71
La Célula y sus organelos MEMBRANA PLASMÁTICA La membrana plasmática o celular es una estructura laminar formada por lípidos (con cabeza hidrofilica y cola hidrofobica) y proteínas que engloba a las células, define sus límites y contribuye a mantener el equilibrio entre el interior (medio intracelular) y el exterior (medio extracelular) de éstas. Además, se asemeja a las membranas que delimitan los orgánulos de células eucariotas. Está compuesta por una lámina que sirve de "contenedor" para el citosol y los distintos compartimentos internos de la célula, así como también otorga protección mecánica. Está formada principalmente por fosfolípidos (fosfatidiletanolamina y fosfatidilcolina), colesterol, glúcidos y proteínas (integrales y periféricas). La principal característica de esta barrera es su permeabilidad selectiva, lo que le permite seleccionar las moléculas que deben entrar y salir de la célula. De esta forma se mantiene estable el medio intracelular, regulando el paso de agua, iones y metabolitos, a la vez que mantiene el potencial electroquímico (haciendo que el medio interno esté cargado negativamente). Cuando una molécula de gran tamaño atraviesa o es expulsada de la célula y se invagina parte de la membrana plasmática para recubrirlas cuando están en el interior ocurren respectivamente los procesos de endocitosis y exocitosis. Tiene un grosor aproximado de 7,5 nm y no es visible al microscopio óptico pero sí al microscopio electrónico, donde se pueden observar dos capas oscuras laterales y una central más clara. En las células procariotas y en las eucariotas osmótrofas como plantas y hongos, se sitúa bajo otra capa, denominada pared celular. Composición química La composición química de la membrana plasmática varía entre células dependiendo de la función o del tejido en la

Celula y Organelos

Embed Size (px)

Citation preview

Page 1: Celula y Organelos

La Célula y sus organelos

MEMBRANA PLASMÁTICA

La membrana plasmática o celular es una estructura laminar formada por lípidos (con cabeza hidrofilica y cola hidrofobica) y proteínas que engloba a las células, define sus límites y contribuye a mantener el equilibrio entre el interior (medio intracelular) y el exterior (medio extracelular) de éstas. Además, se asemeja a las membranas que delimitan los orgánulos de células eucariotas.

Está compuesta por una lámina que sirve de "contenedor" para el citosol y los distintos compartimentos internos de la célula, así como también otorga protección mecánica. Está formada principalmente por fosfolípidos (fosfatidiletanolamina y fosfatidilcolina), colesterol, glúcidos y proteínas (integrales y periféricas).

La principal característica de esta barrera es su permeabilidad selectiva, lo que le permite seleccionar las moléculas que deben entrar y salir de la célula. De esta forma se mantiene estable el medio intracelular, regulando el paso de agua, iones y metabolitos, a la vez que mantiene el potencial electroquímico (haciendo que el medio interno esté cargado negativamente).

Cuando una molécula de gran tamaño atraviesa o es expulsada de la célula y se invagina parte de la membrana plasmática para recubrirlas cuando están en el interior ocurren respectivamente los procesos de endocitosis y exocitosis.

Tiene un grosor aproximado de 7,5 nm y no es visible al microscopio óptico pero sí al microscopio electrónico, donde se pueden observar dos capas oscuras laterales y una central más clara. En las células procariotas y en las eucariotas osmótrofas como plantas y hongos, se sitúa bajo otra capa, denominada pared celular.

Composición química

La composición química de la membrana plasmática varía entre células dependiendo de la función o del tejido en la que se encuentren, pero se puede estudiar de forma general. La membrana plasmática está compuesta por una doble capa de fosfolípidos, por proteínas unidas no covalentemente a esa bicapa, y glúcidos unidos covalentemente a los lípidos o a las proteínas. Las moléculas más numerosas son las de lípidos, ya que se calcula que por cada 50 lípidos hay una proteína. Sin embargo, las proteínas, debido a su mayor tamaño, representan aproximadamente el 50% de la masa de la membrana.

Lípidos

El 98% de los lípidos presentes en las membranas celulares son anfipáticos, es decir que presentan un extremo hidrófilo (que tiene afinidad e interacciona con el agua) y un extremo hidrofóbico (que repele el agua). Los más abundantes son los fosfoglicéridos (fosfolípidos) y los esfingolípidos, que se encuentran en todas las células; le siguen los glucolípidos, así como esteroides (sobre todo

Page 2: Celula y Organelos

colesterol). Estos últimos no existen o son escasos en las membranas plasmáticas de las células procariotas. Existen también grasas neutras, que son lípidos no anfipáticos, pero sólo representan un 2% del total de lípidos de membrana.

Fosfoglicéridos. Tienen una molécula de glicerol con la que se esterifica un ácido fosfórico y dos ácidos grasos de cadena larga; los principales fosfoglicéridos de membrana son la fosfatidiletanolamina o cefalina y la fosfatidilcolina o lecitina.

Esfingolípidos. Son lípidos de membrana constituidos por ceramida (esfingosina + ácido graso); solo la familia de la esfingomielina posee fósforo; el resto poseen glúcidos y se denominan por ello glucoesfingolípidos o, simplemente glucolípidos. Los cerebrósidos poseen principalmente glucosa, galactosa y sus derivados (como N-acetilglucosamina y N-acetilgalactosamina). Los gangliósidos contienen una o más unidades de ácido N-acetilneuramínico (ácido siálico).

Colesterol. El colesterol representa un 23% de los lípidos de membrana. Sus moléculas son pequeñas y más anfipáticas en comparación con otros lípidos. Se dispone con el grupo hidroxilo hacia el exterior de la célula (ya que ese hidroxilo interactúa con el agua). El colesterol es un factor importante en la fluidez y permeabilidad de la membrana ya que ocupa los huecos dejados por otras moléculas. A mayor cantidad de colesterol, menos permeable y fluida es la membrana. Se ha postulado que los lípidos de membrana se podrían encontrar en dos formas: como un líquido bidimensional, y de una forma más estructurada, en particular cuando están unidos a algunas proteínas formando las llamadas balsas lipídicas. Se cree que el colesterol podría tener un papel importante en la organización de estas últimas. Su función en la membrana plasmática es evitar que se adhieran las colas de ácido graso de la bicapa, mejorando la fluidez de la membrana. En las membranas de las células vegetales son más abundantes los fitoesteroles.

Proteínas

El porcentaje de proteínas oscila entre un 20% en la vaina de mielina de las neuronas y un 70% en la membrana interna mitocondrial;1 el 80% son intrínsecas, mientras que el 20% restantes son extrínsecas. Las proteínas son responsables de las funciones dinámicas de la membrana, por lo que cada membrana tiene una dotación muy específica de proteínas; las membranas intracelulares tienen una elevada proporción de proteínas debido al elevado número de actividades enzimáticas que albergan. En la membrana las proteínas desempeña diversas funciones: transportadoras, conectoras (conectan la membrana con la matriz extracelular o con el interior), receptoras (encargadas del reconocimiento celular y adhesión) y enzimas. Según su grado de asociación a la membrana se clasifican en:

Page 3: Celula y Organelos

--> Integrales o Intrínsecas: Presentan regiones hidrófobas, por las que se pueden asociar al interior de la membrana y regiones hidrófilas que se sitúan hacia el exterior, por consiguiente, son anfipáticas. Solo se pueden separar de la bicapa si esta es destruida (por ejemplo con un detergente neutro). Algunas de éstas, presentan carbohidratos unidos a ellas covalentemente (glicoproteínas).

--> Periféricas o Extrínsecas: No presentan regiones hidrófobas, así pues, no pueden entrar al interior de la membrana. Están en la cara interna de esta (en el interior celular). Se separan y unen a esta con facilidad por enlaces de tipo iónico.

Glúcidos

Están en la membrana unida covalentemente a las proteínas o a los lípidos. Pueden ser polisacáridos u oligosacáridos. Se encuentran en el exterior de la membrana formando el glicocalix. Representan el 8% del peso seco de la membrana plasmática. Sus funciones principales son dar soporte a la membrana y el reconocimiento celular (colaboran en la identificación de las señales químicas de la célula).

Estructura

Esquema de una membrana celular. Según el modelo del mosaico fluido, las proteínas (en rojo y naranja) serían como "icebergs" que navegarían en un mar de lípidos (en azul). Nótese además que las cadenas de oligosacáridos (en verde) se hallan siempre en la cara externa, pero no en la interna.

Antiguamente se creía que la membrana plasmática era un conjunto estático formado por las siguientes capas: proteínas/lípidos/lípidos/proteínas. Hoy en día se concibe como una estructura dinámica. El modelo estructural aceptado en la actualidad se conoce como "mosaico fluido". El mosaico fluido es un término acuñado por S. J. Singer y G. L. Nicolson en 1972. Consiste en una bicapa lipídica complementada con diversos tipos de proteínas. La estructura básica se mantiene unida mediante uniones no covalentes.

Page 4: Celula y Organelos

Esta estructura general -modelo unitario- se presenta también en todo el sistema de endomembranas (membranas de los diversos orgánulos del interior de la célula), como retículo endoplasmático, aparato de Golgi y envoltura nuclear, y los de otros orgánulos, como las mitocondrias y los plastos, que proceden de endosimbiosis.

Bicapa lipídica

Diagrama del orden de los lípidos anfipáticos para formar una bicapa lipídica. Las cabezas polares (de color amarillo) separan las colas hidrofóbicas (de color gris) del medio citosólico y extracelular.

El orden de las cabezas hidrofílicas y las colas hidrofóbicas de la bicapa lipídica impide que solutos polares, como aminoácidos, ácidos nucleicos, carbohidratos, proteínas e iones, difundan a través de la membrana, pero generalmente permite la difusión pasiva de las moléculas hidrofóbicas. Esto permite a la célula controlar el movimiento de estas sustancias vía complejos de proteína transmembranal tales como poros y caminos, que permiten el paso de glucosa e iones específicos como el sodio y el potasio.

Las cinco capas de moléculas fosfolípidas forman un "sándwich" con las colas de ácido graso dispuestos hacia el centro de la membrana plasmática y las cabezas de fosfolípidos hacia los medios acuosos que se encuentran dentro y fuera de la célula.

Proteínas

Las proteínas de la membrana plasmática se pueden clasificar según cómo se dispongan en la bicapa lipídica:2 3 4

Proteínas integrales . Embebidas en la bicapa lipídica, atraviesan la membrana una o varias veces, asomando por una o las dos caras (proteínas transmembrana); o bien mediante enlaces covalentes con un lípido o un glúcido de la membrana. Su aislamiento requiere la ruptura de la bicapa.

Proteínas periféricas . A un lado u otro de la bicapa lipídica, pueden estar unidas débilmente por enlaces no covalentes. Fácilmente separables de la bicapa, sin provocar su ruptura.

En el componente proteico reside la mayor parte de la funcionalidad de la membrana; las diferentes proteínas realizan funciones específicas:

Page 5: Celula y Organelos

Proteínas estructurales: estas proteínas hacen de "eslabón clave" uniéndose al citoesqueleto y la matriz extracelular.

Receptores de membrana: que se encargan de la recepción y transducción de señales químicas.

Transportadoras a través de membrana: mantienen un gradiente electroquímico mediante el transporte de membrana de diversos iones.

Estas a su vez pueden ser:

Proteínas transportadoras: Son enzimas con centros de reacción que sufren cambios conformacionales.

Proteínas de canal: Dejan un canal hidrofílico por donde pasan los iones.

Glúcidos

Los glúcidos se hallan asociados mediante enlaces covalentes a los lípidos (glucolípidos) o a las proteínas (gluco-proteínas) y generalmente forman parte de la matriz extracelular o glucocálix.

Funciones

La función básica de la membrana plasmática es mantener el medio intracelular diferenciado del entorno. Esto es posible gracias a la naturaleza aislante en medio acuoso de la bicapa lipídica y a las funciones de transporte que desempeñan las proteínas. La combinación de transporte activo y transporte pasivo hacen de la membrana plasmática una barrera selectiva que permite a la célula diferenciarse del medio.

Los esteroides, como el colesterol, tienen un importante papel en la regulación de las propiedades físico-químicas de la membrana regulando su resistencia y fluidez.

Gradiente electroquímico

Es la fuerza neta de la dirección del flujo para cada soluto si combinamos los efectos de gradiente de concentración y gradiente eléctrico.

Permeabilidad

La permeabilidad de las membranas es la facilidad de las moléculas para atravesarla. Esto depende principalmente de la carga eléctrica y, en menor medida, de la masa molar de la molécula. Pequeñas moléculas y moléculas con carga eléctrica neutra pasan la membrana más fácilmente que elementos cargados eléctricamente y moléculas grandes. Además, la membrana es selectiva, lo que significa que permite la entrada de unas moléculas y restringe la de otras. La permeabilidad depende de los siguientes factores:

Page 6: Celula y Organelos

Solubilidad en los lípidos: Las sustancias que se disuelven en los lípidos (moléculas hidrófobas, no polares) penetran con facilidad en la membrana dado que está compuesta en su mayor parte por fosfolípidos.

Tamaño: la mayor parte de las moléculas de gran tamaño no pasan a través de la membrana. Sólo un pequeño número de moléculas no polares de pequeño tamaño pueden atravesar la capa de fosfolípidos.

Carga: Las moléculas cargadas y los iones no pueden pasar, en condiciones normales, a través de la membrana. Sin embargo, algunas sustancias cargadas pueden pasar por los canales proteícos o con la ayuda de una proteína transportadora.

También depende de las proteínas de membrana de tipo:

Canales: algunas proteínas forman canales llenos de agua por donde pueden pasar sustancias polares o cargadas eléctricamente que no atraviesan la capa de fosfolípidos.

