Ch02 (EE).ppt

Embed Size (px)

Citation preview

  • 8/10/2019 Ch02 (EE).ppt

    1/135

  • 8/10/2019 Ch02 (EE).ppt

    2/135

    2

    2.1

    The Mole

  • 8/10/2019 Ch02 (EE).ppt

    3/135

    3

    P. 3 / 66

    A burrowing mammalwith fossorial forefeet

    A small congenitalpigmented spot on the skin

    An undercover agent,a counterspy,

    a double agent

    A breakwater

    Mole

  • 8/10/2019 Ch02 (EE).ppt

    4/135

  • 8/10/2019 Ch02 (EE).ppt

    5/135

    5

    V

    B

    ke

    m 2

    At fixed e, k, B and V

    m can be determined.

  • 8/10/2019 Ch02 (EE).ppt

    6/135

    6

    Q.5

    Mass of one mole of atoms = 12.00 g mol1C126

    = Mass of an Avogadros number of atomsC12

    6

    = Avogadros number 1.992648 10-23 g

    Avogadros numberg101.992648

    molg12.0023

    1

    = 6.022 1023 mol1

  • 8/10/2019 Ch02 (EE).ppt

    7/135

    7

    2.1 The mole (SB p.18)

    What is mole?

    Item Unit used tocount

    No. ofitems perunit

    Shoes pairs 2

    Eggs dozens 12

    Paper reams 500

    Particles inChemistry

    moles 6.022 1023

    for counting particles like atoms, ions, molecules

    for

    countingcommonobjects

  • 8/10/2019 Ch02 (EE).ppt

    8/135

    8

    P. 8 / 66

    1 mole ~

    ~602,200,000,000,000,000,000,000 mol1million

    billion

    quadrillion

    trillionquintillion

    sextillion

    602.2 sextillions

  • 8/10/2019 Ch02 (EE).ppt

    9/135

    9

    The fastest supercomputer can count 1.7591015atoms persecond.

    Calculate the time taken for the superconductor to count1 mole of carbon-12 atoms.

    s103.424101.759

    106.022 815

    23

    10.85 years

  • 8/10/2019 Ch02 (EE).ppt

    10/135

    10

    P. 10 / 66

    We can count the number of coins byweighing if the mass of one coin is known.

    Similarly, we can count the number of 12C byweighing if the mass of one 12C is known.

    23106.02particlesofno.molesofno.

    massmolar

    mass

  • 8/10/2019 Ch02 (EE).ppt

    11/135

    11

    Molar mass is the mass, in grams, of 1 mole ofa substance

  • 8/10/2019 Ch02 (EE).ppt

    12/135

    12

    Relative atomic mass12.01

    101.12

    1.1213.003

    101.12

    100.0012.000

    Q.6

    Relativeisotopic mass Relativeintensity

    12.000 100.00

    13.003 1.12

    C

    12

    C13

  • 8/10/2019 Ch02 (EE).ppt

    13/135

    13

    Q.6

    Relativeisotopic mass Relativeintensity

    12.000 100.00

    13.003 1.12

    C

    12

    C13

    Molar mass of carbon= 12.01 g mol1

  • 8/10/2019 Ch02 (EE).ppt

    14/135

    14

    Q.6

    Relativeisotopic mass Relativeintensity

    12.000 100.00

    13.003 1.12

    C

    12

    C13

    Relative isotopic mass is not exactlyequal to mass number of the isotope

  • 8/10/2019 Ch02 (EE).ppt

    15/135

    15

    Number of moles of a substance

    number of particles

    6.022 1023mol1

    mass

    molar mass= =

    Q.7

    Number of moles of oxygen atoms

    =

    number of oxygen atoms

    6.022 1023mol1

    2 g

    16 g mol1=

  • 8/10/2019 Ch02 (EE).ppt

    16/135

    16

    Q.7

    Number of moles of oxygen atoms

    =number of oxygen atoms

    6.022 1023mol1

    2 g

    16. g mol1=

    Number of oxygen atoms = 2310022.6162

    Number of atomsO17 %04.010022.6

    16

    2 23

    = 3.011 1019

  • 8/10/2019 Ch02 (EE).ppt

    17/135

    17

    Molar massis the same as the relative

    atomic mass in grams.Molar massis the same as the relative

    molecular massin grams.

    Molar massis the same as the formulamass in grams.

    2.1 The mole (SB p.20)

    Example 2-1A Example 2-1B Example 2-1C

    Example 2-1D Example 2-1E Check Point 2-1

  • 8/10/2019 Ch02 (EE).ppt

    18/135

    18

    2.2

    Molar Volume andAvogadros Law

  • 8/10/2019 Ch02 (EE).ppt

    19/135

    19

    What is molar volume of gases?

    Volume occupied by one mole ofmoleculesof a gas.

    2.2 Molar volume and Avogadros law (SB p.24)

    (S 2 )

  • 8/10/2019 Ch02 (EE).ppt

    20/135

    20

    What is molar volume of gases?

    Depends on T & P

    Two sets of conditions

    2.2 Molar volume and Avogadros law (SB p.24)

    2 2 M l l d A d l (SB 24)

  • 8/10/2019 Ch02 (EE).ppt

    21/135

    21

    What is molar volume of gases?

    at 298 K & 1 atm

    (Room temp & pressure / R.T.P.)

    2.2 Molar volume and Avogadros law (SB p.24)

    2 2 M l l d A d l (SB 24)

  • 8/10/2019 Ch02 (EE).ppt

    22/135

    22

    What is molar volume of gases?

    at 273 K & 1 atm

    (Standard temp & pressure / S.T.P.)

    2.2 Molar volume and Avogadros law (SB p.24)

    22.4 dm3 22.4 dm322.4 dm3

  • 8/10/2019 Ch02 (EE).ppt

    23/135

    23

    GasMolar

    mass/g

    Molar volume

    at R.T.P./dm3

    Molar volume

    at S.T.P./dm3

    O2 32 24.0 22.397

    N2 28 24.0 22.402

    H2 2 24.1 22.433

    He 4 24.1 22.434

    CO2 44 24.3 22.260

    17 24.1 22.079NH3

    Not constant~ 24 ~ 22.4

    2 2 M l l d A d l (SB 24)

  • 8/10/2019 Ch02 (EE).ppt

    24/135

    24

    Avogadros Law

    2.2 Molar volume and Avogadros law (SB p.24)

    Equal volumes of ALLgases at the sametemperature and pressure contain thesame number of moles of molecules.

