CE222 SM 11 in-situ Stresses

Embed Size (px)

DESCRIPTION

Soil MechanicsBasics

Citation preview

  • SoilMechanicsICE222

    Waterinsoil:Insitustresses

    CE 222

    1

  • Insitu/geostaticstress 2

    Geostaticstressesarecausedbygravityactingonthesoilorrock,sothedirectionresultisavertical,normalstressz.

    This stress has a significant impact on theThisstresshasasignificantimpactontheengineeringbehaviorofsoil,andisoneisneededtobecomputed.

    Thisverticalstressindirectlyproduceshorizontalnormal stress and shear stresses, which arenormalstressandshearstresses,whichareimportanttogeotechnicalengineer.

  • Insitu/geostaticstress 3

    V ti l t

    Area = AGround surface

    Verticalstresses

    Consideracolumnofsoilthatextendsfrom ground surface down to a point

    H1 1st stratum

    fromgroundsurfacedowntoapointwherewewishtocomputez.Itsweightis

    H2

    = 1

    2nd stratumdxdyHdxdyHdxdyHW 332211 ++=

    HdxdyW H3

    = 2

    3rd stratum

    = HdxdyW Thegeostaticstress,z atbottomofl i 3

    rd stratum = 3columnis

    === HHdxdyW dy dx

    === HdxdyAz

  • Insitu/geostaticstress 4

    Area = AGround surface

    Thetotalverticalstressatanypointinthesoilmassisdue

    H1 1st stratum p

    solelytotheweightofsoilandwateraboveit. H2

    = 1

    2nd stratum

    H3

    = 2

    3rd stratum3rd stratum = 3

    dy dx

  • Totalandeffectivestress 5

    Insaturatedconditions,thenormalstress iscarriedpartiallybythesolidparticlesandpartiallybytheporewaterpresentinvoids.

    Itiscalledthetotalstressbecauseitissumofthestressescarriedbytwophasesinthesoil:

    The effective stress , which is the portion carried by theTheeffectivestress ,whichistheportioncarriedbythesolidparticles,and

    The pore water pressure, u, which is the portion carried byTheporewaterpressure,u,whichistheportioncarriedbytheporewater.

    Karl Terzaghi was first to recognize the importance ofKarlTerzaghiwasfirsttorecognizetheimportanceofeffectivestress.

  • Submergedsphereanalogy 6

    Tounderstandthephysicsofsoilparticlesundergroundwatertableanddifferencebetweentotalandeffectivestresses,considerthesphererestingonascaleasshownbelow.BuoyancyforceFB onthep g y y Bsphereinwatertankis

    wB VF == (0.1 m3)(9.8 kN/m3)= 0.98 kNThecontactforcebetween

    sphereandscaleisreducedto

    Volume0 1 3

    F=2.60kN 0.98kN=1.62kN

    Scale2.60kN

    0.1m3

    Scale1.62kN

    Theweightofspherehasnotchanged,butisnowg ,supportedpartiallybyscaleandpartiallybywater.

  • Theprincipleofeffectivestress 7

    Theprincipleofeffectivestressismostimportantprincipleinsoilmechanics.

    Deformations of soils are a function of effective stresses notDeformations of soils are a function of effective stresses notDeformationsofsoilsareafunctionofeffectivestressesnotDeformationsofsoilsareafunctionofeffectivestressesnottotalstresses.totalstresses.

    Theprincipleofeffectivestressesappliesonlytonormalstresses

    u+= Principal of effective stress (first recoganized by Terzaghi in mid-1920s.andnottoshearstresses.Why?

    Pore-water pressure

    Effective stress

    Total stress

  • Example 8

    Computetotalverticalstress,porewaterpressure,effectiveverticalstressatmidheightofclaylayer.

    Solution:Solution:

    Totalstress = .H= (18.363.66/2) + (19.627.92) + (9.813.05) = 218.9 kN/m2=(18.363.66/2)+(19.627.92)+(9.813.05)=218.9kN/m

    Porewaterpressureisduetototalwatercolumnabovethemidpoint

    u= w.Hw=(9.813.66/2)+(9.817.92)+

    (9.813.05)=125.6kN/m2

    sat =19.62kN/m3Effectivestress= u=218.9 125.693 3 kN/ 2

    sat =18.36kN/m3

    =93.3kN/m2

  • Example 9

    Calculatethetotalstress,porepressure,andeffectivestressesatA,B,C,andD.

