

    CALET will be able to perform an accurate scan of the energy region around the spectral break with an energy resolu3on ~30 % and larger GF ~ 0.12 m2 sr

    proton and He

    Measurements of cosmic nuclei spectra - II

    P. S. Marrocchesi 12 TAUP - Torino, September 8, 2015

  • q INDIRECT MEASUREMENTS BY AIRSHOWERS: hints of a proton cutoff below 1 PeV?

    Measurements of cosmic nuclei spectra - III Explora3on of the sub-PeV region

    E_cutoff (p+He) ~ 700 TeV ?

    In 5 yrs CALET can perform DIRECT measurements of p and He fluxes in the mul3-TeV region.

    P. S. Marrocchesi 13 TAUP - Torino, September 8, 2015

    SuperposiAon with CREAM direct measurements

    ARGO YBJ: (P + HE) SPECTRUM