    At fixed T & P, V n

    If n = 1, V = molar volume

    2 2 M l l d A d l (SB 24)

  • 8/10/2019 Ch02 (EE).ppt

    25/135

    25

    Avogadros Law

    )mol(dmvolumemolar

    )(dmgasofvolume

    moleculesgasofmolesofno.

    1-3

    3

    R.T.P.atmoldm24

    )(dmgasofvolume

    1-3

    3

    2.2 Molar volume and Avogadros law (SB p.24)

    S.T.P.atmoldm22.4

    )(dmgasofvolume1-3

    3

    V n

    V = Vmn

    2 2 Molar volume and Avogadros law (SB p 24)

  • 8/10/2019 Ch02 (EE).ppt

    26/135

    26

    2.2 Molar volume and Avogadros law (SB p.24)

    Interconversions involving numberof moles

    Example 2-2A Example 2-2B Example 2-2C

    Example 2-2D Check Point 2-2

  • 8/10/2019 Ch02 (EE).ppt

    27/135

    27

    2.3Ideal GasEquation

    2 3 Id l s ti (SB 27)

  • 8/10/2019 Ch02 (EE).ppt

    28/135

    28

    Boyles law

    2.3 Ideal gas equation (SB p.27)

    At fixed n and T,

    PV = constant or

    P1V

    n = number of moles of gas molecules

    2 3 Ideal gas eq ation (SB p 28)

  • 8/10/2019 Ch02 (EE).ppt

    29/135

    29

    2.3 Ideal gas equation (SB p.28)

    Schematic diagrams explaining Boyles law

  • 8/10/2019 Ch02 (EE).ppt

    30/135

    30

    1/P

    2 3 Ideal gas equation (SB p 28)

  • 8/10/2019 Ch02 (EE).ppt

    31/135

    31

    2.3 Ideal gas equation (SB p.28)

    A graph of volume against the reciprocal ofpressure for a gas at constant temperature

    2 3 Ideal gas equation (SB p 28)

  • 8/10/2019 Ch02 (EE).ppt

    32/135

    32

    At fixed n and P,

    2.3 Ideal gas equation (SB p.28)

    Charles law

    TV

    T is the absolute temperature in Kelvin, K

    2 3 Ideal gas equation (SB p 28)

  • 8/10/2019 Ch02 (EE).ppt

    33/135

    33

    2.3 Ideal gas equation (SB p.28)

    Schematic diagrams explaining Charles law

    2 3 Ideal gas equation (SB p 28)

  • 8/10/2019 Ch02 (EE).ppt

    34/135

    34

    2.3 Ideal gas equation (SB p.28)

    A graph of volume against temperature for a gas atconstant pressure

    0oCTemperature / oC

    Volum

    e

    -273.15 oC

    2 3 Ideal gas equation (SB p 28)

  • 8/10/2019 Ch02 (EE).ppt

    35/135

    35

    2.3 Ideal gas equation (SB p.28)

    A graph of volume against absolute temperaturefor a gas at constant pressure

    / K

    2 3 Ideal gas equation (SB p 27)

  • 8/10/2019 Ch02 (EE).ppt

    36/135

    36

    PV = nRT

    2.3 Ideal gas equation (SB p.27)

    Ideal gas equation

    P

    RnTV

    R is the same for all gases

    R is known as the universal gas constant

    nV Avogadros law

    P

    1V Boyles law

    Charles lawTV

    Ideal gas equation

    2 3 Ideal gas equation (SB p 29)

  • 8/10/2019 Ch02 (EE).ppt

    37/135

    37

    2.3 Ideal gas equation (SB p.29)

    Relationship between the ideal gas equation and theindividual gas laws

  • 8/10/2019 Ch02 (EE).ppt

    38/135

    38

    At fixed n,

    nRTPV a constant

    ......

    3

    33

    2

    22

    1

    11 T

    VP

    T

    VP

    T

    VP

    = a constant

    Ideal gas behaviour is assumed in all gas

    laws

    2 3 Ideal gas equation (SB p 27)

  • 8/10/2019 Ch02 (EE).ppt

    39/135

    39

    PV = nRT

    2.3 Ideal gas equation (SB p.27)

    Gas laws

    nV Avogadros law

    P

    1V Boyles law

    Charles lawTVIdeal gas equation

    2.2 Molar volume and Avogadros law (SB p.24)

  • 8/10/2019 Ch02 (EE).ppt

    40/135

    40

    What is the difference between a theory and a law?

    2.2 Molar volume and Avogadro s law (SB p.24)

    A law describes what happens under a givenset of circumstances.

    A theory attempts to explain why that

    behaviour occurs.

    Gas laws vs kinetic theory of gases

  • 8/10/2019 Ch02 (EE).ppt

    41/135

    41

    Ideal gas behaviour

    1. Gas particles are in a state of constantand random motion in all directions,

    undergoing frequent collisions with oneanother and with walls of the container.

    2. Gas particlesare treated as pointmasses, i.e. they do not occupy volume.

    Four assumptions as stated in kinetic

    theory of gases

    Volume of a gas = capacity of the vessel

  • 8/10/2019 Ch02 (EE).ppt

    42/135

    42

    Ideal gas behaviour

    4. Collisions between gas particles are

    perfectly elastic, i.e. kinetic energy isconserved.

    3. There is no interaction among gasparticles.

  • 8/10/2019 Ch02 (EE).ppt

    43/135

    43

    The ideal gas equation is obeyed byreal gases only at

    (i) low pressure

    (ii) high temperature

    (less deviation from 24 dm3at R.T.P.)

  • 8/10/2019 Ch02 (EE).ppt

    44/135

  • 8/10/2019 Ch02 (EE).ppt

    45/135

    45

    At high temperature,

    gaseous molecules possess sufficientenergy to overcome intermolecular

    interactions readily. (assumption 3)

    2.3 Ideal gas equation (SB p.31)

  • 8/10/2019 Ch02 (EE).ppt

    46/135

    46

    g q ( p )

    (b) A reaction vessel is filled with a gas at 20

    o

    Cand 5 atm. Ifthe vessel can withstand a maximum internal pressure of10 atm, what is the highest temperatureit can be safelyheated to?