Transportadoras: otras proteínas se unen a la sustancia de un lado de la membrana y la llevan al otro lado donde la liberan.

MITOCONDRIA

Las mitocondrias (Et: del griego μίτος, mítos: hilo, y κόνδρος, kóndros: gránulo[1] ) son orgánulos citoplasmáticos provistos de doble membrana que se encuentran en la mayoría de las células eucariotas.[] Su tamaño varía entre 0,5–10 micrómetros (μm) de diámetro. Las mitocondrias se describen en ocasiones como "generadoras de energía" de las células, debido a que producen la mayor parte del suministro de adenosín trifosfato (ATP), que se utiliza como fuente de energía química.[] Además de proporcionar energía en la célula, las mitocondrias están implicadas en otros procesos, como la señalización celular, diferenciación celular, muerte celular programada, así como el control del ciclo celular y el crecimiento celular.[]

Algunas características hace únicas a las mitocondrias. Su número varía ampliamente según el tipo de organismo o tejido. Algunas células carecen de mitocondrias o poseen sólo una, mientras que otras pueden contener varios miles.[ ][]Este orgánulo se compone de compartimentos que llevan a cabo funciones especializadas. Entre éstos se encuentran la membrana mitocondrial externa, el espacio intermembranoso, la membrana mitocondrial interna, las crestas y la matriz mitocondrial. Las proteínas mitocondriales varían dependiendo del tejido y de las especies: en humanos se han identificado 615 tipos de proteínas distintas en mitocondrias de músculo cardíaco; [] mientras que en ratas se han publicado 940 proteínas codificadas por distintos genes. []Se piensa que el proteoma mitocondrial está sujeto a regulación dinámica.[

]Aunque la mayor parte del ADN de la célula está en el núcleo celular, la mitocondria tiene su propio genoma, que muestra muchas semejanzas con los genomas bacterianos.[]

Page 7: Celula y Organelos

Existen varias enfermedades de origen mitocondrial, algunas de las cuales producen disfunción cardiaca,[][] y muy probablemente participa en el proceso de envejecimiento.

Estructura y composición

Estructura de una mitocondria

La morfología de la mitocondria es difícil de describir puesto que son estructuras muy plásticas que se deforman, se dividen y fusionan. Normalmente se las representa en forma alargada. Su tamaño oscila entre 0,5 y 1 μm de diámetro y hasta 7 μ de longitud. Su número depende de las necesidades energéticas de la célula. Al conjunto de las mitocondrias de la célula se le denomina condrioma celular.

Las mitocondrias están rodeadas de dos membranas claramente diferentes en sus funciones y actividades enzimáticas, que separan tres espacios: el citosol, el espacio intermembrana y la matriz mitocondrial.

Membrana externa

Es una bicapa lipídica exterior permeable a iones, metabolitos y muchos polipéptidos. Eso es debido a que contiene proteínas que forman poros, llamadas porinas o VDAC (de canal aniónico dependiente de voltaje), que permiten el paso de grandes moléculas de hasta 10.000 dalton y un diámetro aproximado de 20 Å. La membrana externa realiza relativamente pocas funciones enzimáticas o de transporte. Contiene entre un 60 y un 70% de proteínas.

Membrana interna

La membrana interna contiene más proteínas, carece de poros y es altamente selectiva; contiene muchos complejos enzimáticos y sistemas de transporte transmembrana, que están implicados en la translocación de moléculas. Esta membrana forma invaginaciones o pliegues llamadas crestas mitocondriales,

Page 8: Celula y Organelos

que aumentan mucho la superficie para el asentamiento de dichas enzimas. En la mayoría de los eucariontes, las crestas forman tabiques aplanados perpendiculares al eje de la mitocondria, pero en algunos protistas tienen forma tubular o discoidal. En la composición de la membrana interna hay una gran abundancia de proteínas (un 80%), que son además exclusivas de este orgánulo:

1. La cadena de transporte de electrones, compuesta por cuatro complejos enzimáticos fijos y dos transportadores de electrones móviles:

1. Complejo I o NADH deshidrogenasa que contiene flavina mononucleótido (FMN)

2. Complejo II o succinato deshidrogenasa; ambos ceden electrones al coenzima Q o ubiquinona;

3. Complejo III o citocromo bc1 que cede electrones al citocromo c4. Complejo IV o citocromo c oxidasa que cede electrones al O2 para

producir dos moléculas de agua.2. Un complejo enzimático, el canal de H+ ATP-sintasa que cataliza la

síntesis de ATP (fosforilación oxidativa).3. Proteínas transportadoras que permiten el paso de iones y moléculas a

su través, como ácidos grasos, ácido pirúvico, ADP, ATP, O2 y agua; pueden destacarse:

1. Nucleótido de adenina translocasa. Se encarga de transportar a la matriz mitocondrial el ADP citosólico formado durante las reacciones que consumen energía y, paralelamente transloca hacia el citosol el ATP recién sintetizado durante la fosforilación oxidativa.

2. Fosfato translocasa. Transloca fosfato citosólico junto con un protón a la matriz; el fosfato es esencial para fosforilar el ADP durante la fosforilación oxidativa.

Espacio intermembranoso

Entre ambas membranas queda delimitado un espacio intermembranoso que está compuesto de un líquido similar al hialoplasma; tienen una alta concentración de protones como resultado del bombeo de los mismos por los complejos enzimáticos de la cadena respiratoria. En él se localizan diversos enzimas que intervienen en la transferencia del enlace de alta energía del ATP, como la adenilato quinasa o la creatina quinasa. También se localiza la carnitina, una molécula implicada en el transporte de ácidos grasos desde el citosol hasta la matriz mitocondrial, donde serán oxidados (beta-oxidación).

Matriz mitocondrial

La matriz mitocondrial o mitosol contiene menos moléculas que el citosol, aunque contiene iones, metabolitos a oxidar, ADN circular bicatenario muy parecido al de las bacterias, ribosomas tipo 70S similares a los de bacterias, llamados mitorribosomas, que realizan la síntesis de algunas proteínas mitocondriales, y contiene ARN mitocondrial; es decir, tienen los orgánulos que tendría una célula procariota de vida libre. En la matriz mitocondrial tienen lugar diversas rutas metabólicas clave para la vida, como el ciclo de Krebs y la beta-

Page 9: Celula y Organelos

oxidación de los ácidos grasos; también se oxidan los aminoácidos y se localizan algunas reacciones de la síntesis de urea y grupos hemo.

Función

Del apartado anterior se deduce que la principal función de las mitocondrias es la oxidación de metabolitos (ciclo de Krebs, beta-oxidación de ácidos grasos) y la obtención de ATP mediante la fosforilación oxidativa, que es dependiente de la cadena transportadora de electrones; el ATP producido en la mitocondria supone un porcentaje muy alto del ATP sintetizado por la célula. También sirve de almacén de sustancias como iones, agua y algunas partículas como restos de virus y proteínas.

Cromatina

Diferentes de condensación de ADN. (1) Hebra simple de ADN. (2) Hebra de cromatina (ADN con histonas, "cuenta de collar"). (3) Cromatina durante la interfase con centrómero. (4) Cromatina condensada durante la profase (Dos copias de ADN están presentes). (5) Cromosoma durante la metafase.

La cromatina es el conjunto de ADN, histonas y proteínas no histónicas que se encuentra en el núcleo de las células eucariotas y que constituye el cromosoma eucariótico.

Las unidades básicas de la cromatina son los nucleosomas. Éstos se encuentran formados por aproximadamente 146 pares de bases de longitud (el número depende del organismo), asociados a un complejo específico de 8 histonas nucleosómicas (octámero de histonas). Cada partícula tiene una forma de disco, con un diámetro de 11 nm y contiene dos copias de cada una de las 4 histonas H3, H4, H2A y H2B. Este octámero forma un núcleo proteico alrededor del que se enrolla la hélice de ADN (da aproximadamente 1,8 vueltas). Entre cada una de las asociaciones de ARN e histonas existe un ADN libre llamado ADN "espaciador", de longitud variable entre 0 y 80 pares de nucleótidos que garantiza flexibilidad a la fibra de cromatina. Este tipo de organización, permite un primer paso de compactación del material genético, y da lugar a una estructura parecida a un "collar de cuentas".

Posteriormente, un segundo nivel de organización de orden superior lo constituye la "fibra de 30nm" compuestas por grupos de nucleosomas

Page 10: Celula y Organelos

empaquetados uno sobre otros adoptando disposiciones regulares gracias a la acción de la histona H1.

Finalmente continua el incremento del empaquetamiento del ADN hasta obtener los cromosomas que observamos en la metafase, el cual es el máximo nivel de condensación del ADN.

Tipos de cromatina

La cromatina se puede encontrar en 3 formas

Heterocromatina, es una forma inactiva condensada localizada sobre todo en la periferia del núcleo, que se tiñe fuertemente con las coloraciones. En 1928 Emil HEITZ, basándose en observaciones histológicas, definió la heterocromatina (HC) como los segmentos cromosómicos que aparecían muy condensados y oscuros en el núcleo en interfase. De hecho, la cromatina está formada de una maraña de fibras cuyo diámetro no solo varía durante el ciclo celular sino que también depende de la región del cromosoma observada.

La eucromatina activa está formada por una fibra de un diámetro que corresponde al del nucleosoma, que es un segmento de ADN bicatenario enrollado alrededor de homodímeros de las histonas H2A, H2B, H3, y H4. En la eucromatina inactiva, esta fibra se enrolla sobre sí misma gracias a las histonas H1 para formar el solenoide. La interacción con otras proteínas no histonas (topoisomerasa II, proteínas de andamiaje, lamininas, …) provoca mayores grados de organización. En cuanto a la heterocromatina, la fibra que la constituye se encuentra más condensada y a menudo aparece formada por agregados. Su formación require numerosas proteínas adicionales, que incluyen las proteínas HP1 (Heterochromatin Protein 1 o proteína de la heterocromatina 1). La heterocromatina puede ser de dos tipos diferentes,la riqueza en ADN satélite determina tanto la naturaleza permanente o reversible de la heterocromatina, como su polimorfismo y propiedades de tinción. :

la constitutiva, idéntica para todas las células del organismo y que carece de información genética, incluye a los telómeros y centrómeros del cromosoma que no expresan su ADN. La heterocromatina constitutiva contiene un tipo particular de ADN denominado ADN satélite, formado por gran número de secuencias cortas repetidas en tándem. Los tipos principales de este ADN son el ADN satélite alfa, y los ADN satélite I, II y III. Estas secuencias de ADN satélite son capaces de plegarse sobre sí mismas y pueden tener un papel importante en la formación de la estructura altamente compacta de la heterocromatina constitutiva. La heterocromatina constitutiva es estable y conserva sus propiedades heterocromáticas durante todas las etapas del desarrollo y en todos los tejidos. La heterocromatina constitutiva es altamente polimórfica, probablemente debido a la inestabilidad del ADN satélite. Este polimorfismos puede afectar, no solamente a su tamaño sino también a la localización de la heterocromatina,

Page 11: Celula y Organelos

y aparentemente no tiene un efecto fenotípico. La heterocromatina constitutiva se encuentra fuertemente teñida en la técnica de bandas C, lo que es el resultado de una renaturalización muy rápida del ADN satélite tras la desnaturalización.

la facultativa, diferente en los distintos tipos celulares, contiene información sobre todos aquellos genes que no se expresan o que pueden expresarse en algún momento. Incluye al ADN satélite y al corpúsculo de Barr. La heterocromatina facultativa se caracteriza por la presencia de secuencias repetidas tipo LINE. Estas secuencias, dispersas a lo largo del genoma, podrían promover la propagación de una estructura de cromatina condensada. La heterocromatina facultativa es reversible, su estado heterocromático depende de la etapa del desarrollo y del tipo celular. Dos ejemplos de este tipo de heterocromatina son el cromosoma X inactivo (cuerpo de Barr) de las células somáticas femeninas y la vesícula sexual inactiva en la etapa del paquiteno de las meiosis masculinas. La heterocromatina facultativa no es particularmente rica en ADN satélite, y por ello, no es polimórfica. La heterocromatina facultativa no se encuentra nunca teñida en la técnica de bandas C.

Se ha visto que en la formación de heterocromatina frecuentemente participa el fenómeno de ARN interferente. Por ejemplo, en Schizosaccharomyces pombe, la heterocromatina se forma en el centrómero, telómeros y en el loci mating-type.1 La formación de la heterocromatina en el centrómero depende del mecanismo de ARN interferente (ARNi). ARN doble cadena complementarios son producidos de secuencias repetidas localizadas en el centrómero, que inducen ARNi y seguidamente metilación de la lisina 9 histona 3 y enlazamiento de Swi6 (proteína estructural de la heterocromatina, la cual es homóloga a HP1 en mamíferos)

Propiedades de la heterocromatina

A pesar de las diferencias descritas anteriormente, la heterocromatina constitutiva y la heterocromatina facultativa tienen propiedades muy similares.

1. La heterocromatina está condensada Este es, de hecho, lo que define la heterocromatina, y por ello es aplicable tanto a la heterocromatina constitutiva como a la facultativa. Esta elevada condensación la hace fuertemente cromofílica e inaccesible a la DNAsa I y, en general, a otras enzimas de restricción.

2. El ADN de la heterocromatina se replica más tarde La incorporación de varios análogos de nucleótidos muestra que el ADN de ambos tipos de heterocromatina se replica tarde. Esto es el resultado, por un lado, de su elevado grado de condensación, que evita que la maquinaria replicativa accede

Page 12: Celula y Organelos

fácilmente al ADN y, por otro lado, de su localización en un dominio nuclear periférico pobre en elementos activos.