    Solution:AtpointA AA =0,uA=0,A=0AtpointB = 3x16 5 = 49 5 kN/m2

    3m

    3m

    B

    C

    Drysanddry =16.5kN/m3

    B =3x16.5=49.5kN/muB=0,B=49.5 0=49.5kN/m2

    i 13 mClay

    AtpointCC =6x16.5=99kN/m2uC=0C=99 0=99kN/m2

    13m

    D

    ysat =19.25kN/m3

    C /

    AtpointDD =(6x16.5)+(13x19.25)=349.25kN/m2

    13 9 81 127 53 kN/m2

    Impermeablelayer

    uD=13x9.81=127.53kN/m2D=349.25 127.53=221.72kN/m2

  • Example 10

    ATotalstress Porepressure Effectivestress

    B

    C

    Drysanddry =16.5kN/m3

    99.0 0.0 99.0

    Clayk / 3

    D

    sat =19.25kN/m3

    349.25 127.53 221.72

    Impermeablelayer

    Z(m) Z(m) Z(m)( ) ( ) ( )

  • Example 11

    Thesoilprofileisshownbelow.WhatarethetotalstresseseffectivestressesatpointA

  • Example 12

    Thesoilprofileisshownbelow.Ploteffectivestress,totalstressandporepressurewithdepthfortheentireprofile.

  • Stressesinsat.soilwithoutseepage 13

  • Seepagevelocity 14

    Themovementofwaterthroughasoilmassisgenerallytermedseepage.

    Onamicroscopicscale,thewaterh fl i f ll t twhenflowingfollowsatortuous

    routethroughthevoidsinthesoil.

    Fromapracticalpointofview,however,itisassumedtofollowastraightlinepath.

    InDarcysequation,thevelocityvDischargevelocityisthevelocityofflowrelativetoa soil cross section area Aisinterpretedastheapparent,or

    superficial,ordischargevelocity.

    asoilcrosssectionareaA

  • Seepagevelocity 15

    Theactualvelocitythroughporeswillbegreater,andthisistermedtheseepagevelocity(vs).

    vvs = n

  • Dischargeandseepagevelocity 16

    svvAAvq == sv AAA +=( ) AAA + l( ) svsv vAvAAq =+=( ) ( ) ( ) V

    VvVVvLAAvAA s

    v

    svsvsv

    ++++ 1

    vs:seepagevel.

    ( ) ( ) ( ) vVVV

    vVVLA

    vA

    vv

    s

    v

    s

    v

    sv

    v

    sv

    v

    svs

    ====ve + 11 Vs nvv

    nv

    eevs =

    =

    += 11

    nvvs =

  • Seepageforce 17

    hS

    O O

    V l

    Area=AReservoir

    S

    hA A

    Valve

    B B

    L

    F

    l

    o

    w

    Soil

    C C

    Soil

  • Seepageforce 18

    Theworkdonebywaterduringseepageresultsinaseepageforce, J,being

    hS

    O O

    ValveArea=A Reservoir

    exertedontheparticles.h

    B B

    A A

    AhJ sw=Since,flowvelocityisconstant,therefore,the

    f ti th

    L

    F

    l

    o

    w

    seepageforceactingonthesoilwillalsobeconstantbetweenCCandBB.

    C CSoil

    Therefore,seepageforceperunitvolume,j,is

    wsw i

    LAAhj == gradient hydraulic== iL

    hswhere

  • Seepagepressure 19

    hS

    O O

    ValveArea=A Reservoir

    h

    B B

    A Awij =

    L

    o

    w

    Theseepageforceperunitvolume,j,is usually referred

    C CF

    l

    o

    Soil

    isusuallyreferredtoastheseepagepressure.

    C C

  • Quickcondition 20

    Theeffectofupwardflowingwaterinasoilmassincreatingaseepagepressureontheparticlesistoreducetheintergranularoreffectivestress.

    If a sufficiently high enough flow rate is achieved the seepageIfasufficientlyhighenoughflowrateisachieved,theseepagepressurecancancelouttheeffectivestresscompletelycausingaquickcondition.

    Thisisessentiallyaconditioninwhichthesoilhasnoshearstrength, since the intergranular stress has been reduced tostrength,sincetheintergranularstresshasbeenreducedtozero.

  • Quickcondition&criticalhydraulicgradient 21

    Atthequickcondition,theflowwillcauseaseepageforceatCCwhichwillbeequalandoppositetotheeffectivestress.(Note:effective stress is due to the weight of soil)

    hS

    O O

    V lArea=A Reservoir

    effectivestressisduetotheweightofsoil).

    E i f C C S

    hB B

    A A

    ValveEquatingforcesatCC:

    ( ) ( )AhLAhhL wsatsw +=++L

    F

    l

    o

    w

    ( )Lh wsatsw =

    C CF

    Soil( )wsatsw Lh =

    ( )wsatcwi =

  • Quickcondition&criticalhydraulicgradient 22

    ( )wsatcwi = whereic istermedthecriticalhydraulicgradient,i.e.,thehydraulicgradientatwhichthequickconditionoccurs

    hS

    O O

    V lArea=A Reservoir

    occurs

    w

    wsatci

    =S

    hB B

    A A

    ValveAsweknowthat

    ( )eG ws += L

    F

    l

    o

    w

    esat +1( )

    += ws eGi 1

    C CF

    Soil += wwc e

    i 1G 1

    eGi sc +

    =1

    1

  • Quickcondition&criticalhydraulicgradient 23

    Incohesionlesssoils,particularlyinmediumtofinesands,thequickconditionislikelytooccurathydraulicgradientsofabout1.0.