    2

    2

    1

    1

    TVP

    TVP

    2T

    atm10

    20)K(273

    atm5 T2= 586 K

    2.3 Ideal gas equation (SB p.31)

  • 8/10/2019 Ch02 (EE).ppt

    47/135

    47

    g q ( p )

    (c) A balloon is filled with helium at 25

    o

    C. The pressureexerted and the volume of balloon are found to be 1.5 atmand 450 cm3respectively. How many molesof heliumhave been introduced into the balloon?

    nRTPVK298molKdmatm0.082ndm0.450atm1.5 -1-133

    n = 0.0276 mol Or

    K298molKJ8.314nm10450Nm1013251.5 -1-13-6-2 n = 0.0276 mol

    2.3 Ideal gas equation (SB p.31)

  • 8/10/2019 Ch02 (EE).ppt

    48/135

    48

    g ( )

    (d) 25.8 cm

    3

    sample of a gas has a pressure of 690 mmHganda temperature of 17 oC. What is the volumeof the gas ifthe pressure is changed to 1.85 atmand the temperature to345 K?

    (1 atm = 760 mmHg)

    2

    22

    1

    11

    T

    VP

    T

    VP

    K345Vatm1.85

    K17)(273cm25.8 23mmHg760mmHg690

    V2= 15.1 cm3

    2.3 Ideal gas equation (SB p.29)

  • 8/10/2019 Ch02 (EE).ppt

    49/135

    49

    For one mole of an ideal gas at S.T.P.,

    P = 1 atm or 101,325 Nm-2

    (Pa)V = 22.4 dm3or 0.0224 m3

    n = 1 mol

    T = 273K

    g q ( p )

    Q.8

    Calculate the universal gas constant at S.T.P.

    2.3 Ideal gas equation (SB p.29)

  • 8/10/2019 Ch02 (EE).ppt

    50/135

    50

    g q ( p )

    0.082

    K273mol1

    dm22.4atm1

    nT

    PVR

    3

    atm dm3 K1 mol1

    K273mol1

    m0.0224Nm101325R

    32

    = 8.314 Nm K1 mol1

    = 8.314 J K1 mol1

    Or,

  • 8/10/2019 Ch02 (EE).ppt

    51/135

    51

    Q.9

    PV = nRT

    RTM

    mPV

    M

    RT

    V

    mP

    M

    RT

    PRTM

    m = mass of the gas

    M = molar mass of the gas

  • 8/10/2019 Ch02 (EE).ppt

    52/135

    52

    2.4

    Determinationof Molar Mass

  • 8/10/2019 Ch02 (EE).ppt

    53/135

    53

    1. Mass Spectrometry

    2. Density Measurement

    P

    RTM

    Determination of Molar Mass

    2.4 Determination of molar mass (SB p.32) m

  • 8/10/2019 Ch02 (EE).ppt

    54/135

    54

    (Mass of syringe + liquid) before injection (m1)= 38.545 g

    V

    m

    2.4 Determination of molar mass (SB p.32) m

  • 8/10/2019 Ch02 (EE).ppt

    55/135

    55

    (Mass of syringe + liquid) after injection (m2)= 38.260 g

    V

    m

    2.4 Determination of molar mass (SB p.32) m

  • 8/10/2019 Ch02 (EE).ppt

    56/135

    56

    Mass of liquid injected (m1 m2)= 38.545 g 38.260 g = 0.285 g

    V

    m

    2.4 Determination of molar mass (SB p.32) m

  • 8/10/2019 Ch02 (EE).ppt

    57/135

    57

    Volume of air in syringe before injection (V1)= 10.5 cm3

    V

    m

    2.4 Determination of molar mass (SB p.32) m

  • 8/10/2019 Ch02 (EE).ppt

    58/135

    58

    Volume of air + vapour in syringe after injection (V2)

    = 146.6 cm3

    V

    m

    2.4 Determination of molar mass (SB p.32) m

  • 8/10/2019 Ch02 (EE).ppt

    59/135

    59

    Volume of vapour in syringe (V2V1)= 146.6 cm3- 10.5 cm3= 136.1 cm3

    V

    m

    2.4 Determination of molar mass (SB p.32)

  • 8/10/2019 Ch02 (EE).ppt

    60/135

    60

    Once m and V of the vapour are known,

    V

    m density( )can be determined

    2.4 Determination of molar mass (SB p.32)

  • 8/10/2019 Ch02 (EE).ppt

    61/135

    61

    Temperature = 273 + 65 = 338 K

    2.4 Determination of molar mass (SB p.32)

  • 8/10/2019 Ch02 (EE).ppt

    62/135

    62

    Pressure = 1 atm

    1 atm

    2.4 Determination of molar mass (SB p.32)

  • 8/10/2019 Ch02 (EE).ppt

    63/135

    63

    Molar mass

    PRT

    VVmm

    PRT

    Vm

    PRT

    12

    12

    atm1

    K)(338molKdmatm0.082

    dm10136.1

    g0.285 113

    33

    = 58.0 g mol1

    Relative molecular mass = 58.0

    Q.10

    2.5 Daltons law of partial pressures (SB p.35)

  • 8/10/2019 Ch02 (EE).ppt

    64/135

    64

    R = 8.314 J K1mol1= 0.082 atm dm3 K1mol11m3= 103dm3= 106cm3

    1 atm = 760 mmHg = 101325 Nm

    2

    = 101325 Pa

    Unit conversions : -

    2.4 Determination of molar mass (SB p.34)

  • 8/10/2019 Ch02 (EE).ppt

    65/135

    65

    (a) 0.204 g of phosphorus vapour occupies a volume of

    81.0 cm3at 327 oC and 1.00 atm. Determine the molar massof phosphorus.

    P

    RTM

    atm1.00

    K327)(273molKdmatm0.082 -1-13dm0.0810

    g0.2043

    = 124 g mol-1

  • 8/10/2019 Ch02 (EE).ppt

    66/135

    2.4 Determination of molar mass (SB p.34)

  • 8/10/2019 Ch02 (EE).ppt

    67/135

    67

    (c) A sample of 0.037 g magnesium reacted with hydrochloric

    acid to give 38.2 cm3of hydrogen gas measured at 25 oCand 740 mmHg. Use this information to calculate therelative atomic mass of magnesium.

    RT

    PVn

    K25)(273molKdmatm0.082

    0.0382dm1-1-3

    3mmHg760mmHg740

    = 1.52103mol

    2.4 Determination of molar mass (SB p.34)

  • 8/10/2019 Ch02 (EE).ppt

    68/135

    68

    (c) A sample of 0.037 g magnesium reacted with hydrochloric

    acid to give 38.2 cm3of hydrogen gas measured at 25 oCand 740 mmHg. Use this information to calculate therelative atomic mass of magnesium.