3.El ADN de la heterocromatina se encuentra metilado •El ADN de la heterocromatina constitutiva se encuentra altamente metilado en las citosinas. Por ello, un anticuerpo anti-5-metil citosina marca fuertemente todas las regiones de este tipo de heterocromatina. •Por lo que se refiere a la heterocromatina facultativa, la metilación de su ADN es menor, aunque los análisis mediante enzimas de restricción sensibles a metilación revelan una importante metilación de los islotes CpG, específicamente localizados en las regiones que controlan la expresión de los genes.

4. En la heterocromatina las histonas se encuentran hipoacetiladas Las histonas puede sufrir una serie de modificaciones post-traduccionales en sus extremos N-terminales que pueden afectar a la propia actividad genética de la cromatina. •La hipoacetilación de las colas N-terminales de las histonas, principalmente en las lisinas, están asociadas con la cromatina inactiva. Por el contrario, las histonas hiperacetiladas son características de la cromatina activa. •La acetilación/desacetilación de histonas es un mecanismos absolutamente esencial para el control de la expresión génica. Existen numerosos factores de transcripción que presentan una actividad acetiltransferasa de histonas (HAT, Histone Acetyl Transferase) o desacetilasa de histonas (HDAc o Histone De-Acetylase).

5. Las histonas de la heterocromatina se encuentran metiladas en la lisina 9 La metilación de la lisina 9 de la histona H3 (H3-K9) parece que está muy relacionada con el proceso de heterocromatinización del genoma, tanto en la formación de heterocromatina constitutiva como facultativa.

6. La heterocromatina es transcripcionalmente inactiva •A diferencia de lo que ocurre en Drosophila, la heterocromatina constitutiva humana no contiene genes y la incorporación de uridina tritiada en los cultivos celulares no producen ningún tipo de marcaje a este nivel. •La heterocromatina facultativa es relativamente pobre en genes, y éstos generalmente no se transcriben en el estado de heterocromatina.

7. La heterocromatina no participa en la recombinación genética •De modo general se acepta que la heterocromatina constitutiva no participa en la recombinación genética. La no existencia de un emparejamiento preliminar de las regiones heterocromatínicas homólogas se podría deber al polimorfismo característico de estas regiones que lo dificultarían, aunque no lo harían imposible. La heterocromatina constitutiva también actúa reprimiendo la recombinación en la regiones de eucromatina adyacentes.•Por lo que respecta a la heterocromatina facultativa, tampoco participa en la recombinación meiótica cuando se encuentra en su forma inactiva.

Funciones de la heterocromatina

Page 13: Celula y Organelos

Durante mucho tiempo el papel concreto de la heterocromatina ha sido un misterio, ya que su polimorfismo no parecía tener ningún efecto funcional o fenotípico.

1. Papel de la heterocromatina en la organización de los dominios nucleares •La heterocromatina y la eucromatina ocupan dominios nucleares distintos. La heterocromatina se localiza generalmente en la periferia del núcleo anclada a la membrana nuclear. Por el contrario, la cromatina activa se localiza en una posición más central. •La localización preferencial de la heterocromatina contra la membrana nuclear puede deberse a la interacción de la proteína HP1 con el receptor de la lámina B, componente de la membrana interna del núcleo. •La localización periférica de la heterocromatina concentra los elementos activos en la porción central del núcleo, permitiendo que eucromatina activa se replique y transcriba con una eficiencia máxima.

2. Papel de la heterocromatina en la función del centrómero En la mayor parte de eucariotas, los centrómeros se encuentran rodeados de una considerable masa de heterocromatina. Se ha sugerido que la heterocromatina centromérica sería necesaria para la cohesión de las cromátidas hermanas y que permitiría la disyunción normal de los cromosomas mitóticos.

•En la levadura Schizosaccharomyces pombe, el homólogo Swi6 de la proteína HP1 es absolutamente esencial para la cohesión eficiente de las cromátidas hermanas durante la división celular. •Los experimentos en los cuales se ha realizado la deleción del ADN satellite muestran que una gran región de repeticiones de este tipo de ADN es indispensable para el funcionamiento correcto del centrómero. Se supone que la heterocromatina centromérica podría, de facto, crear un compartimento mediante el incremento de la concentración local de la variante centromérica de las histonas, CENP-A, y mediante la promoción de la incorporación de la CENP-A en lugar de la histona H3 durante la replicación.

3. Papel de la heterocromatina en la represión génica (regulación epigenética) La expresión génica puede estar controlada a dos niveles:

•Primero, a nivel local o control transcripcional, gracias a la formación de complejos locales de transcripción. Este nivel involucra secuencias de ADN relativamente pequeñas unidas a genes. •A nivel más global, en cuyo caso se dice que hay un control de la transcriptabilidad. Este control involucra a secuencias más largas que representan un gran dominio de cromatina, que puede estar en estado activo o inactivo. En este caso es la heterocromatina la que parece estar involucrada. Los genes que generalmente se encuentran en la eucromatina pueden, por tanto, ser silenciados cuando se encuentran cercanos a un dominio de heterocromatina.

Mecanismo de inactivación en cis : Los reordenamientos cromosómicos pueden provocar que una región eucromática se yuxtaponga a una región heterocromática. En el momento en el que el reordenamiento elimina ciertas

Page 14: Celula y Organelos

barreras que protegen la eucromatina la estructura heterocromática es capaz de propagarse en cis a la eucromatina adyacente, inactivando los genes que se encuentran en ella. Este es el mecanismo observado en la variegación por efecto de posición (PEV) en Drosophila y en la inactivación de ciertos transgenes en ratón.

Mecanismo de inactivación en trans: Durante la diferenciación celular, ciertos genes activos pueden transponerse a un dominio nuclear heterocromático haciendo que se inactiven. Este mecanismo es el que se ha propuesto como explicación para la co-localización en los núcleos de linfocitos de la proteína IKAROS con la heterocromatina centromérica y de los genes cuya expresión controla.

Eucromatina , está diseminada por el resto del núcleo (menor condensación), se tiñe débilmente con la coloraciones (su mayor tinción ocurre en la mitosis y no es visible con el microscopio de luz). Representa la forma activa de la cromatina en la que se está transcribiendo el material genético de las moléculas de ADN a moléculas de ARNm, por lo que es aquí donde se encuentran la mayoría de los genes activos.

Rol de la cromatina en la expresión génica

La cromatina juega un rol regulatorio fundamental en la expresión génica. Los distintos estados de compactación pueden asociarse (aunque no unívocamente) al grado de transcripción que exhiben los genes que se encuentran en esas zonas. La cromatina es, en principio, fuertemente represiva para la transcripción, ya que la asociación del ADN con las distintas proteínas dificulta la procesión de las distintas ARN polimerasas. Por lo tanto, existe una variada cantidad de máquinas remodeladoras de la cromatina y modificadoras de histonas.

Existe actualmente lo que se conoce como "código de histo s". Las distintas histonas pueden sufrir modificaciones post-traduccionales, como ser la metilación, acetilación, fosforilación, generalmente dada en residuos lisina o arginina. La acetilación está asociada con activación de la trascripción, ya que al acetilarse una lisina, disminuye la carga positiva global de la histona por lo cual tiene una menor afinidad por el ADN (que está cargado negativamente). En consecuencia, el ADN se encuentra unido menos fuertemente lo que permite el acceso de la maquinaria transcripcional. Por el contrario, la metilación está asociada con la represión transcripcional y una unión ADN-histona más fuerte (si bien no siempre esto se cumple). Por ejemplo, en la levadura S. pombe, la metilación en el residuo de lisina 9 de la histona 3 está asociado con represión de la transcripción en la heterocromatina, mientras que la metilación en el residuo de lisina 4 promueve la expresión de genes.

Las enzimas que llevan a cabo las funciones de modificaciones de histonas son las acetilasas y desacetilasas de histonas, y las metilasas y desmetilasas de histonas, que forman distintas familias cuyos integrantes se encargan de modificar un residuo en particular de la larga cola de las histonas.

Page 15: Celula y Organelos

Además de las modificaciones de las histonas, existen también maquinarias remodeladoras de la cromatina, como por ejemplo SAGA, que se encargan de reposicionar nucleosomas, ya sea desplazándolos, rotándolos, o incluso desensamblándolos parcialmente, retirando algunas de las histonas constituyentes del nucleosoma y luego volviéndolos a colocar. En general las maquinarias remodeladoras de la cromatina son esenciales para el proceso de transcripción en eucariotas, ya que permiten el acceso y procesividad de las polimerasas.

Otra forma de marcación de la cromatina como "inactiva" puede darse a nivel de la metilación del ADN, en citosinas que pertenezcan a dinucleótidos CpG. En general la metilación del ADN y de la cromatina son procesos sinérgicos, ya que, por ejemplo, al metilarse el ADN, existen enzimas metiladoras de histonas que pueden reconocer citosinas metiladas, y metilan histonas próximas. Del mismo modo, encimas que metilan el ADN pueden reconocer histonas metiladas, y así seguir con la metilación a nivel de ADN.

Todas estas modificaciones forman parte de la familia de las modificaciones epigenéticas

Lisosoma

Los lisosomas son orgánulos relativamente grandes, formados por el retículo endoplasmático rugoso (RER) y luego empaquetadas por el complejo de Golgi, que contienen enzimas hidrolíticas y proteolíticas que sirven para digerir los materiales de origen externo (heterofagia) o interno (autofagia) que llegan a ellos. Es decir, se encargan de la digestión celular

Las enzimas lisosomales

El pH en el interior de los lisosomas es de 4,8 (bastante menor que el del citosol, que es neutro) debido a que las enzimas proteolíticas funcionan mejor con un pH ácido. La membrana del lisosoma estabiliza el pH bajo bombeando protones (H+) desde el citosol, y asimismo, protege al citosol y al resto de la célula de las enzimas digestivas que hay en el interior del lisosoma.

Las enzimas lisosomales son capaces de digerir bacterias y otras sustancias que entran en la célula por fagocitosis, u otros procesos de endocitosis.

Los lisosomas utilizan sus enzimas para reciclar los diferentes orgánulos de la célula, englobándolos, digiriéndolos y liberando sus componentes en el citosol. De esta forma los orgánulos de la célula se están continuamente reponiendo. El proceso de digestión de los orgánulos se llama autofagia. Por ejemplo, las células hepáticas se reconstituyen por completo una vez cada dos semanas.

Las enzimas más importantes del lisosoma son:

Lipasas, que digiere lípidos, Glucosidasas, que digiere carbohidratos,

Page 16: Celula y Organelos

Proteasas, que digiere proteínas, Nucleasas, que digiere ácidos nucleicos.

Sólo están presentes en células animales.

Formación de lisosomas primarios

Los lisosomas primarios son orgánulos derivados del sistema de endomembranas. Cada lisosoma primario es una vesícula que brota del aparato de Golgi, con un contenido de enzimas hidrolíticas (hidrolasas). Las hidrolasas son sintetizadas en el reticulo endoplasmatico rugoso y viajan hasta el aparato de Golgi por transporte vesicular. Allí sufren una glicosilación terminal (proceso químico en el que se adiciona un carbohidrato a otra molécula) de la cual resultan con cadenas glucídicas ricas en manosa-6-fosfato (manosa-6-P). La manosa-6-P es el marcador molecular, la “estampilla” que dirige a las enzimas hacia la ruta de los lisosomas. Se ha estudiado una enfermedad en la cual las hidrolasas no llevan su marcador; las membranas del aparato de Golgi no las reconocen como tales y las empaquetan en vesículas de secreción para ser exocitadas. Quienes padecen esta enfermedad acumulan hidrolasas en el medio extracelular, mientras sus células carecen de ellas.

Lisosomas secundarios y digestión celular

Los lisosomas primarios contienen una variedad de enzimas hidrolíticas capaces de degradar casi todas las moléculas orgánicas. Estas hidrolasas se ponen en contacto con sus sustratos cuando los lisosomas primarios se fusionan con otras vesículas. El producto de la fusión es un lisosoma secundario. Por lo tanto, la digestión de moléculas orgánicas se lleva a cabo en los lisosomas secundarios, ya que éstos contienen a la vez los sustratos y las enzimas capaces de degradarlos.

Existen diversas formas de lisosomas secundarios, según el origen de la vesícula que se fusiona con el lisosoma primario:

Fagolisosomas. Se originan de la fusión del lisosoma primario con una vesícula procedente de la fagocitosis, denominada fagosoma. Se encuentran, por ejemplo, en los glóbulos blancos, capaces de fagocitar partículas extrañas que luego son digeridas por estas células.

Endosomas tardíos. Surgen al unirse los lisosomas primarios con materiales provenientes de los endosomas tempranos. Los endosomas tempranos contienen macromoléculas que ingresan por los mecanismos de endocitosis inespecífica y endocitosis mediada por receptor. Este último es utilizado por las células para incorporar, por ejemplo, las lipoproteínas de baja densidad o LDL.

Autofagolisosomas. Es el producto de la fusión entre un lisosoma primario y una vesícula autofágica o autofagosoma. Algunos orgánulos citoplasmáticos son englobados en vesículas, con membranas que provienen de las cisternas del retículo endoplasmático, para luego ser

Page 17: Celula y Organelos

reciclados cuando estas vesículas autofágicas se unen con los lisosomas primarios.

Lo que queda del lisosoma secundario después de la absorción es un cuerpo residual. Los cuerpos residuales contienen desechos no digeribles que en algunos casos se exocitan y en otros no, acumulándose en el citosol a medida que la célula envejece. Un ejemplo de cuerpos residuales son los gránulos de lipofuscina que se observan en células de larga vida, como las neuronas.