    Contrarytopopularbelief,however,thisisnotasinkingsanddi icondition.

    Quicksand lackingshearresistance,isreallyaliquid,butitsd it i hl t i th t f t h b d lddensityisroughlytwicethatofwater:ahumanbodywould,therefore,floathalfsubmerged.

    I il i i ifi t t f h i h Insoilspossessingasignificantamountofcohesion,suchassiltsandclay,thecriticalhydraulicgradientcriteriondoesnotapply,sincetheyhavesomeshearstrengthatzeronormalstress

  • Seepageforce&safetyofsheetpile 24

    Theseepageforceperunitvolumeofsoilis

    l t i d iequaltoiw,andinisotropicsoils,theforceactsinthesamedi ti th di tidirectionasthedirectionofflow.

    The concept of seepageTheconceptofseepageforcecanbeeffectivelyusedtoobtainthefactorof safety against heaveofsafetyagainstheaveonthedownstreamsideofahydraulicstructure.

  • Seepageforce&safetyofsheetpile 25

    Terzaghi (1922)Terzaghi(1922)

    concludedthatheaving

    generallyoccurswithina

    distanceofD/2fromthe

    sheetpiles(whenD

    equals the depth ofequalsthedepthof

    embedmentofsheet

    pilesintothepermeable

    layer)

  • Seepageforce&safetyofsheetpile 26

    where

    FS = factorofsafety

    W= submergedweightofsoilintheheavezoneperunitlengthofsheetpileg p

    = (Vol)=D(0.5D)(1)(sat )=0.5D2U = upliftingforcecausedbyseepageonthesame

    volumeofsoil

    = (iavew )(Vol)=0.5D2whwhere

    iave = averagehydraulicgradientatthebottomoftheblockofsoil.

  • Seepageforce&safetyofsheetpile 27

    2W= 0.5D2U = 0.5D2w

    Forthecaseofflowaroundasheet pile in a homogeneoussheetpileinahomogeneoussoil,itcanbedemonstratedthat

  • Seepageforce&safetyofsheetpile 28

    whereCoisafunctionofD/T.

    Hence FS can be written asHenceFScanbewrittenas

  • Seepageforce&safetyofsheetpile 29

  • 30Soilmigrationandfiltration

    Geotechnical engineers intentionallyGeotechnicalengineersintentionallyplacehighlypervioussoilsinkeylocationstocaptureanddraingroundwater Uniformly (or poorly)groundwater.Uniformly(orpoorly)gradedgravelsareespeciallyusefulinthisregardbecausetheyhavehigh hydraulic conductivityhighhydraulicconductivity.

    TheSoilmigrationoffinesoilmayt k l th h ltakeplacethroughcoarsegraveldrainagelayer.

  • Soilmigrationandfiltration 31

    Thesoilmigrationhastwodetrimentalresults.

    1) Thedrainagelayerbecomescloggedandnolongerfunctionsproperlyproperly.

    2) Migrationofsoilsleavesvoidsinupstreamstrata.Insomecases,thesevoidscanpropagateforlongdistances,creatingundergroundchannelsleadingtopipingfailure.

    Migrationproblemscanbeavoidedbyprovidingfilterswhichareintended to pass water but retain potentially migration soils There areintendedtopasswaterbutretainpotentiallymigrationsoils.Therearetwoprincipaltypesoffilters:gradedsoilsfiltersandgeosynthetic filters.

  • Selectionoffiltermaterial 32

    TerzaghiandPeck(1948)filtermaterialselectioncriterion

  • 33

    (Dia)a =6.5(Dia)b

  • Filterselectioncriteria 34

    D15(F) > D15(B)D15(F) >D15(B)

    D15(F) < D85(B)Increasingsize

    D15(F)

  • Capillaryriseinsoils 35

    Forpurewaterandcleanglass, = 0 thus above equation =0,thusaboveequationbecomes

    ForT=72mN/m,andweget

    The smaller the capillary tubeThesmallerthecapillarytubediameter,thelargerthecapillaryrise.

  • Capillaryriseinsoils 36

    The smaller the capillary tube diameter, the larger the capillary rise.Thesmallerthecapillarytubediameter,thelargerthecapillaryrise.

  • Capillaryriseinsoils 37

  • Capillaryriseinsoils 38