    Mg(s) + 2HCl(aq) MgCl2(aq) + H2(g)1.52103mol1.52103mol

    Mgofmassmolar

    g0.037

    Mgofmassmolar

    massmol101.52 3

    1-3-

    molg24.3mol101.52

    g0.037Mgofmassmolar

  • 8/10/2019 Ch02 (EE).ppt

    69/135

    Exp rim nt 1

  • 8/10/2019 Ch02 (EE).ppt

    70/135

    70

    At fixed T & n,

    PV = constant

    (15 atm)(5 dm3) = (PA)(15 dm3)PA= 5 atm

    empty

    Experiment 1

    Tap opened

    Gas A

    Experiment 2

  • 8/10/2019 Ch02 (EE).ppt

    71/135

    71

    At fixed T & n

    PV = constant

    (12 atm)(10 dm3) = (PB)(15 dm3)PB= 8 atm

    12 atm

    Gas Bempty

    Tap opened

    Gas B

    Experiment 2

    Experiment 3

  • 8/10/2019 Ch02 (EE).ppt

    72/135

    72

    The total pressure PT = 13 atm

    = 5 atm + 8 atm

    = PA+ PB

    Gas B

    12 atm

    Partial pressures of gases A & B

    Experiment 3

    Tap opened

    Gas A + Gas B

  • 8/10/2019 Ch02 (EE).ppt

    73/135

    73

    Gas B

    12 atm

    Tap opened

    Partial pressure of a constituent gas in amixture is the pressure that the gas would

    exert if it were present aloneunder thesame conditions

    PA= 5 atm

    PB= 8 atm

    D lt L f P ti l P2.5 Daltons law of partial pressures (SB p.35)

  • 8/10/2019 Ch02 (EE).ppt

    74/135

    74

    In a mixture of gases which do not react chemically,

    the total pressureof the mixture is the sum of thepartial pressuresof the component gases (the sumof the pressure that each gas would exert if it werepresent aloneunder the same conditions).

    PT = PA + PB + PC

    Daltons Law of Partial Pressures

    2.5 Daltons law of partial pressures (SB p.35)

  • 8/10/2019 Ch02 (EE).ppt

    75/135

    75

    Consider a mixture of gases A, B and C at fixed T & V.

    nA, nBand nCare the numbers of moles of each gas.

    The total number of moles of gases in the mixture

    nT= nA+ nB+ nC Multiply by the constant RT/V

    If gases A, B and C obey ideal gas behaviour

    Ptotal= PA+ PB+ PC

    V

    RTn

    V

    RT)nn(n TCBA

    nT(RT/V) = nA (RT/V) + nB (RT/V) + nC (RT/V)

    Derivation from ideal gas equation

  • 8/10/2019 Ch02 (EE).ppt

    76/135

    76

    Partial Pressures and Mole Fractions

    Consider a mixture of two gases A and B in acontainer of capacity V at temperature T

    RTnVP AA RTnVP BB RTnVP TT

    RTnRTn

    VPVP

    T

    A

    T

    A

    RTn

    RTn

    VP

    VP

    T

    B

    T

    B

    ABA

    A

    T

    A Xnn

    nPP

    BBA

    B

    T

    B

    Xnn

    n

    P

    P

    PA = PTXA PB = PTXB 1XX BA

    Mole fractionsof A & B

    Consider a mixture of gases A B C D

  • 8/10/2019 Ch02 (EE).ppt

    77/135

    77

    Consider a mixture of gases A, B, C, D,

    1...XXXX DCBA PA = PTXA

    PB = PTXBPC = PTXC

    PD

    = PT

    XD

    Q.11

  • 8/10/2019 Ch02 (EE).ppt

    78/135

    78

    Q.11

    At fixed T & n, PV = constant

    For N2, P1V1= P2V2

    (0.20 Pa)(1.0 dm3) = P2(4.0 dm3) P2= 0.05 Pa

    For O2, P1V1 = P2V2

    (0.40 Pa)(2.0 dm3) = P2(4.0 dm3) P2 = 0.2 Pa

    By Daltons law of partial pressures

    22 ONTPPP = 0.05 Pa + 0.2 Pa = 0.25 Pa

    Q.12

  • 8/10/2019 Ch02 (EE).ppt

    79/135

    79

    Q

    At 40oC, only N2exists as a gas in the mixture

    For a given amount of N2at fixed V, P T

    2

    1

    2

    1

    T

    T

    P

    P

    K40)(273

    K200)(273

    atm1.50

    P1

    2N1Patm3.05P

    At 200oC

    propaneNT PPatm4.50P 2

    atm1.45atm3.05)-(4.50P-PP2NTpropane

    At fixed T & V

  • 8/10/2019 Ch02 (EE).ppt

    80/135

    80

    At fixed T & V,

    0.322atm4.50

    atm1.45

    P

    PX

    T

    propanepropane

    propaneTpropane XPP

    Q 13(a)

  • 8/10/2019 Ch02 (EE).ppt

    81/135

    81

    Q.13(a)

    24

    NHNHT Nm109.8PPPP 223

    At fixed P & T, V n

    T

    NH

    T

    NHV

    V

    n

    n33

    )(20%)Nm10(9.8XPP 24NHTNH 33

    =1.96 104Nm2

    3NHX = 20%

    Q 13(a)

  • 8/10/2019 Ch02 (EE).ppt

    82/135

    82

    Q.13(a)

    55%V

    V

    n

    nX

    T

    H

    T

    HH 222

    )(55%)Nm10(9.8XPP 24HTH 22

    =5.39 104Nm2

    Q 13(a)

  • 8/10/2019 Ch02 (EE).ppt

    83/135

    83

    Q.13(a)

    25%V

    V

    n

    nX

    T

    N

    T

    NN 222

    )(25%)Nm10(9.8XPP 24NTN 22

    =2.45 104Nm2

    Q 13(b) NH i d

  • 8/10/2019 Ch02 (EE).ppt

    84/135

    84

    Q.13(b)

    223 NHNHT PPPP

    22 NHPP

    = 5.39 104

    Nm2

    + 2.45 104

    Nm2

    = 7.84 104Nm2

    NH3is removed

    but PTchanges

    Note : remain unchanged,22 NH

    P&P

    2.5 Daltons law of partial pressures (SB p.39)

  • 8/10/2019 Ch02 (EE).ppt

    85/135

    85

    (c) The valve between a 6 dm3vessel containing gas A at a

    pressure of 7 atm and an 8 dm3vessel containing gas B ata pressure of 9 atm is opened. Assuming that thetemperature of the system remains constant and there isno reaction between the gases, what is the final pressure

    of the system?