Enfermedades lisosómicas

Son enfermedades causadas por la disfunción de algún enzima lisosómico o por la liberación incontrolada de dichos enzimas en el citosol, lo que produce la lisis de la célula.

En algunos casos, la liberación de las enzimas cumple un papel fisiológico, permitiendo la reabsorción de estructuras que ya no son útiles, por ejemplo la cola de los renacuajos durante la metamorfosis.

Enfermedades de almacenamiento lisosómico

En las enfermedades de almacenamiento lisosómico, alguna enzima del lisosoma tiene actividad reducida o nula debido a un error genético y el substrato de dicho enzima se acumula y deposita dentro del lisosoma que aumentan de tamaño a causa del material sin digerir, lo cual interfiere con los procesos celulares normales; algunas de estas enfermedades son:

Esfingolipidosis . Son enfermedades causadas por la disfunción de algunos de los enzimas de la ruta de degradación de los esfingolípidos. Dado que los esfingolípidos abundan en el cerebro, varias de estas enfermedades cursan con retraso mental severo y muerte prematura; entre ellas hay que destacar la enfermedad de Tay-Sachs, la enfermedad de Gaucher, la enfermedad de Niemann-Pick, la enfermedad de Krabbe, la fucosidosis, etc.

Carencia de lipasa ácida. La lipasa ácida es una enzima fundamental en el metabolismo de los triglicéridos y del colesterol, que se acumulan en los tejidos. La disfunción de esta enzima provoca dos enfermedades, la enfermedad de almacenamiento de ésteres de colesterol, en que la enzima presenta muy poca actividad, y la enfermedad de Wolman, en que la enzima es totalmente inactiva.

Glucogenosis tipo II o enfermedad de Pompe. Es un defecto de la α(1-4) glucosidasa ácida lisosómica, también denominada maltasa ácida. El glucógeno aparece almacenado en lisosomas. En niños destaca por producir insuficiencia cardíaca al acumularse en el músculo cardíaco causando cardiomegalia. En adultos el acúmulo es más acusado en músculo esquelético.

Page 18: Celula y Organelos

Mucopolisacaridosis. Causadas por la ausencia o el mal funcionamiento de las enzimas necesarias para la degradación moléculas llamadas glicosoaminoglicanos o glucosaminglucanos (antes llamadas mucopolisacáridos). Destacan la mucopolisacaridosis tipo I, también conocida como gargolismo o enfermedad de Hurler, en la que existe un defecto de la enzima α-1-iduronidasa, y la mucopolisacaridosis de tipo II o síndrome de Hunter, causada por un error en la enzima iduronato-2-sulfatasa.

Aparato de Golgi

Imagen del núcleo, del retículo endoplásmico y del aparato de Golgi.(1) Núcleo.(2) Poro nuclear.(3) Retículo endoplasmático rugoso (RER).(4) Retículo endoplasmático liso (REL).(5) Ribosoma en el RER.(6) Proteínas trasportadas.(7) Vesícula trasportadora.(8) Aparato de Golgi (AG).(9) Cisterna del AG.(10) Transmembrana de AG.(11) Cisterna de AG.(12) Vesícula secretora.(13) Membrana plasmática.(14) Proteína secretada.(15) Citoplasma.(16) Matriz extracelular.

Page 19: Celula y Organelos

Diagrama del sistema de endomembranas en una célula eucariota típica.

El aparato de Golgi es un orgánulo presente en todas las células eucariotas excepto los glóbulos rojos y las células epidérmicas. Pertenece al sistema de endomembranas del citoplasma celular. Está formado por unos 4-8 dictiosomas, que son sáculos aplanados rodeados de membrana y apilados unos encima de otros, cuya función es completar la fabricación de algunas proteínas. Funciona como una planta empaquetadora, modificando vesículas del retículo endoplasmático rugoso. El material nuevo de las membranas se forma en varias cisternas del Golgi. Dentro de las funciones que posee el aparato de Golgi se encuentran la glicosilación de proteínas, selección, destinación, glicosilación de lípidos, almacenamiento y distribución de lisosomas y la síntesis de polisacáridos de la matriz extracelular. Debe su nombre a Camillo Golgi, Premio Nobel de Medicina en 1906 junto a Santiago Ramón y Cajal

Estructura del aparato de Golgi

El aparato de Golgi se compone de una serie de estructuras denominadas cisternas. Éstas se agrupan en número variable, habitualmente de 4 a 8, formando el dictiosoma en plantas, y el complejo de Golghi en los animales. Presentan conexiones tubulares que permiten el paso de sustancias entre las cisternas. Los sáculos son aplanados y curvados, con su cara convexa (externa) orientada hacia el retículo endoplasmático. Normalmente se observan entre 4 y 8, pero se han llegado a observar hasta 60 dictiosomas. Alrededor de la cisterna principal se disponen las vesículas esféricas recién exocitadas. El aparato de Golgi se puede dividir en tres regiones funcionales:

Región Cis-Golgi: es la más interna y próxima al retículo. De él recibe las vesículas de transición, que son sáculos con proteínas que han sido sintetizadas en la membrana del retículo endoplasmático rugoso (RER), introducidas dentro de sus cavidades y transportadas por el lumen hasta la parte más externa del retículo. Estas vesículas de transición son el

Page 20: Celula y Organelos

vehículo de dichas proteínas que serán transportadas a la cara externa del aparato de Golgi

Región medial: es una zona de transición.

Región Trans-Golgi: es la que se encuentra más cerca de la membrana citoplasmática. De hecho, sus membranas, ambas unitarias, tienen una composición similar.

Las vesículas provenientes del retículo endoplásmico se fusionan con el cis-Golgi, atravesando todos los dictiosomas hasta el trans-Golgi, donde son empaquetadas y enviadas al lugar que les corresponda. Cada región contiene diferentes enzimas que modifican selectivamente las vesículas según donde estén destinadas. Sin embargo, aún no se han logrado determinar en detalle todas las funciones y estructuras del aparato de Golgi.

Funciones generales

La célula sintetiza un gran número de diversas macromoléculas necesarias para la vida. El aparato de Golgi se encarga de la modificación, distribución y envío de dichas macromoléculas en la célula. Modifica proteínas y lípidos (grasas) que han sido sintetizados previamente tanto en el retículo endoplasmático rugoso como en el liso y los etiqueta para enviarlos a donde corresponda, fuera o dentro de la célula. Las principales funciones del aparato de Golgi vienen a ser las siguientes:

Modificación de sustancias sintetizadas en el RER: En el aparato de Golgi se transforman las sustancias procedentes del RER. Estas transformaciones pueden ser agregaciones de restos de carbohidratos para conseguir la estructura definitiva o para ser proteolizados y así adquirir su conformación activa. Por ejemplo, en el RER de las células acinosas del páncreas se sintetiza la proinsulina que debido a las transformaciones que sufre en el aparato de Golgi, adquirirá la forma o conformación definitiva de la insulina. Las enzimas que se encuentran en el interior de los dictiosomas son capaces de modificar las macromoléculas mediante glicosilación (adición de carbohidratos) y fosforilación (adición de fosfatos). Para ello, el aparato de Golgi transporta ciertas sustancias como nucleótidos y azúcares al interior del orgánulo desde el citoplasma. Las proteínas también son marcadas con secuencias señal que determinan su destino final, como por ejemplo, la manosa-6-fosfato que se añade a las proteínas destinadas a los lisosomas. Para llevar a cabo el proceso de fosforilación el aparato de Golgi importa moléculas de ATP al interior del lumen,3 donde las kinasas catalizan la reacción. Algunas de las moléculas fosforiladas en el aparato de Golgi son las apolipoproteínas que dan lugar a las conocidas VLDL que se encuentran en el plasma sanguíneo. Parece ser que la fosforilación de estas moléculas es necesaria para favorecer la secreción de las mismas al torrente sanguíneo.

Page 21: Celula y Organelos

Secreción celular: las sustancias atraviesan todos los sáculos del aparato de Golgi y cuando llegan a la cara trans del dictiosoma, en forma de vesículas de secreción, son transportadas a su destino fuera de la célula, atravesando la membrana citoplasmática por exocitosis. Un ejemplo de esto son los proteoglicanos que conforman la matriz extracelular de los animales. El aparato de Golgi es el orgánulo de mayor síntesis de carbohidratos.5 Esto incluye la producción de glicosaminoglicanos (GAGs), largos polisacáridos que son anclados a las proteínas sintetizadas en el RE para dar lugar a los proteoglicanos. De esto se encargarán las enzimas del Golgi por medio de un residuo de xilosa. Otra forma de marcar una proteína puede ser por medio de la sulfatación de una sulfotransferasa, que gana una molécula de azufre de un donador denominado PAPs. Este proceso tiene lugar en los GAGs de los proteoglicanos así como en los núcleos de las proteínas. Este nivel de sulfatación es muy importante para los proteoglicanos etiquetando funciones y dando una carga neta negativa al proteoglicano.5

Producción de membrana citoplasmática: los gránulos de secreción cuando se unen a la membrana en la exocitosis pasan a formar parte de esta, aumentando el volumen y la superficie de la célula.

Formación de los lisosomas primarios.

Formación del acrosoma de los espermios.

Vesículas de transporte

Las vesículas formadas en el retículo endoplasmático liso forman, uniendose entre ellas, agregados tubulo-vesiculares, los cuales son transportados hasta la región cis del aparato de Golgi por proteínas motoras guiadas por Microtúbulos donde se fusionan con la membrana de éste, vaciando su contenido en el interior del lumen. Una vez dentro, las moléculas son modificadas, marcadas y dirigidas hacia su destino final. El aparato de Golgi tiende a ser mayor y más numeroso en aquellas células que sintetizan y secretan continuamente sustancias, como pueden ser los linfocitos B y las células secretoras de anticuerpos.

Aquellas proteínas destinadas a zonas alejadas del aparato de Golgi son desplazadas hacia la región trans, internándose en una compleja red de membranas y vesículas asociadas denominadas región trans-Golgi.6 Esta región es donde muchas proteínas son marcadas y enviadas hacia sus correspondientes destinos por medio de alguno de estos 3 tipos diferentes de vesículas, según el marcador que presenten:6

Tipo Descripción Ejemplo

Vesículas de exocitosis(constitutivas)

Este tipo de vesículas contienen proteínas que deben ser liberadas al medio

Los anticuerpos liberados por linfocitos B

Page 22: Celula y Organelos

extracelular. Después de internalizarse las proteínas, la vesícula se cierra y se dirige inmediatamente hacia la membrana plasmática, con la que se fusiona, liberando así su contenido al medio extracelular. Este proceso es denominado secreción constitutiva.

activados.

Vesículas de secreción(reguladas)

Este tipo de vesículas contienen también proteínas destinadas a ser liberadas al medio extracelular. Sin embargo, en este caso, la formación de las vesículas va seguida de su almacenamiento en la célula, donde se mantendrán a la espera de su correspondiente señal para activarse. Cuando esto ocurre, se dirigen hacia la membrana plasmática y liberan su contenido como en el caso anterior. Este proceso es denominado secreción regulada.

Liberación de neurotransmisores desde las neuronas.

Vesículas lisosomales

Este tipo de vesículas transportan proteínas destinadas a los lisosomas, unos pequeños orgánulos de degradación en cuyo interior albergan multitud de hidrolasas ácidas, lisosomas de almacenamiento. Estas proteínas pueden ser tanto enzimas digestivas como proteínas de membrana. La vesícula se fusiona con un endosoma tardío y transfiere así su contenido al lisosoma por mecanismos aún desconocidos.

Proteasas digestivas destinadas a los lisosomas.

Page 23: Celula y Organelos

Mecanismo de transporte

Microfotografía donde se puede observar el aparato de Golgi como una serie de anillos negros semicirculares apilados cerca de la base. También se pueden observar numerosas vesículas circulares en las proximidades del orgánulo.

Los mecanismos de transporte que utilizan las proteínas para trasladarse a través del aparato de Golgi no están muy claros aún, por lo que existen diversas hipótesis para explicar dicho desplazamiento. Actualmente, existen dos modelos predominantes que no son excluyentes entre sí, hasta el punto de ser referidos a veces como el modelo combinado.

Modelo de maduración de las cisternas: las cisternas del aparato de Golgi llevan cabo un movimiento unidireccional desde la región cis, donde se forman, hasta la región trans, donde son destruidas. Las vesículas del retículo endoplasmático se fusionan con los dictiosomas de la región cis para dar lugar a nuevas cisternas, lo que podría generar el movimiento de las cisternas a través del aparato de Golgi a medida que se van formando nuevas cisternas en la región cis. Este modelo se apoya en el hecho de que se han observado al microscopio estructuras mayores que las vesículas de transporte, tales como las fibras de colágeno, desplazándose a través del aparato de Golgi.5 Inicialmente, esta hipótesis tuvo una gran acogida y fue la más aceptada hasta los años 80. Los últimos estudios realizados al respecto por la Universidad de Tokio y la Universidad de Chicago con tecnología más avanzada han permitido observar con mayor detalle los compartimentos y el proceso de maduración del aparato de Golgi.7 Además, existen evidencias de movimientos retrógrados (en dirección cis) de cierto tipo de vesículas (COP1), que transportan proteínas del retículo endoplasmático mediante el reconocimiento de péptidos señales.

Page 24: Celula y Organelos

Esquema del transporte en un dictiosoma. 1: Vesículas del retículo endoplasmático. 2: Vesículas de exocitosis. 3: Cisterna. 4: Membrana plasmática de la célula. 5: Vesícula de secreción.

