CCNAV3.3 306

Embed Size (px)

Citation preview

  • 8/6/2019 CCNAV3.3 306

    1/24

    1

    CCNA Semester 3

    Chapter 06Chap

    ter 06

    SPANNING TREESPANNING TREEPROTOCOLPROTOCOL

  • 8/6/2019 CCNAV3.3 306

    2/24

    2

    ObjectivesObjectives

    Define redundancy and its importance innetworking

    Describe the spanning tree in a redundant-

    path switched network

  • 8/6/2019 CCNAV3.3 306

    3/24

    3

    Table of ContentTable of Content

    1 Redundant topologies2 Spanning tree protocol

  • 8/6/2019 CCNAV3.3 306

    4/24

    4

    REDUNDANT TOPOLOGIESREDUNDANT TOPOLOGIES

  • 8/6/2019 CCNAV3.3 306

    5/24

    5

    Redundant switched topologiesRedundant switched topologies

    Segment 1

    Segment 2

    Switch A Switch B

    Router YServer/Host X

  • 8/6/2019 CCNAV3.3 306

    6/24

    6

    Broadcast stormsBroadcast storms

    Segment 1

    Segment 2

    Switch A Switch B

    Router YServer/Host X

  • 8/6/2019 CCNAV3.3 306

    7/247

    Multiple frame transmissionsMultiple frame transmissions

  • 8/6/2019 CCNAV3.3 306

    8/248

    Media access control database instabilityMedia access control database instability

  • 8/6/2019 CCNAV3.3 306

    9/249

    SPANNING TREE PROTOCOLSPANNING TREE PROTOCOL

  • 8/6/2019 CCNAV3.3 306

    10/24

  • 8/6/2019 CCNAV3.3 306

    11/241

    Spanning Tree ProtocolSpanning Tree Protocol

    The ST Algorithm, implemented by the STP,

    prevents loops by calculating a stablespanning-tree network topology.

    Spanning-tree frames, called bridge protocoldata units (BPDUs), are sent and receivedby all switches in the network at regularintervals and are used to determine thespanning-tree topology.

  • 8/6/2019 CCNAV3.3 306

    12/241

    Provides a loop-free redundant network topologyplacing certain ports in the blocking state.

    Spanning-Tree ProtocolSpanning-Tree Protocol

  • 8/6/2019 CCNAV3.3 306

    13/241

    One root bridge per network

    One root port per nonroot bridge

    One designated port per segment

    Nondesignated ports are unused

    Spanning-Tree Operation

  • 8/6/2019 CCNAV3.3 306

    14/241

    Bpdu = Bridge Protocol Data Unit

    (default = sent every two seconds)

    Root bridge = Bridge with the lowest bridge ID

    Bridge ID =

    Spanning-Tree Protocol Root Bridge Selection

  • 8/6/2019 CCNAV3.3 306

    15/241

    Spanning-tree transits each portthrough several different states:

    Spanning-Tree Port StatesSpanning-Tree Port States

  • 8/6/2019 CCNAV3.3 306

    16/241

    Spanning-Tree Port States (Cont.)

  • 8/6/2019 CCNAV3.3 306

    17/241

    Spanning-Tree Path Cost

  • 8/6/2019 CCNAV3.3 306

    18/241

    Spanning-Tree Example

  • 8/6/2019 CCNAV3.3 306

    19/241

    Spanning-Tree RecalculationSpanning-Tree Recalculation

  • 8/6/2019 CCNAV3.3 306

    20/242

    Spanning-Tree ConvergenceSpanning-Tree Convergence

    Convergence occurs when all the switch andbridge ports have transitioned to either theforwarding or the blocking state.

    When the network topology changes,switches and bridges must recompute theSpanning-Tree Protocol, which disrupts usertraffic.

  • 8/6/2019 CCNAV3.3 306

    21/24

    2

    Rapid Spanning-Tree ProtocolRapid Spanning-Tree Protocol

  • 8/6/2019 CCNAV3.3 306

    22/24

    2

    Rapid Transition to Forwarding

  • 8/6/2019 CCNAV3.3 306

    23/24

    2

    SummarySummary

    The benefits and risks of a redundant topology

    The role of spanning tree in a redundant-pathswitched network

  • 8/6/2019 CCNAV3.3 306

    24/24

    Q&AQ&A