    2.5 Daltons law of partial pressures (SB p.39)

  • 8/10/2019 Ch02 (EE).ppt

    86/135

    86

    2211 VPVP

    atm3dm8)(6

    dm6atm7

    V

    VPPAgasofpressurePartial

    3

    3

    2

    112

    atm5.1dm8)(6dm8atm9

    VVPPBgasofpressurePartial

    3

    3

    2

    112

    Total pressure = PA+ PB = (3 + 5.1) atm = 8.1 atm

    2.5 Daltons law of partial pressures (SB p.39)

    (d) 2 0 g of helium 3 0 g of nitrogen and 4 0 g of argon are

  • 8/10/2019 Ch02 (EE).ppt

    87/135

    87

    (d) 2.0 g of helium, 3.0 g of nitrogen and 4.0 g of argon areintroduced into a 15 dm3vessel at 100 oC.

    (i) What are the mole fractions of helium, nitrogen andargon in the system?

    mol0.50molg4.0

    g2.0

    massmolar

    massHeofmolesofno.

    1-

    mol0.11molg28.0g3.0

    massmolarmassNofmolesofno. 1-2

    mol0.10molg39.9

    g4.0

    massmolar

    massArofmolesofno.

    1-

    Total no. of moles = (0.50 + 0.11 + 0.10) mol = 0.71 mol

    0.700.71

    0.50XHe 0.150.71

    0.11X

    2N 0.14

    0.71

    0.10XAr

    2.5 Daltons law of partial pressures (SB p.39)

  • 8/10/2019 Ch02 (EE).ppt

    88/135

    88

    (d) 2.0 g of helium, 3.0 g of nitrogen and 4.0 g of argon areintroduced into a 15 dm3vessel at 100 oC.

    (ii) Calculate the total pressure of the system, and hencethe partial pressures of helium, nitrogen and argon.

    atm1.45

    dm15

    K373molKdmatm0.082mol0.71

    V

    RTnP

    3

    -1-13T

    T

    atm1.00.71

    0.50atm1.45XPP HeTHe

    atm0.220.71

    0.11

    atm1.45XPP 22 NTN

    atm0.200.71

    0.10atm1.45XPP ArTAr

  • 8/10/2019 Ch02 (EE).ppt

    89/135

    89

    The END

    2.1The mole (SB p.20)

    Back

  • 8/10/2019 Ch02 (EE).ppt

    90/135

    90

    What is the mass of 0.2 mol of calcium carbonate?

    Back

    The chemical formula of calcium carbonate is CaCO3.

    Molar mass of calcium carbonate = (40.1 + 12.0 + 16.0 3) g mol-1

    = 100.1 g mol-1

    Mass of calcium carbonate = Number of moles Molar mass

    = 0.2 mol 100.1 g mol-1

    = 20.02 g

    Answer

    2.1The mole (SB p.21)

    Back

  • 8/10/2019 Ch02 (EE).ppt

    91/135

    91

    Calculate the number of gold atoms in a 20g gold pendant.

    Back

    14

    AnswerMolar mass of gold = 197.0 g mol-1

    Number of moles =

    = 0.1015 mol

    Number of gold atoms

    = 0.1015 mol 6.02 1023mol-1

    = 6.11 1022

    1

    molg197.0

    g20

    2.1The mole (SB p.21)

  • 8/10/2019 Ch02 (EE).ppt

    92/135

    92

    It is given that the molar mass of water is 18.0 g mol-1.

    (a) What is the mass of 4 moles of water molecules?

    (b) How many molecules are there?

    (c) How many atoms are there?

    Answer

    2.1The mole (SB p.21)

  • 8/10/2019 Ch02 (EE).ppt

    93/135

    93

    (a) Mass of water = Number of moles Molar mass= 4 mol 18.0 g mol-1

    = 72.0 g

    (b) There are 4 moles of water molecules.

    Number of water molecules

    = Number of moles Avogadro constant

    = 4 mol 6.02 1023mol-1

    = 2.408 1024

    Back

    2.1The mole (SB p.21)

  • 8/10/2019 Ch02 (EE).ppt

    94/135

    94

    (c) 1 water molecule has 3 atoms (i.e. 2 hydrogen atoms and 1 oxygenatom).

    1 mole of water molecules has 3 moles of atoms.

    Thus, 4 moles of water molecules have 12 moles of atoms.

    Number of atoms = 12 mol 6.02 1023mol-1

    = 7.224 1024

    2.1The mole (SB p.22)

  • 8/10/2019 Ch02 (EE).ppt

    95/135

    95

    A magnesium chloride solution contains 10 g of magnesium

    chloride solid.

    (a) Calculate the number of moles of magnesium chloridein the solution. Answer

    (a) The chemical formula of magnesium chloride is MgCl2.

    Molar mass of MgCl2= (24.3 + 35.5 2) g mol-1= 95.3 g mol-1

    Number of moles of MgCl2=

    = 0.105 mol

    1molg95.3

    g10

    2.1The mole (SB p.22)

  • 8/10/2019 Ch02 (EE).ppt

    96/135

    96

    (b) Calculate the number of magnesium ions in the solution.

    Answer

    (b) 1 mole of MgCl2contains 1 mole of Mg2+ions and 2 moles of Cl-

    ions.

    Therefore, 0.105 mol of MgCl2contains 0.105 mol of Mg2+ions.

    Number of Mg2+ions

    = Number of moles of Mg2+ions Avogadro constant

    = 0.105 mol 6.02 1023mol-1

    = 6.321 1022

  • 8/10/2019 Ch02 (EE).ppt

    97/135

    2.1The mole (SB p.22)

    Back

  • 8/10/2019 Ch02 (EE).ppt

    98/135

    98

    (d) Calculate the total number of ions in the solution.

    Answer(d) Total number of ions

    = 6.321 1022+ 1.264 1023

    = 1.896 1023

    14

    2.1The mole (SB p.23)

    Back

  • 8/10/2019 Ch02 (EE).ppt

    99/135

    99

    What is the mass of a carbon dioxide molecule?

    AnswerThe chemical formula of carbon dioxide is CO2.

    Molar mass of CO2= (12.0 + 16.0 2) g mol-1= 44.0 g mol-1

    Number of moles = =

    =

    Mass of a CO2molecule =

    = 7.31 10-23g

    constantAvogadro

    moleculesofNumber

    massMolar

    Mass

    1-

    2

    molg44.0moleculeCOaofMass

    1-23 mol106.021

    1-23

    -1

    mol106.02

    molg44.0

    2.1The mole (SB p.23)

  • 8/10/2019 Ch02 (EE).ppt

    100/135

    100

    (a) Find the mass in grams of 0.01 mol of zinc sulphide.