Modelo del transporte vesicular: el transporte vesicular asume que el aparato de Golgi es un orgánulo muy estable y estático, dividido en compartimentos que se disponen en dirección cis → trans. Las vesículas son las encargadas de transportar el material entre el retículo endoplasmático y el aparato de Golgi y entre los diferentes compartimentos de este.Las evidencias experimentales que apoyan esta hipótesis se basan en la gran abundancia de vesículas pequeñas (conocidas técnicamente como vesículas lanzadera) localizadas en las proximidades del aparato de Golgi. La direccionalidad vendría dada por las proteínas trasportadas en el interior de las vesículas, cuyo destino determinaría el movimiento de avance o de retroceso a través del aparato de Golgi, aunque también podría suceder que la direccionalidad no fuera necesaria y el destino de las proteínas viniera ya determinado desde el retículo endoplasmático. Al margen de esto, es probable que el transporte de vesículas se encuentre asociado al citoesqueleto por medio de filamentos de actina, encargados de asegurar la fusión de las vesículas con sus correspondientes compartimentos.

Citoplasma

Dibujo esquemático de una célula con sus respectivos orgánulos.(1) Nucléolo (2) Núcleo celular (3) Ribosoma (4) Vesículas de secreción (5)

Page 25: Celula y Organelos

Retículo endoplasmático rugoso (6) Aparato de Golgi (7) Citoesqueleto (8) Retículo endoplasmático liso (9) Mitocondria (10) Vacuola (11) Citoplasma (12) Lisosoma (13) Centríolo

El citoplasma es la parte del protoplasma que, en una célula eucariota, se encuentra entre el núcleo celular y la membrana plasmática.[][ ]Consiste en una emulsión coloidal muy fina de aspecto granuloso, el citosol o hialoplasma, y en una diversidad de orgánulos celulares que desempeñan diferentes funciones.

Su función es albergar los orgánulos celulares y contribuir al movimiento de los mismos. El citosol es la sede de muchos de los procesos metabólicos que se dan en las células.

El citoplasma se divide en ocasiones en una región externa gelatinosa, cercana a la membrana, e implicada en el movimiento celular, que se denomina ectoplasma; y una parte interna más fluida que recibe el nombre de endoplasma y donde se encuentran la mayoría de los orgánulos.[3] El citoplasma se encuentra en las células procariotas así como en las eucariotas y en él se encuentran varios nutrientes que lograron atravesar la membrana plasmática, llegando de esta forma a los orgánulos de la célula.

El citoplasma de las células eucariotas está subdividido por una red de membranas conocidas como retículo endoplasmático (liso y rugoso) que sirven como superficie de trabajo para muchas de sus actividades bioquímicas.

El retículo endoplasmático rugoso está presente en todas las células eucariotas (inexistente en las procariotas)[ ]y predomina en aquellas que fabrican grandes cantidades de proteínas para exportar. Es continuo con la membrana externa de la envoltura nuclear, que también tiene ribosomas adheridos.

Citoesqueleto

En el citoplasma existe una red de filamentos proteicos, que le confieren forma y organización interna a la célula y permiten su movimiento. [5] A estos filamentos se le denomina citoesqueleto. Existen varios tipos de filamentos:

Microfilamentos o filamentos de actina, típicos de las células musculares.

Microtúbulos, que aparecen dispersos en el hialoplasma o forman estructuras más complejas, como el huso acromático.

Filamentos intermedios como los filamentos de queratina típicos de las células epidérmicas.

A su vez, esta estructuras mantienen una relación con las proteínas, y originan otras estructuras más complejas y estables. Asimismo, son responsables del movimiento citológico.

Page 26: Celula y Organelos

Citoesqueleto de fibroblastos del embrión de un ratón.

Citosol

El medio intracelular está formado por una solución líquida denominada hialoplasma o citosol. Los orgánulos están contenidas en una matriz citoplasmática. Esta matriz es la denominada citosol o hialoplasma. Es un material acuoso que es una solución o suspensión de biomoléculas vitales celulares. Muchos procesos bioquímicos, incluyendo la glucólisis, ocurren en el citosol.

En una célula eucariota, puede ocupar entre un 50% a un 80% del volumen de la célula. Está compuesto aproximadamente de un 70% de agua mientras que el resto de sus componentes son moléculas que forman una disolución coloidal. Estas moléculas suelen ser macromoléculas.

Al ser un líquido acuoso, el citosol carece de forma o estructura estables, si bien, transitoriamente, puede adquirir dos tipos de formas:

Una forma con consistencia de gel El estado sol, de consistencia fluida.

Los cambios en la forma del citosol se deben a las necesidades temporales de la célula con respecto al metabolismo, y juega un importante papel en la locomoción celular.[]

Orgánulos

El citoplasma se compone de orgánulos con distintas funciones. Entre los orgánulos más importantes se encuentran los ribosomas, las vacuolas y mitocondrias. Cada orgánulo tiene una función específica en la célula y en el citoplasma. El citoplasma posee una parte del genoma del organismo. A pesar de que la mayor parte se encuentre en el núcleo, algunos orgánulos, entre ellos las mitocondrias o los cloroplastos, poseen una cierta cantidad de ADN.[][]

Page 27: Celula y Organelos

Ribosomas

Estructura de un ribosoma. Las subunidades mayor (1) y menor (2) están unidas.

Los ribosomas son gránulos citoplasmáticos encontrados en todas las células, y miden alrededor de 20 nm. Son portadores, además, de ARN ribosómico.

La síntesis de proteínas tiene lugar en los ribosomas del citoplasma. [] Los ARN mensajeros (ARNm) y los ARN de transferencia (ARNt) se sintetizan en el núcleo, y luego se transmiten al citoplasma como moléculas independientes. El ARN ribosómico (ARNr) entra en el citoplasma en forma de una subunidad ribosomal. Dado que existen dos tipos de subunidades, en el citoplasma se unen las dos subunidades con moléculas ARNm para formar ribosomas completos activos.[]

Los ribosomas activos pueden estar suspendidos en el citoplasma o unidos al retículo endoplásmico rugoso.[] Los ribosomas suspendidos en el citoplasma tienen la función principal de sintetizar las siguientes proteínas:

1. Proteínas que formarán parte del citosol.2. Proteínas que construirán los elementos estructurales.3. Proteínas que componen elementos móviles en el citoplasma.

El ribosoma consta de dos partes, una subunidad mayor y otra menor; estas salen del núcleo celular por separado.[] Por experimentación se puede inducir que se mantienen unidas por cargas, ya que al bajarse la concentración de Mg+2, las subunidades tienden a separarse.

Lisosomas

Los lisosomas son vesículas esféricas, []de entre 0,1 y 1 μm de diámetro. Contienen alrededor de 50 enzimas, generalmente hidrolíticas, en solución ácida; las enzimas necesitan esta solución ácida para un funcionamiento óptimo.[ ]Los lisosomas mantienen separadas a estas enzimas del resto de la célula, y así previenen que reaccionen químicamente con elementos y orgánulos de la célula.

Los lisosomas utilizan sus enzimas para reciclar los diferentes orgánulos de la célula, englobándolas, digiriéndolas y liberando sus componentes en el citosol. Este proceso se denomina autofagia, y la célula digiere estructuras propias que

Page 28: Celula y Organelos

no son necesarias. El material queda englobado por vesículas que provienen del retículo endoplásmico y del aparato de Golgi formando un autofagosoma. Al unirse al lisosoma primario forma un autofagolisosoma y sigue el mismo proceso que en el anterior caso.

En la endocitosis los materiales son recogidos del exterior celular y englobados mediante endocitosis por la membrana plasmática, lo que forma un fagosoma. El lisosoma se une al fagosoma formando un fagolisosoma y vierte su contenido en este, degradando las sustancias del fagosoma. Una vez hidrolizadas las moléculas utilizables pasan al interior de la célula para entrar en rutas metabólicas y lo que no es necesario para la célula se desecha fuera de esta por exocitosis.

Los lisosomas también vierten sus enzimas hacia afuera de la célula (exocitosis) para degradar, además, otros materiales.

En vista de sus funciones, su presencia es elevada en glóbulos blancos, debido a que estos tienen la función de degradar cuerpos invasores.

Vacuolas

La vacuola es un saco de fluidos rodeado de una membrana. En la célula vegetal, la vacuola es una sola y de tamaño mayor; en cambio, en la célula animal, son varias y de tamaño reducido. La membrana que la rodea se denomina tonoplasto. La vacuola de la célula vegetal tiene una solución de sales minerales, azúcares, aminoácidos y a veces pigmentos como la antocianina.

La vacuola vegetal tiene diversas funciones:

Los azúcares y aminoácidos pueden actuar como un depósito temporal de alimento.

Las antocianinas tienen pigmentación que da color a los pétalos. Generalmente poseen enzimas y pueden tomar la función de los

lisosomas.

La función de las vacuolas en la célula animal es actuar como un lugar donde se almacenan proteínas; estas proteínas son guardadas para su uso posterior, o más bien para su exportación fuera de la célula mediante el proceso de exocitosis. En este proceso, las vacuolas se funden con la membrana y su contenido es trasladado hacia afuera de la célula. La vacuola, además, puede ser usada para el proceso de endocitosis; este proceso consiste en transportar materiales externos de la célula, que no son capaces de pasar por la membrana, dentro de la célula.[

Retículo endoplasmático

El retículo endoplasmático es un complejo sistema y conjunto de membranas conectadas entre sí, que forma un esqueleto citoplásmico. Forman un extenso sistema de canales y mantienen unidos a los ribosomas. Su forma puede

Page 29: Celula y Organelos

variar, ya que su naturaleza depende del arreglo de células, que pueden estar comprimidas u organizadas de forma suelta.

Imagen de un núcleo, el retículo endoplasmático y el aparato de Golgi..(1) Núcleo (2) Poro nuclear (3) Retículo endoplasmático rugoso (RER) (4) Retículo endoplasmático liso (REL) (5) Ribosoma en el RER (6) Proteínas siendo transportadas (7) Vesícula (transporte) (8) Aparato de Golgi (9) Lado cis del aparato de Golgi (10) Lado trans del aparato de Golgi (11) Cisternas del aparato de Golgi

Es un conjunto de cavidades cerradas de forma muy variable: láminas aplanadas, vesículas globulares o tubos de aspecto sinuoso. Estos se comunican entre sí y forman una red continua separada del hialoplasma por la membrana del retículo endoplasmático. En consecuencia, el contenido del líquido del citoplasma queda dividido en dos partes: el espacio luminar o cisternal contenido en el interior del retículo endoplasmático y el espacio citosólico que comprende el exterior del retículo endoplasmático.[5]

Sus principales funciones incluyen:

Circulación de sustancias que no se liberan al citoplasma. Servir como área para reacciones químicas. Síntesis y transporte de proteínas producidas por los ribosomas

adosados a sus membranas (RER únicamente). Glicosilación de proteínas (RER únicamente). Producción de lípidos y esteroides (REL únicamente). Proveer como un esqueleto estructural para mantener la forma celular.

Page 30: Celula y Organelos

Retículo endoplasmático rugoso

Cuando la membrana está rodeada de ribosomas, se le denomina retículo endoplasmático rugoso (RER). El RER tiene como función principal la síntesis de proteínas, y es precisamente por esa razón que se da más en células en crecimiento o que segregan enzimas. Del mismo modo, un daño a la célula puede hacer que haya un incremento en la síntesis de proteínas, y que el RER tenga formación, previsto que se necesitan proteínas para reparar el daño.

Las proteínas se transforman y desplazan a una región del RER, el aparato de Golgi. En estos cuerpos se sintetizan, además, macromoléculas que no incluyen proteínas.

Retículo endoplasmático liso

En la ausencia de ribosomas, se le denomina retículo endoplasmático liso (REL). Su función principal es la de producir los lípidos de la célula, concretamente fosfolípidos y colesterol, que luego pasan a formar parte de las membranas celulares. El resto de lípidos celulares (ácidos grasos y triglicéridos) se sintetizan en el seno del citosol; es por esa misma razón que es más abundante en células que tengan secreciones relacionadas, como, por ejemplo, una glándula sebácea. Es escaso, sin embargo, en la mayoría de las células

Formar lisosomas primarios.

Esquema de una mitocondria. (1) membrana interna (2) membrana externa (3) espacio entre membranas (4) matriz

Mitocondria

La mitocondria es un orgánulo que puede ser hallado en todas las células eucariotas, aunque en células muy especializadas pueden estar ausentes. El número de mitocondrias varía según el tipo celular, y su tamaño es generalmente de entre 5 μm de largo y 0,2 μm de ancho.

Están rodeadas de una membrana doble La más externa es la que controla la entrada y salida de sustancias dentro y fuera de la célula y separa el orgánulo del hialoplasma. La membrana externa contiene proteínas de transporte

Page 31: Celula y Organelos

especializadas que permiten el paso de moléculas desde el citosol hacia el interior del espacio intermembranoso.

Las membranas de la mitocondria se constituyen de fosfolípicos y proteínas. Ambos materiales se unen formando un retículo lípido proteico. Las mitocondrias tienen distintas funciones:

Oxidación del piruvato a CO2m acoplada a la reducción de los portadores electrónicos nada+ y fad (a nadh y fadh2)

Transferencia de electrones desde el nadh y fadh2 al o2, acoplada a la generación de fuerza protón-motriz

Utilización de la energía almacenada en el gradiente electroquímico de protones para la síntesis de ATP por el complejo f1 f0.

La membrana interna está plegada hacia el centro, dando lugar a extensiones denominadas cristas, algunas de las cuales se extienden a todo lo largo del orgánulos. Su función principal es ser principalmente el área donde los procesos respiratorios tienen lugar. La superficie de esas cristas tienen gránulos en su longitud.