    (a) Mass = No. of moles Molar mass

    Mass of ZnS = 0.01 mol (65.4 + 32.1) g mol-1

    = 0.01 mol 97.5 g mol-1

    = 0.975 g

    Answer

    2.1The mole (SB p.23)

  • 8/10/2019 Ch02 (EE).ppt

    101/135

    101

    (b) Find the number of ions in 5.61 g of calcium oxide.

    Answer

    (b) No. of moles of CaO =

    = 0.1 mol

    1 CaO formula unit contains 1 Ca2+ion and 1 O2-ion.

    No. of moles of ions = 0.1 mol 2

    = 0.2 mol

    No. of ions = 0.2 mol 6.02 1023mol-1

    = 1.204 1023

    1molg16.0)(40.1

    g5.61

    2.1The mole (SB p.23)

  • 8/10/2019 Ch02 (EE).ppt

    102/135

    102

    (c) Find the number of atoms in 32.05 g of sulphur dioxide.

    Answer(c) Number of moles of SO2=

    = 0.5 mol

    1 SO2molecule contains 1 S atom and 2 O atoms.

    No. of moles of atoms = 0.5 mol 3

    = 1.5 mol

    No. of atoms = 1.5 mol 6.02 1023

    mol-1

    = 9.03 1023

    1-molg2)16.02.13(

    g32.05

    2.1The mole (SB p.23)

  • 8/10/2019 Ch02 (EE).ppt

    103/135

    103

    (d) There is 4.80 g of ammonium carbonate. Find the

    (i) number of moles of the compound,

    (ii) number of moles of ammonium ions,

    (iii) number of moles of carbonate ions,

    (iv) number of moles of hydrogen atoms, and

    (v) number of hydrogen atoms.Answer

    2.1The mole (SB p.23)

    Back

  • 8/10/2019 Ch02 (EE).ppt

    104/135

    104

    (d) Molar mass of (NH4)2CO3= 96.0 g mol-1

    (i) No. of moles of (NH4)2CO3= = 0.05 mol

    (ii) 1 mole (NH4)2CO3gives 2 moles of NH4+ions.

    No. of moles of NH4+ions = 0.05 mol 2 = 0.1 mol

    (iii) 1 mole (NH4)2CO3gives 1 mole of CO32-ions.

    No. of moles CO32-ions = 0.05 mol

    (iv) 1 (NH4)2CO3formula unit contains 8 H atoms.

    No. of moles of H atoms = 0.05 mol 8

    = 0.4 mol

    (v) No. of H atoms = 0.4 mol 6.02 1023mol-1= 2.408 1023

    1molg96.0g4.80

    2.2 Molar volume and Avogadros law (SB p.24)

  • 8/10/2019 Ch02 (EE).ppt

    105/135

    105

    What is the difference between a theory and a law?

    Back

    A law tells what happens under a given set of

    circumstances while a theory attempts to

    explain why that behaviour occurs.

    Answer

    2.2 Molar volume and Avogadros law (SB p.25)

  • 8/10/2019 Ch02 (EE).ppt

    106/135

    106

    Find the volume occupied by 3.55 g of chlorine gas at room

    temperature and pressure.

    (Molar volume of gas at R.T.P. = 24.0 dm3mol-1) Answer

    Molar mass of chlorine gas (Cl2) = (35.5 2) g mol-1= 71.0 g mol-1

    Number of moles of Cl2=

    = 0.05 mol

    Volume of Cl2= Number of moles of Cl2Molar volume

    = 0.05 mol 24.0 dm

    3

    mol

    -1

    = 1.2 dm3

    1molg71.0g3.55

    Back

    2.2 Molar volume and Avogadros law (SB p.25)

  • 8/10/2019 Ch02 (EE).ppt

    107/135

    107

    Find the number of molecules in 4.48 cm3 of carbon dioxide

    gas at standard temperature and pressure.

    (Molar volume of gas at S.T.P. = 22.4 dm3mol-1; Avogadroconstant = 6.02 1023mol-1)

    Answer

    Molar volume of carbon dioxide at S.T.P. = 22.4 dm3mol-1

    = 22400 cm3mol-1

    Number of moles of CO2=

    = 2 10-4mol

    Number of CO2molecules = 2 10-4mol 6.02 1023mol-1

    = 1.204 1020

    13

    3

    molcm22400

    cm4.48

    Back

    2.2 Molar volume and Avogadros law (SB p.26)

  • 8/10/2019 Ch02 (EE).ppt

    108/135

    108

    The molar volume of nitrogen gas is found to be

    24.0 dm3mol-1at room temperature and pressure. Find thedensity of nitrogen gas.

    Answer

    Back

    Molar mass of nitrogen gas (N2) = (14.0 + 14.0) g mol-1= 28.0 g mol-1

    Density = =

    Density of N2

    =

    =1.167 g dm

    -3

    VolumeMass

    volumeMolarmassMolar

    1-3

    -1

    moldm24.0

    molg28.0

    2.2 Molar volume and Avogadros law (SB p.26)

  • 8/10/2019 Ch02 (EE).ppt

    109/135

    109

    1.6 g of a gas occupies 1.2 dm3at room temperature and

    pressure. What is the relative molecular mass of the gas?

    (Molar volume of gas at R.T.P. = 24.0 dm3mol-1)Answer

    Number of moles of the gas =

    = 0.05 mol

    Molar mass of the gas =

    = 32 g mol-1

    Relative molecular mass of the gas = 32 (no unit)

    13

    3

    moldm24.0dm1.2

    mol0.05

    g1.6

    Back

    2.2 Molar volume and Avogadros law (SB p.27)

  • 8/10/2019 Ch02 (EE).ppt

    110/135

    110

    (a) Find the volume occupied by 0.6 g of hydrogen gas at

    room temperature and pressure.

    (Molar volume of gas at R.T.P. = 24.0 dm3mol-1)

    Answer

    (a) No. of moles of H2= = 0.3 mol

    Volume = No. of moles Molar volume

    = 0.3 mol 24.0 dm3mol-1

    = 7.2 dm3

    1molg2)(1.0

    g0.6

    2.2 Molar volume and Avogadros law (SB p.27)

  • 8/10/2019 Ch02 (EE).ppt

    111/135

    111

    (b) Calculate the number of molecules in 4.48 dm3of

    hydrogen gas at standard temperature and pressure.