El espacio entre ambas membranas es el espacio intermembranoso. El resto de la mitocondria es la matriz. Es un material semi-rígido que contiene proteínas, lípidos y escaso ADN.

Matriz

La matriz consta de una composición de material semifluido. Tiene una consistencia de gel debido a la presencia de una elevada concentración de proteínas hidrosolubles, y se conforma de un 50% de agua e incluye:

Moléculas de ADN (el ADN mitocondrial), doble y circular, que contiene información para sintetizar un buen número de proteínas mitocondriales.

Moléculas de ARN mitocondrial formando los mitorribosomas, distintos del resto de los ribosomas celulares.

Ribosomas (los mitorribosomas), que se localizan tanto libres como adosados a la membrana mitocondrial interna. Son semejantes a los ribosomas bacterianos.

Iones, calcio y fosfato, ADP, ATP, coenzima-A y gran cantidad de enzimas.

Membrana interna

Esta membrana de la mitocondria tiene una superficie mayor debido a las cristas mitocondriales. Tiene una mayor riqueza de proteínas que otras membranas celulares. Entre sus lípido no hay colesterol, y es rica en un fosfolípido poco frecuente, la cardiolipina.

Sus proteínas son variadas, pero se distinguen:

Page 32: Celula y Organelos

Las proteínas que forman la cadena que transporta los electrones hasta el oxígeno molecular (cadena respiratoria)

Un complejo enzimático, la ATP-sintasa, que cataliza la síntesis de ATP y está formada por tres partes: Una esfera de unos 9 nm de diámetro. Es la parte catalítica del complejo y se denomina factor F.

Las proteínas transportadoras, que permiten el paso de los iones y moléculas a través de la membrana mitocondrial interna, bastante impermeable al paso de los iones.

Membrana externa

La membrana externa de la mitocondria tiene parecido a otras membranas celulares, en especial a la del retículo endoplasmático. Entre sus componentes sobresaltan:

Proteínas, que forman grandes "canales acuosos o porinas", lo que la hace muy permeable, al contrario de lo que ocurre con la membrana mitocondrial interna.

Enzimas, como las que activan los ácidos grasos para que sean oxidados en la matriz.

Espacio intermembranoso

Su composición es parecida a la del hialoplasma. Entre sus funciones existen:

Oxidaciones respiratorias. Síntesis de proteínas mitocondriales. Esta función se realiza del mismo

modo que la síntesis de proteínas en el hialoplasma.

Peroxisomas

Estructura básica de un peroxisoma.

Los peroxisomas (o microcuerpos) son cuerpos con membrana, esféricos, con un diámetro de entre 0,5 y 1,5 μm. Se forman por gemación a partir del retículo endoplasmático liso. Además de ser granulares, no tienen estructura interna.

Page 33: Celula y Organelos

Tienen un número de enzimas metabólicamente importante, en particular la enzima catalasa, que cataboliza la degradación de peróxido de hidrógeno. Debido a esto se les da el nombre de peroxisomas. La degradación de peróxido de hidrógeno es representada en una ecuación.

Llevan a cabo reacciones de oxidación que no producen directamente energía utilizable por el resto de la célula (no generan ATP). En los peroxisomas también se degradan purinas, y en las plantas, intervienen en la fotorrespiración. También se sintetiza agua oxigenada (H2O2), y es metabolizada dentro del peroxisoma.

Nucleoplasma

El nucleoplasma o carioplasma es el medio interno del núcleo celular, en él se encuentran las fibras de ADN, que asociadas con proteínas denominadas histonas, forman hebras llamadas cromatinas y ARN conocidos como nucleolos. Contiene principalmente proteínas, sobre todo enzimas relacionados con el metabolismo de los ácidos nucléicos. También existen proteínas ácidas que no están unidas a ADN ni a ARN y que se denominan proteínas residuales. Además hay cofactores, moléculas precursoras, productos intermedios de la glucolisis, sodio, potasio, magnesio y calcio.

Núcleo celular

Células HeLa teñidas mediantes la tinción de Hoechst, que marca en azul el ADN. La célula central y la última de la derecha se encuentran en interfase, por lo que su núcleo se ha teñido completamente. En la izquierda se encuentra una célula en mitosis, por lo que su ADN se encuentra condensado y listo para la división.

Page 34: Celula y Organelos

Figura del núcleo y el retículo endoplásmico: (1) Envoltura nuclear. (2) Ribosomas. (3) Poros Nucleares. (4) Nucléolo. (5) Cromatina. (6) Núcleo. (7) Retículo endoplasmático. (8) Nucleoplasma.

En Biología el núcleo celular (del latín nucleus o nuculeus, corazón de una fruta) es un orgánulo membranoso que se encuentra en las células eucariotas. Contiene la mayor parte del material genético celular, organizado en múltiples moléculas lineales de ADN de gran longitud formando complejos con una gran variedad de proteínas como las histonas para formar los cromosomas. El conjunto de genes de esos cromosomas se denomina genoma nuclear. La función del núcleo es mantener la integridad de esos genes y controlar las actividades celulares regulando la expresión génica. Por ello se dice que el núcleo es el centro de control de la célula.

Las principales estructuras que constituyen el núcleo son la envoltura nuclear, una doble membrana que rodea completamente al orgánulo y separa su contenido del citoplasma, y la lámina nuclear, una trama por debajo de ella que le proporciona soporte mecánico de forma semejante a cómo el citoesqueleto soporta al resto de la célula. Puesto que la envoltura nuclear es impermeable a la mayor parte de las moléculas. Los poros nucleares, que cruzan las dos membranas que la forman, son necesarios para permitir el paso de moléculas a su través, puesto que permiten el tránsito de pequeñas moléculas, como los iones, pero el movimiento de moléculas mayores como las proteínas está cuidadosamente controlado, requiriendo un transporte activo regulado por proteínas transportadoras. El transporte celular es crucial para la función celular, puesto que se necesita el paso a través de estos poros para la expresión génica y el mantenimiento cromosómico.

Aunque el interior del núcleo no contiene ningún subcompartimento membranoso, su contenido no es uniforme, existiendo una cierta cantidad de cuerpos subnucleares compuestos por tipos exclusivos de proteínas, moléculas de ARN y segmentos particulares de los cromosomas. El mejor conocido de todos ellos es el nucléolo, que principalmente está implicado en la síntesis de los ribosomas. Tras ser producidos en el nucléolo, éstos se exportan al citoplasma, donde traducen el ARN.

Page 35: Celula y Organelos

Estructuras

El núcleo es el orgánulo de mayor tamaño en las células animales. En las células de mamífero, el diámetro promedio del núcleo es de aproximadamente 6 micrómetros (μm), lo cual ocupa aproximadamente el 10% del total del volumen celular En los vegetales, el núcleo generalmente presenta entre 5 a 25 µm y es visible con microscopio óptico. En los hongos se han observado casos de especies con núcleos muy pequeños, de alrededor de 0,5 µm, los cuales son visibles solamente con microscopio electrónico. En las oósferas de Cycas y de coníferas alcanza un tamaño de 0,6 mm, es decir que resulta visible a simple vista.7

El líquido viscoso de su interior se denomina nucleoplasma y su composición es similar a la que se encuentra en el citosol del exterior del núcleo.8 A grandes rasgos tiene el aspecto de un orgánulo denso y esférico.

Envoltura y poros nucleares

Núcleo celular eucariota. En este diagrama se visualiza la doble membrana tachonada de ribosomas de la envoltura nuclear, el ADN (complejado como cromatina, y el nucléolo. Dentro del núcleo celular se encuentra un líquido viscoso conocido como nucleoplasma, similar al citoplasma que se encuentra fuera del núcleo.

Sección transversal de un poro nuclear en la superficie de la envoltura nuclear (1). Otros elementos son (2) el anillo externo, (3) rayos, (4) cesta y (5) filamentos.

El espacio entre las membranas se conoce como espacio perinuclear y es continuo con la luz del RER.

Los poros nucleares, que proporcionan canales acuosos que atraviesan la envoltura, están compuestos por múltiples proteínas que colectivamente se conocen como nucleoporinas. Los poros tienen 125 millones de daltons de peso molecular y se componen de aproximadamente 50 (en levaduras) a 100 proteínas (en vertebrados). Los poros tienen un diámetro total de 100 nm; no obstante, el hueco por el que difunden libremente las moléculas es de 9 nm de

Page 36: Celula y Organelos

ancho debido a la presencia de sistemas de regulación en el centro del poro. Este tamaño permite el libre paso de pequeñas moléculas hidrosolubles mientras que evita que moléculas de mayor tamaño entren o salgan de manera inadecuada, como ácidos nucleicos y proteínas grandes. Estas moléculas grandes, en lugar de ello, deben ser transportadas al núcleo de forma activa. El núcleo típico de una célula de mamífero dispone de entre 3000 y 4000 poros a lo largo de su envoltura, cada uno de los cuales contiene una estructura en anillo con simetría octal en la posición en la que las membranas, interna y externa, se fusionan. Anclada al anillo se encuentra la estructura denominada cesta nuclear que se extiende hacia el nucleoplasma, y una serie de extensiones filamentosas que se proyectan en el citoplasma. Ambas estructuras medían la unión a proteínas de transporte nucleares.

La mayoría de las proteínas, subunidades del ribosoma y algunos ARNs se transportan a través de los complejos de poro en un proceso mediado por una familia de factores de transportes conocida como carioferinas. Entre éstas se encuentran las importinas, que intervienen en el transporte en dirección al núcleo, y las que realizan el transporte en sentido contrario, que se conocen como exportinas. La mayoría de las carioferinas interactúan directamente con su carga, aunque algunas utilizan proteínas adaptadoras. Las hormonas esteroideas como el cortisol y la aldosterona, así como otras moléculas pequeñas hidrosolubles implicadas en la señalización celular pueden difundir a través de la membrana celular y en el citoplasma, donde se unen a proteínas que actúan como receptores nucleares que son conducidas al núcleo. Sirven como factores de transcripción cuando se unen a su ligando. En ausencia de ligando muchos de estos receptores funcionan como histona deacetilasas que reprimen la expresión génica.

Lámina nuclear

En las células animales existen dos redes de filamentos intermedios que proporcionan soporte mecánico al núcleo: la lámina nuclear forma una trama organizada en la cara interna de la envoltura, mientras que en la cara externa este soporte es menos organizado. Ambas redes de filamentos intermedios también sirven de lugar de anclaje para los cromosomas y los poros nucleares.

La lámina nuclear está compuesta por proteínas que se denominan láminas. Como todas las proteínas, éstas son sintetizadas en el citoplasma y más tarde se transportan al interior del núcleo, donde se ensamblan antes de incorporarse a la red preexistente. Las láminas también se encuentran en el interior del nucleoplasma donde forman otra estructura regular conocida como velo nucleoplásmico, que es visible usando interfase. Las estructuras de las láminas que forman el velo se unen a la cromatina y mediante la disrupción de su estructura inhiben la transcripción de genes que codifican para proteínas.

Como los componentes de otros filamentos intermedios, los monómeros de lámina contienen un dominio alfa hélice utilizada por dos monómeros para enroscarse el uno con el otro, formando un dímero con un motivo en hélice arrollada. Dos de esas estructuras dimétricas se unen posteriormente lado con lado dispuestos de modo antiparalelo para formar un tetrámero denominado

Page 37: Celula y Organelos

protofilamento. Ocho de esos protofilamentos se disponen lateralmente para formar un filamento. Esos filamentos se pueden ensamblar o desensamblar de modo dinámico, lo que significa que los cambios en la longitud del filamento dependen de las tasas en competición de adición y desplazamiento.

Las mutaciones en los genes de las láminas conducen a defectos en el ensamblaje de los filamentos conocidas como laminopatías. De éstas, la más destacable es la familia de enfermedades conocida como progerias, que dan la apariencia de un envejecimiento prematuro a quienes la sufren. Se desconoce el mecanismo exacto por el que los cambios bioquímicos asociados dan lugar al fenotipo progeroide.

Cromosomas

Un núcleo celular de fibroblasto de ratón en el que el ADN está teñido de azul. Los diferentes territorios del cromosoma 2 (rojo) y cromosoma 9 (verde) están teñidos mediante hibridación fluorescente in situ.

El núcleo celular contiene la mayor parte del material genético celular en forma de múltiples moléculas lineales de ADN conocidas como cromatina, y durante la división celular ésta aparece en la forma bien definida que se conoce como cromosoma. Una pequeña fracción de los genes se sitúa en otros orgánulos, como las mitocondrias o los cloroplastos de las células vegetales.

Existen dos tipos de cromatina: la eucromatina es la forma de ADN menos compacta, y contiene genes que son frecuentemente expresados por la célula. El otro tipo, conocido como heterocromatina, es la forma más compacta, y contiene ADN que se transcribe de forma infrecuente. Esta estructura se clasifica a su vez en heterocromatina facultativa, que consiste en genes que están organizados como heterocromatina sólo en ciertos tipos celulares o en ciertos estadios del desarrollo, y heterocromatina constitutiva, que consiste en componentes estructurales del cromosoma como los telómeros y los centrómeros. Durante la interfase la cromatina se organiza en territorios individuales discretos, los territorios cromosómicos. Los genes activos, que se encuentran generalmente en la región acromática del cromosoma, tienden a localizarse en las fronteras de los territorios cromosómicos.

Page 38: Celula y Organelos

Se han asociado anticuerpos a ciertos tipos de organización cromatínica, en particular los nucleosomas con varias enfermedades autoinmunes como el lupus eritematoso sistémico. Estos son conocidos como anticuerpos antinucleares (ANA) y también se han observado en concierto con la esclerosis múltiple en el contexto de una disfunción inmune generalizada. Como el caso antes mencionado de la progeria, el papel que desempeñan los anticuerpos en la inducción de los síntomas de la enfermedad autoinmune no está todavía aclarado.