    (Molar volume of gas at S.T.P. = 22.4 dm3mol-1)

    Answer

    (b) No. of moles of H2= = 0.2 mol

    No. of H2molecules = 0.2 mol 6.02 1023mol-1

    = 1.204 1023

    13

    3

    moldm2.42

    dm4.48

    2.2 Molar volume and Avogadros law (SB p.27)

  • 8/10/2019 Ch02 (EE).ppt

    112/135

    112

    (c) The molar volume of oxygen gas is 22.4 dm3mol-1at

    standard temperature and pressure. Find the density ofoxygen gas in g cm-3at S.T.P.

    Answer

    (c) Density = =

    Molar mass of O2= (16.0 2) g mol-1= 32.0 g mol-1

    Molar volume of O2= 22.4 dm3mol-1= 22400 cm3mol-1

    Density =

    = 1.43 10-3g cm-3

    Volume

    Mass

    volumeMolar

    massMolar

    13

    -1

    molcm22400

    molg32.0

    2.2 Molar volume and Avogadros law (SB p.27)

  • 8/10/2019 Ch02 (EE).ppt

    113/135

    113

    (d) What mass of oxygen has the same number of moles as

    that in 3.2 g of sulphur dioxide?Answer

    (d) No. of moles of SO2=

    No. of moles of O2= 0.05 mol

    Mass = No. of moles Molar mass

    Mass of O2= 0.05 mol (16.0 2) g mol-1

    = 1.6 g

    1

    molg2)16.0(32.1

    g3.2

    Back

    2.3 Ideal gas equation (SB p.30) Back

  • 8/10/2019 Ch02 (EE).ppt

    114/135

    114

    A 500 cm3sample of a gas in a sealed container at 700 mmHg

    and 25 oC is heater to 100 oC. What is the final pressure of thegas?

    Answer

    As the number of moles of the gas is fixed, should be a constant.

    =

    =

    P2= 876.17 mmHg

    The final pressure of the gas at 100 oC is 876.17 mmHg.

    Note: All temperature values used in gas laws are on the Kelvin scale.

    T

    PV

    1

    11

    T

    VP

    2

    22

    TVP

    K25)(273

    cm500mmHg700 3

    K)001(273

    cm500P 32

    2.3 Ideal gas equation (SB p.30)

    Back

  • 8/10/2019 Ch02 (EE).ppt

    115/135

    115

    A reaction vessel of 500 cm3

    is filled with oxygen gas at 25o

    Cand the final pressure exerted on it is 101 325 Nm-2. Howmany moles of oxygen gas are there?

    (Ideal gas constant = 8.314 J K-1mol-1)Answer

    PV = nRT

    101325 Nm-2500 10-6m3= n 8.314 J K-1mol-1(273 + 25) K

    n = 0.02 mol

    There is 0.02 mol of oxygen gas in the reaction vessel.

    2.3 Ideal gas equation (SB p.30)

    Back

  • 8/10/2019 Ch02 (EE).ppt

    116/135

    116

    A 5 dm3

    vessel can withstand a maximum internal pressureof 50 atm. If 2 moles of nitrogen gas are pumped into thevessel, what is the highest temperature it can be safelyheated to?

    AnswerApplying the equation,

    T = = = 1523.4 K

    The highest temperature it can be safely heated to is 1250.4 oC.

    1-1-

    3-3-2

    molKJ8.314mol2

    m105Nm10132550

    nR

    PV

    2.3 Ideal gas equation (SB p.31)

  • 8/10/2019 Ch02 (EE).ppt

    117/135

    117

    (b) A reaction vessel is filled with a gas at 20 oC and 5 atm. If

    the vessel can withstand a maximum internal pressure of10 atm, what is the highest temperature it can be safelyheated to?

    2

    2

    1

    1

    TVPTVP

    2T

    atm10

    20)K(273

    atm5

    T2= 586 K

    2.3 Ideal gas equation (SB p.31)

  • 8/10/2019 Ch02 (EE).ppt

    118/135

    118

    (c) A balloon is filled with helium at 25 oC. The pressure

    exerted and the volume of balloon are found to be 1.5 atmand 450 cm3respectively. How many moles of heliumhave been introduced into the balloon?

    nRTPV

    K298molKdmatm0.082ndm0.450atm1.5 -1-133

    n = 0.0276 mol Or

    K298molKJ8.314nm10450Nm1013251.5

    -1-13-6-2

    n = 0.0276 mol

    2.3 Ideal gas equation (SB p.31)

  • 8/10/2019 Ch02 (EE).ppt

    119/135

    119

    (d) 25.8 cm3sample of a gas has a pressure of 690 mmHg and

    a temperature of 17 oC. What is the volume of the gas ifthe pressure is changed to 1.85 atm and the temperature to345 K?

    (1 atm = 760 mmHg)

    2

    22

    1

    11

    T

    VP

    T

    VP

    K347Vatm1.85

    K17)(273cm25.8 2

    3mmHg760mmHg690

    V2= 15.1 cm3

    2.4 Determination of molar mass (SB p.33) Back

  • 8/10/2019 Ch02 (EE).ppt

    120/135

    120

    A sample of gas occupying a volume of 50 cm3at 1 atm and

    25 oC is found to have a mass of 0.0286 g. Find the molar massof the gas.

    (Ideal gas constant = 8.314 J K-1mol-1; 1 atm = 101325 Nm-2)

    Answer

    M = 13.99 g mol-1

    Therefore, the molar mass of the gas is 13.99 g mol-1.

    RTM

    mPV

    K25)(273molKJ8.314

    M

    g0.0286m1050Nm101325 11362-

  • 8/10/2019 Ch02 (EE).ppt

    121/135

    2.4 Determination of molar mass (SB p.34)

  • 8/10/2019 Ch02 (EE).ppt

    122/135

    122

    (a) 0.204 g of phosphorus vapour occupies a volume of

    81.0 cm3

    at 327o

    C and 1 atm. Determine the molar mass ofphosphorus.

    (1 atm = 101325 Nm-2; ideal gas constant = 8.314 J K-1mol-1)

    Answer(a) PV = RT

    101325 Nm-281.0 10-6m3

    = 8.314 J K-1mol-1(273 + 327) K

    M = 123.99 g mol-1

    The molar mass of phosphorus is 123.99 g mol-1.

    M

    m

    M

    g0.204

    2.4 Determination of molar mass (SB p.34)

  • 8/10/2019 Ch02 (EE).ppt

    123/135

    123

    (b) A sample of gas has a mass of 12.0 g and occupies a

    volume of 4.16 dm3

    measured at 97o

    C and 1.62 atm.Calculate the molar mass of the gas.

    (1 atm = 101325 Nm-2; ideal gas constant = 8.314 J K-1mol-1)

    Answer(b) PV = RT1.62 101325 Nm-24.16 10-3m3

    = 8.314 J K-1mol-1(273 + 97) K

    M = 54.06 g mol-1

    The molar mass of the gas is 54.06 g mol-1.