Nucléolo

Micrografía electrónica de un núcleo celular, mostrando su nucléolo teñido en un tono más oscuro (electrón-denso).

El nucléolo es una estructura discreta que se tiñe densamente y se encuentra en el núcleo. No está rodeado por una membrana, por lo que en ocasiones se dice que es un suborgánulo. Se forma alrededor de repeticiones en tándem de ADNr, que es el ADN que codifica el ARN ribosómico (ARNr). Estas regiones se llaman organizadores nucleolares. El principal papel del nucléolo es sintetizar el ARNr y ensamblar los ribosomas. La cohesión estructural del nucléolo depende de su actividad, puesto que el ensamblaje ribosómico en el nucléolo resulta en una asociación transitoria de los componentes nucleolares, facilitando el posterior ensamblaje de otros ribosomas. Este modelo está apoyado por la observación de que la inactivación del ARNr da como resultado en la "mezcla" de las estructuras nucleolares.

El primer paso del ensamblaje ribosómico es la transcripción del ADNr por la ARN polimerasa I, formando un largo pre-ARNr precursor. Éste es escindido en las subunidades 5,8S, 18S, y 28S ARNr. La transcripción, procesamiento post-transcripcional y ensamblaje del ARNr tiene lugar en el nucléolo, ayudado por moléculas de ARN pequeño nucleolar, algunas de las cuales se derivan de intrones ayustados de ARN mensajero relacionados con la función ribosomal. Estas subunidades ribosomales ensambladas son las estructuras más grandes que pasan a través de los poros nucleares.

Cuando se observa bajo el microscopio electrónico, se puede ver que el nucléolo se compone de tres regiones distinguibles: los centros fibrilares (FCs), rodeados por el componente fibrilar denso (DFC), que a su vez está bordeado

Page 39: Celula y Organelos

por el componente granular (GC). La transcripción del ADNr tiene lugar tanto en el FC como en la zona de transición FC-DFC, y por ello cuando la transcripción del ADNr aumenta, se observan más FC's. La mayor parte de la escisión y modificación de los ARNr tiene lugar en el DFC, mientras que los últimos pasos que implican el ensamblaje de proteínas en las subunidades ribosómicas tienen lugar en el GC.

Función

La principal función del núcleo celular es controlar la expresión génica y mediar en la replicación del ADN durante el ciclo celular. El núcleo proporciona un emplazamiento para la transcripción en el citoplasma, permitiendo niveles de regulación que no están disponibles en procariotas.

Expresión génica

Micrografía de una transcripción genética en curso de ácido ribonucleico ribosomal que ilustra el crecimiento de los transcritos primarios. "Beginn" indica el extremo 3' del ADN, donde comienza la síntesis de nuevo ARN. "Ende" indica el extremo 5', donde los transcritos primarios están prácticamente completos.

La expresión génica implica en primer lugar la transcripción, en la que el ADN se utiliza como molde para producir ARN. En el caso de los genes que codifican proteínas, el ARN generado por este proceso es el ARN mensajero (ARNm), que posteriormente precisa ser traducido por los ribosomas para formar una proteína. Puesto que los ribosomas se localizan fuera del núcleo, el ARNm sintetizado debe ser exportado.

Puesto que el núcleo es el lugar donde se da la transcripción, está dotado de un conjunto de proteínas que, o bien están implicadas directamente en este proceso, o en su regulación. Entre éstas encontramos las helicasas, que desenrollan la molécula de ADN de doble cadena para facilitar el acceso de la maquinaria de síntesis, la ARN polimerasa, que sintetiza el ARN a partir del molde de ADN, la topoisomerasa, que varía la cantidad de superenrollamiento

Page 40: Celula y Organelos

del ADN, así como una amplia variedad de factores de transcripción que regulan la expresión génica.

Procesamiento del pre-ARNm

Las moléculas de ARNm recién sintetizadas se conocen como transcritos primarios o pre-ARNm. Posteriormente se deben someter a modificación post-transcripcional en el núcleo antes de ser exportados al citoplasma. El ARNm que aparece en el núcleo sin estas modificaciones acaba degradado en lugar de utilizarse para la traducción en los ribosomas. Las tres modificaciones principales son: La del extremo 5' (5' caping), la poliadenilación del extremo 3' y el ayuste de ARN. Mientras permanece en el núcleo, el pre-ARNm se asocia con varias proteínas en complejos conocidos como ribonucleoproteínas heterogéneas nucleares o hnRNPs. La adición de las modificaciones del extremo 5' tiene lugar en el momento de la transcripción y es el primer paso en las modificaciones postranscripcionales. La cola de poliadenina 3' solo se añade una vez que la transcripción está completa.

El ayuste (splicing o corte y empalme) de ARN, llevado a cabo por un complejo denominado espliceosoma es el proceso por el que los intrones se retiran del pre-ARNm, permaneciendo únicamente los exones conectados para formar una sola molécula continua. Este proceso normalmente finaliza tras los dos anteriores, pero puede comenzar antes de que la síntesis esté completa en transcritos con muchos exones.5 Muchos pre-ARNm's, incluyendo los que codifican anticuerpos, se pueden cortar y empalmar de múltiples formas para producir diferentes ARNm maduros, que por ello codifican diferentes secuencias de proteínas. Este proceso se conoce como ayuste alternativo, y permite la producción de una gran variedad de proteínas a partir de una cantidad limitada de ADN.

Transporte nuclear

Las macromoleculas, como el ARN y las proteínas son transportadas activamente a través de la membrana nuclear en un proceso conocido como "ciclo de transporte nuclear Ran-GTP.

La entrada y salida de grandes moléculas del núcleo está estrictamente controlada por los complejos de poros nucleares. Aunque las pequeñas moléculas pueden entrar en el núcleo sin regulación, las macromoléculas como el ARN y las proteínas requieren asociarse a carioferinas llamadas importinas para entrar en el núcleo, y exportinas para salir. Las proteínas cargadas que

Page 41: Celula y Organelos

deben ser translocadas desde el citoplasma al núcleo contienen cortas secuencias de aminoácidos conocidas como señales de localización nuclear que están unidas a las importinas, mientras que las transportadas desde el núcleo al citoplasma poseen señales de exportación nuclear unidas a las exportinas. La capacidad de las importinas y las exportinas para transportar su carga está regulada por GTPasas, enzimas que hidrolizan GTP liberando energía. La GTPasa clave en el transporte nuclear es Ran, que puede unir o bien GTP o bien GDP (guanosina difosfato), dependiendo de si está localizada en el núcleo o en el citoplasma. Mientras que las importinas dependen de Ran-GTP para disociarse de su carga, las exportinas necesitan Ran-GTP para unirse a su carga.

La importación nuclear depende de que la importina se una a su carga en el citoplasma y lo trasporte a través del poro nuclear al núcleo. Dentro del núcleo, la Ran-GTP actúa separando la carga de la importina, permitiendo a ésta salir del núcleo y ser reutilizada. La exportación nuclear es similar, puesto que la exportina se une a la carga dentro del núcleo en un proceso facilitado por RanGTP, y sale a través del poro nuclear, separándose de su carga en el citoplasma.

Las proteínas especializadas de exportación sirven para la traslocación de ARNm maduro y ARTt al citoplasma después de que la modificación postranscripcional se completa. Este mecanismo de control de calidad es importante debido al papel central de esas moléculas en la traducción de proteínas. La expresión inadecuada de una proteína debido a una escisión de exones incompleta o la incorporación impropia de aminoácidos podría tener consecuencias negativas para la célula. Por ello, el ARN no modificado por completo que alcanza el citoplasma es degradado en lugar de ser utilizado en la traducción.

Ensamblaje y desensamblaje

Imagen de un neumocito de tritón teñido con colorantes fluorescentes durante la metafase. El huso mitótico puede verse teñido en azul claro. Todos los cromosomas excepto uno se encuentran en la placa metafásica.

Durante su periodo de vida un núcleo puede desensamblarse, o bien en el transcurso de la división celular, o como consecuencia de la apoptosis, una forma regulada de muerte celular. Durante estos acontecimientos, los

Page 42: Celula y Organelos

componentes estructurales del núcleo —la envoltura y la lámina— son sistemáticamente degradados.

Durante el ciclo celular la célula se divide para formar dos células. Para que éste proceso sea posible, cada una de las nuevas células hija debe adquirir un juego completo de genes, un proceso que requiere la replicación de los cromosomas, así como la segregación en juegos separados. Esto se produce cuando los cromosomas ya replicados, las cromátides hijas, se unen a los Microtúbulos, los cuales a su vez se unen a diferentes centrosomas. Las cromátides hija pueden ser fraccionadas hacia localizaciones separadas en la célula. No obstante, en muchas células él centrosoma se localiza en el citoplasma, fuera del núcleo, por lo que los Microtúbulos serían incapaces de unirse a las cromátides en presencia de la envoltura nuclear. Por tanto, en los estadios tempranos del ciclo celular, comenzando en profase y hasta casi la prometafase, se desmantela la membrana nuclear. De forma similar, durante el mismo periodo se desensambla la lámina nuclear, un proceso que está regulado por la fosforilación de las láminas. Hacia el final del ciclo celular se reforma la membrana nuclear, y en torno al mismo tiempo, la lámina nuclear se reensambla desfosforilando las láminas.

La apoptosis es un proceso controlado en el que los componentes estructurales de la célula son destruidos, lo que produce la muerte de la célula. Los cambios asociados con la apóptosis afectan directamente al núcleo y a sus contenidos, por ejemplo en la condensación de la cromatina y la desintegración de la envoltura nuclear y la lámina. La destrucción de las redes de lámina está controlada por proteasas apoptóticas especializadas denominadas caspasas, que desintegran la lámina nuclear y de ese modo degradan la integridad estructural del núcleo. La desintegración de la lámina nuclear se utiliza en ocasiones en los laboratorios como indicador de la actividad de la caspasa en ensayos de actividad apoptótica temprana. Las células que expresan láminas resistentes a las caspasas son deficientes en los cambios nucleares relacionados con la apoptosis, lo que sugiere que las láminas desempeñan un papel importante en el inicio de los eventos que conducen a la degradación apoptótica del núcleo. La inhibición del propio ensamblaje de la lámina nuclear es por sí misma un inductor de la apoptosis.

La envoltura nuclear actúa como una barrera que evita que virus de ADN o ARN penetren en el núcleo. Algunos virus precisan acceder a proteínas dentro del núcleo para replicarse o ensamblarse. Los virus de ADN, como el herpesvirus se replican y ensamblan en el núcleo celular, y salen brotando a través de la membrana nuclear interna. Este proceso se acompaña del desensamblaje de la lámina nuclear en la cara nuclear de la membrana interna.

Células anucleadas y polinucleadas

Page 43: Celula y Organelos

Los eritrocitos humanos, al igual que los de otros mamíferos, carecen de núcleo. Esto tiene lugar como una parte normal del desarrollo de este tipo de célula.

Aunque la mayor parte de las células tienen un único núcleo, algunos tipos celulares carecen de él, en tanto que otros poseen múltiples núcleos. Esto puede ser un proceso normal, como es en el caso de la maduración de los eritrocitos, o bien el resultado de una división celular defectuosa.

Las células anucleadas carecen de núcleo, y por lo mismo son incapaces de dividirse para producir células hijas. El caso mejor conocido de célula anucleada es el eritrocito de mamífero, que también carece de otros orgánulos como mitocondrias, y sirven en principio como vehículos de transporte de oxígeno desde los pulmones a los tejidos. Los eritrocitos maduran gracias a la eritropoyesis en la médula ósea, donde pierden su núcleo, orgánulos y ribosomas. El núcleo es expulsado durante el proceso de diferenciación de eritroblasto a reticulocito, el cual es el precursor inmediato del eritrocito maduro. mutágenos puede inducir la liberación de algunos eritrocitos inmaduros "micronucleados" al torrente sanguíneo. También pueden aparecer células anucleadas a partir de una división celular defectuosa en la que una célula hija carece de núcleo, mientras que la otra posee dos.

Las células polinucleadas contienen múltiples núcleos. La mayor parte de los protozoos de la clase Acantharea, y algunos hongos que forman micorrizas, tienen células polinucleadas de forma natural. Otros ejemplos serían los parásitos intestinales del género Giardia, que posee dos núcleos en cada célula. En los seres humanos, el músculo esquelético posee células, llamadas miocitos, que se convierten en polinucleadas durante su desarrollo. La disposición resultante de los núcleos en la región periférica de la célula permite un espacio intracelular máximo para las miofibrillas. Las células multinucleadas también pueden ser anormales en humanos. Por ejemplo, las que surgen de la fusión de monocitos y macrófagos, conocidas como células multinucleadas gigantes, pueden ser observadas en ocasiones acompañando a la inflamación, y también están implicadas en la formación de tumores.

Page 44: Celula y Organelos

Nucléolo

Micrografía de un núcleo. En negro puede observarse claramente el nucleolo.

En biología celular, el nucléolo o nucleolo es una región del núcleo que no se considera un orgánulo. La función principal del nucleolo es la producción y ensamblaje de los componentes ribosómicos. El nucleolo es aproximadamente esférico y está rodeado por una capa de cromatina condensada. El nucléolo, es la región heterocromática más destacada del núcleo. No existe membrana que separe el nucleolo del nucleoplasma.