    M

    m

    M

    g12.0

    2.4 Determination of molar mass (SB p.34)

  • 8/10/2019 Ch02 (EE).ppt

    124/135

    124

    (c) A sample of 0.037 g magnesium reacted with hydrochloric

    acid to give 38.2 cm3

    of hydrogen gas measured at 25o

    Cand 740 mmHg. Use this information to calculate therelative atomic mass of magnesium.

    (1 atm = 760 mmHg = 101325 Nm-2;

    ideal gas constant = 8.314 J K-1

    mol-1

    ) Answer

    2.4 Determination of molar mass (SB p.34)

    Back

  • 8/10/2019 Ch02 (EE).ppt

    125/135

    125

    (c) Mg(s) + 2HCl(aq) MgCl2(aq) + H2(g)

    PV = nRT

    101325 Nm-238.2 10-6m3

    = n 8.314 J K-1mol-1(273 + 25) K

    n = 1.52 10

    -3

    molNo. of moles of H2produced = 1.52 10

    -3mol

    No. of moles of Mg reacted = No. of moles of H2produced

    = 1.52 10-3mol

    Molar mass of Mg = = = 24.34 g mol-1

    The relative atomic mass of Mg is 24.34.molesofNo.

    Massmol101.52g0.0373-

    760

    740

    Back2.5 Daltons law of partial pressures (SB p.36)

  • 8/10/2019 Ch02 (EE).ppt

    126/135

    126

    Air is composed of 80 % nitrogen and 20 % oxygen by

    volume. What are the partial pressures of nitrogen andoxygen in air at a pressure of 1 atm and a temperature of25 oC?

    Answer

    Mole fraction of N2=

    Mole fraction of O2=

    Partial pressure of N2=

    = 81060 Nm-2

    Partial pressure of O2=

    = 20265 Nm-2

    10080

    100

    20

    2Nm101325100

    80

    2Nm101325100

    20

    2.5 Daltons law of partial pressures (SB p.36)

  • 8/10/2019 Ch02 (EE).ppt

    127/135

    127

    The valve between a 5 dm3vessel containing gas A at a

    pressure of 15 atm and a 10 dm3

    vessel containing gas B at apressure of 12 atm is opened.

    (a) Assuming that the temperature of the system remainsconstant, what is the final pressure of the system?

    (b) What are the mole fractions of gas A and gas B?

    Answer

    2.5 Daltons law of partial pressures (SB p.36)

  • 8/10/2019 Ch02 (EE).ppt

    128/135

    128

    (a) Total volume of the system = (5 + 10) dm3= 15 dm

    By Boyles law, P1V1= P2V2

    Partial pressure of gas A (PA)

    =

    = 5 atm

    Partial pressure of gas B (PB)

    =

    = 8 atm

    By Daltons law of partial pressures, Ptotal= PA+ PB

    Final pressure of the system = (5 + 8) atm = 13 atm

    3

    3

    dm15

    dm5atm15

    3

    3

    dm15

    dm10atm12

    2.5 Daltons law of partial pressures (SB p.37)

    Back

  • 8/10/2019 Ch02 (EE).ppt

    129/135

    129

    (b) Mole fraction of gas A =

    =

    = 0.385

    Mole fraction of gas B =

    =

    = 0.615

    total

    A

    PP

    atm13

    atm5

    total

    B

    P

    P

    atm13

    atm8

    2.5 Daltons law of partial pressures (SB p.37)

  • 8/10/2019 Ch02 (EE).ppt

    130/135

    130

    0.25 mol of nitrogen and 0.30 mol of oxygen are introduced

    into a vessel of 12 dm3

    at 50o

    C. Calculate the partialpressures of nitrogen and oxygen and hence the totalpressure exerted by the gases.

    (1 atm = 101325 Nm-2; ideal gas constant = 8.314 J K-1mol-1)

    Answer

    2.5 Daltons law of partial pressures (SB p.37)

  • 8/10/2019 Ch02 (EE).ppt

    131/135

    131

    Let the partial pressure of nitrogen be PA.

    Using the ideal gas equation PV = nRT,

    PA 12 10-3m3= 0.25 mol 8.314 J K-1mol-1 (273 + 50) K

    PA= 55946 Nm-2(or 0.552 atm)

    Let the partial pressure of oxygen be PB.

    Using the ideal gas equation PV = nRT,

    PB12 10-3m3 = 0.30 mol 8.314 J K-1mol-1(273 + 50) K

    PB= 67136 Nm-2(or 0.663 atm)

    2.5 Daltons law of partial pressures (SB p.37)

    Back

  • 8/10/2019 Ch02 (EE).ppt

    132/135

    132

    Total pressure of gases

    = (55946 + 67136) Nm-2

    = 123082 Nm-2

    Or

    Total pressure of gases

    = (0.552 + 0.663) atm

    = 1.215 atm

    Hence, the partial pressures of nitrogen and oxygen are 0.552 atm and

    0.663 atm respectively, and the total pressure exerted by the gases is1.215 atm.

    2.5 Daltons law of partial pressures (SB p.38)

  • 8/10/2019 Ch02 (EE).ppt

    133/135

    133

    4.0 g of oxygen and 6.0 g of nitrogen are introduced into a

    5 dm3

    vessel at 27o

    C.(a) What are the mole fraction of oxygen and nitrogen in

    the gas mixture?

    (b) What is the final pressure of the system?

    (1 atm = 101325 Nm-2;ideal gas constant = 8.314 J K-1mol-1)

    Answer

    2.5 Daltons law of partial pressures (SB p.38)

  • 8/10/2019 Ch02 (EE).ppt

    134/135

    134

    (a) Number of moles of oxygen =

    = 0.125 mol

    Number of moles of nitrogen =

    = 0.214 mol

    Total number of moles of gases = (0.125 + 0.214) mol

    = 0.339 mol

    Mole fraction of oxygen = = 0.369

    Mole fraction of nitrogen = = 0.631

    1gmol32.0g4.0

    1gmol28.0

    g6.0

    mol0.339

    mol0.125

    mol0.339

    mol0.214

    2.5 Daltons law of partial pressures (SB p.38)

  • 8/10/2019 Ch02 (EE).ppt

    135/135

    (b) Let P be the final pressure of the system.

    Using the ideal gas equation PV = nRT,

    P 5 10-3m3= 0.339 mol 8.314 J K-1mol-1(273 + 27) K

    P = 169 107 Nm-2(or 1.67 atm)

    Back