Los nucleolos están formados por proteínas y ADN ribosomal (ADNr). El ADNr es un componente fundamental ya que es utilizado como molde para la transcripción del ARN ribosómico, para incorporarlo a nuevos ribosomas. La mayor parte de las células tanto animales como vegetales, tienen uno o más nucleolos, aunque existen ciertos tipos celulares que no los tienen. En el nucleolo además tiene lugar la producción y maduración de los ribosomas,y gran parte de los ribosomas se encuentran dentro de él. Además, se cree que tiene otras funciones en la biogénesis de los ribosomas.

El nucleolo se fragmenta en división (aunque puede ser visto en metafase mitótica). Tras la separación de las células hijas mediante citocinesis, los fragmentos del nucleolo se fusionan de nuevo alrededor de las regiones organizadoras nucleolares de los cromosomas.

Número y Estructura

El número de nucléolos es bastante variable dependiendo del tipo de célula estudiado. Incluso en un mismo tipo celular, se pueden dar importantes variaciones en cuanto a cantidad. La mayoría de las células tienen uno o dos nucléolos aunque se pueden llegar a dar muchos como por ejemplo en ovocitos de anfibios, donde se han llegado a encontrar mil nucléolos. a pesar de esta extensa suma de nucleolos no se puede obtener gran parte del ADN algo que se debe señalar con mucha importancia.

Morfológicamente, el nucléolo suele ser esférico pero puede adoptar formas muy irregulares. Suelen encontrarse en el centro del núcleo o ligeramente

Page 45: Celula y Organelos

desplazados hacia la periferia. Su tamaño puede ser también muy variable pero suele oscilar entre una y dos micras. El nucléolo se divide en dos regiones:

Parte amorfa: se observa poco densa a los electrones está constituida por espacios intercomunicados entre sí y que quedan entre las partes más densas. Es equivalente al nucleoplasma.

Parte densa: forma el nucleolonema. Esta parte se observa densa a los electrones, pero existen diferentes regiones dependiendo de su grado de densidad:

o Centros Fibrilares o Zona Central: es la región con menor densidad. Está formada por una red de fibrillas de 4-5 nanómetros de espesor. La forma es normalmente globular, con un diámetro de entre 50 nm a una micra. El número y tamaño de las zonas centrales es variable y depende de la actividad celular y de la necesidad de producción de más ribosomas. En una célula con gran actividad existen más zonas centrales que en otra célula con poca actividad. Pueden aparecer fibrillas de ADN y algo de ARN. En esta región se encuentre el ADN de los organizadores nucleolares y algunas proteínas y enzimas que intervienen en la transcripción. Estas regiones no son indispensables.

o Componentes Fibrilares Densos o Parte Fibrilar: es la región más densa. Son estructuras fibrilares de ribonucleoproteínas de un grosor de 8-10 nm. Son regiones con ADN y ARN ribosómico que se forma y al cual se unen proteínas. Normalmente rodean a la zona central, y su tamaño refleja la cantidad de ARNr que se está produciendo.

o Región granular: se observa menos densa a los electrones que la parte fibrilar y más densa que el centro fibrilar. Está formada por estructuras granulares de 25 nm de diámetro que se corresponden con las subunidades de ribosomas que se están formando. En algunos casos se observan masas muy densas de ADN asociadas al nucleolo (heterocromatina asociada al nucleolo). Los componentes granulares son pequeños gránulos con un diámetro de alrededor de 15 nm. Normalmente aparecen formando una masa que rodea a los complejos fibrilares y unen la zona central con los componentes fibrilares densos.

Función

La función principal del nucléolo es la biosíntesis de ribosomas desde sus componentes de ADN para formar ARN ribosomal. Está relacionado con la síntesis de proteínas. En células con una síntesis proteica intensa hay muchos nucleolos.

Además, investigaciones recientes, han descrito al nucléolo como el responsable del tráfico de pequeños segmentos de ARN. El nucléolo además, interviene en la maduración y el transporte del ARN hasta su destino final en la célula.

Page 46: Celula y Organelos

Aunque el nucléolo desaparezca en división, algunos estudios actuales aseguran que regula el ciclo celular. la estructura granular homogenea de los nucleolos puede ser observada con microscopia electronica.

Ciclo del nucléolo

El nucléolo no se ve a lo largo de todo el ciclo celular. Al igual que los cromosomas, sufre una serie de cambios según se encuentre en interfase o en división. En interfase no sufre cambios morfológicos significativos (se puede dar un aumento o una fusión de varios). Sin embargo en división se dan cambios que determinan el ciclo del nucléolo. En este ciclo hay tres etapas:

1. Desorganización profásica: el nucléolo disminuye de tamaño y se hace bastante irregular. Aparecen pequeñas masas de material nucleolar que se disponen entre los cromosomas profásicos que se están condensando.

2. Transporte metafásico y anafásico: el nucléolo pierde su individualidad y sus componentes se incorporan a los cromosomas metafásicos.

3. Organización telofásica: en la primera mitad de la telofase, los cromosomas se descondensan y aparecen los cuerpos laminares y cuerpos prenucleolares (de mayor tamaño y resultado de la fusión de los primeros). Estos cuerpos son estructuras esféricas con características citoquímicas y estructurales del núcleo interfásico. Los cuerpos prenucleolares aumentan de tamaño y empiezan a formar un nucléolo alrededor de laregión de los organizadores nucleolares. La cantidad de nucléolos depende del número de organizadores nucleolares.

Centriolo

Un centríolo mostrando los nueve tripletes de Microtúbulos. Imagen obtenida con un microscopio electrónico de transmisión.

Page 47: Celula y Organelos

En biología celular, los centríolos son una pareja de estructuras que forman parte del citoesqueleto, semejantes a cilindros huecos. Los centríolos son orgánulos que intervienen en la división celular, siendo una pareja de centríolos un diplosoma sólo presente en células animales. Los centríolos son dos estructuras cilíndricas que, rodeadas de un material proteico denso llamado material pericentriolar, forman el centrosoma o COMT (centro organizador de Microtúbulos) que permiten la polimerización de Microtúbulos de dímeros de tubulina que forman parte del citoesqueleto. Los centríolos se posicionan perpendicularmente entre sí.

División centriolar

Esquema de un centríolo mostrando los tripletes formados por los Microtúbulos.

El proceso de formación ciliar en las células de diferenciación comprende la replicación del centríolo para originar múltiples procentríolos. Éstos crecen y migran hacia la superficie apical de la célula, en donde cada uno de ellos se convierte en un cuerpo basal. Desde cada uno de los nueve tripletes que forman el cuerpo basal crece un doblete de Microtúbulos que produce una evaginación de la membrana apical. Esta proyección de la membrana contendrá los nueve dobletes periféricos que hay en un cilio maduro.

El material pericentriolar es un material denso y de naturaleza proteica que puede estar relacionado con la formación de Microtúbulos. Esto es así ya que las células vegetales, que carecen de centríolos, también forman Microtúbulos. Las células vegetales, en su lugar, poseen una masa fibrosa difusa que tiene una composición similar al material pericentriolar.

El centríolo también juega un papel crucial en la división y movimiento cromosómico durante la mitosis, permitiendo que cada célula hija obtenga el número de cromosomas correspondiente.

Organización celular

Page 48: Celula y Organelos

Los centríolos son una importante parte de los centrosomas, que están implicados en la organización de los Microtúbulos en el citoplasma. La posición de los centríolos determina la posición del núcleo celular y juega un papel crucial en la reorganización espacial de la célula.

Ribosoma

Subunidad grande del ribosoma.

Subunidad pequeña del ribosoma.

Los ribosomas son complejos supramoleculares encargados de sintetizar proteínas a partir de la información genética que les llega del ADN transcrita en forma de ARN mensajero (ARNm). Sólo son visibles al microscopio electrónico, debido a su reducido tamaño (29 nm en células procariotas y 32 nm en eucariotas). Bajo el microscopio electrónico se observan como estructuras redondeadas, densas a los electrones. Bajo el microscopio óptico se observa que son los responsables de la basofilia que presentan algunas células. Están en todas las células (excepto en los espermatozoides).

Page 49: Celula y Organelos

En células eucariotas, los ribosomas se elaboran en el núcleo pero desempeñan su función de síntesis en el citosol. Están formados por ARN ribosómico (ARNr) y por proteínas. Estructuralmente, tienen dos subunidades. En las células, estos orgánulos aparecen en diferentes estados de disociación. Cuando están completos, pueden estar aislados o formando grupos (polisomas); las proteínas sintetizadas por ellos actúan principalmente en el citosol; también pueden aparecer asociados al retículo endoplasmático rugoso o a la membrana nuclear, y las proteínas que sintetizan son sobre todo para la exportación.

Tanto los ARNr como las subunidades de los ribosomas se suelen nombrar por su coeficiente de sedimentación en unidades Svedberg. En eucariotas, los ribosomas del citoplasma se denominan 80 S. En mitocondrias y plastos de eucariotas, así como en procariotas, son 70 S.

Ribosomas procariotas

Los Ribosomas de las Células procariotas son los más estudiados. Son de 70 S y su masa molecular es de 2.500 kilodalton. Las moléculas de ARNr forman el 65% del ribosoma y las proteínas representan el 35%. Las moléculas de ARN ribosómico son ricas en adenina y guanina y forman una hélice alrededor de las proteínas. Los ribosomas están formados por dos subunidades:

Subunidad mayor: es 50 S. Está formada por dos moléculas de ARN, una de 23 S y otra de 5 S. Además hay 34 proteínas básicas de las cuales sólo una se repite en la subunidad menor.

Subunidad menor: es de 30 S y tiene una molécula de ARNr de 16 S además de 21 proteínas.

Ribosoma eucariotas

En eucariotas, los ribosomas son 80 S. Su peso molecular es de 4.200 Kd. Contienen un 40% de ARNr y 60% de proteínas. Al igual que los procariotas se dividen en dos subunidades de distinto tamaño:

Subunidad mayor: es 60 S. Tiene tres tipos de ARNr: 5 S, 28 S y 5,8 S y tiene 49 proteínas, todas ellas distintas a las de la subunidad menor.

Subunidad menor: es 40 S. Tiene una sola molécula de ARNr 18 S y contiene 33 proteínas. Dependiendo de qué organismo eucariota sea, este ARNr 18 S puede sufrir alteraciones.

Ribosomas mitocondriales

Las mitocondrias tienen su propio aparato de síntesis proteica que incluye ribosomas, ARNt y ARNm. Los ribosomas mitocondriales de las células animales contienen dos tipos de ARN ribosómicos, el 12S y 16S, que se transcriben a partir de genes del ADN mitocondrial, y son transcritos por una

Page 50: Celula y Organelos

ARN polimerasa mitocondrial específica. Todas las proteínas que forman parte de los ribosomas mitocondriales están codificadas por genes del núcleo celular, que son traducidos en el citosol y transportados hasta las mitocondrias.

Ribosoma de plastos

Los ribosomas que aparecen en plastos son similares a los procariotas. Son, al igual que los procariotas, 70 S, pero en la subunidad mayor hay un ARNr de 4 S que es equivalente al 5 S procariota.

Funciones

Los ribosomas son los orgánulos encargados de la síntesis de proteínas, en un proceso conocido como traducción. La información necesaria para esa síntesis se encuentra en el ARN mensajero (ARNm), cuya secuencia de nucleótidos determina la secuencia de aminoácidos de la proteína; a su vez, la secuencia del ARNm proviene de la transcripción de un gen del ADN. El ARN de transferencia lleva los aminoácidos a los ribosomas donde se incorporan al polipéptido en crecimiento.

Traducción

Ribosoma durante la traducción.

El ribosoma lee el ARN mensajero y ensambla los aminoácidos suministrados por los ARN de transferencia a la proteína en crecimiento, proceso conocido como traducción o síntesis de proteínas.

Todas las proteínas están formadas por aminoácidos. Entre los seres vivos se han descubierto hasta ahora 20 aminoácidos. En el código genético, cada aminoácido está codificado por uno o varios codones. En total hay 64 codones que codifican 20 aminoácidos y 3 señales de parada de la traducción. Esto hace que el código sea redundante y que haya varios codones diferentes para un mismo aminoácido.

La traducción comienza, en general, el codón AUG que codifica el aminoácido metionina. Al final de la secuencia se ubica un codón que indica el final de la proteína; es el codón de terminación. El código genético es universal porque cada codón codifica el mismo aminoácido para la mayoría de los organismos (no todos).

Page 51: Celula y Organelos

El ribosoma consta de dos partes, la subunidad mayor y una menor, estas salen del núcleo celular por separado. Las subunidades se mantienen unidas por cargas, y que al disminuir experimentalmente la concentración de Mg+2, las subunidades tienden a separarse.

Por ejemplo, el ARN este:

AUG le indica que tiene que empezar a ensamblar la proteína; es un codón de iniciación.GCC es Alanina. Coge alanina (un aminoácido) y lo sujeta.AAC es Arginina, lo une con la alanina.GGC es Glicina, lo ensambla a la arginina.AUG era el símbolo de iniciación, pero ya ha comenzado; así que lo interpreta como Metionia. Une el aminoácido metionina con la glicina anterior.CCU es Prolina. Ensambla la prolina a la metionina.ACU es Serina. Ensambla la serina con la prolina.UAA es terminación. Deja de ensamblar la proteína.

Por tanto, la cadena polipeptídica ensamblada ha sido: Alanina-Arginina-Glicina-Metionina-Prolina-Serina

Figura 3: Traducción (1) de ARNm por un ribosoma (2) en una cadena polipeptídica (3). El ARNm comienza con un codón de iniciación (AUG) y finaliza con un codon de terminación (UAG).

Page 52: Celula y Organelos

Membrana plasmática

Ilustración de la membrana plasmática de una célula eucariota.

No debe confundirse con Pared celular.