53
chapter 4 Kinematic and Dynamic Theory (Chapter 11, 13,18, 24) (Chapter 11, 13,18) (Chapter 26) Tuesday, August 30, 11

Chap4_Kinematic and Dynamic Scattering

Embed Size (px)

Citation preview

Page 1: Chap4_Kinematic and Dynamic Scattering

chapter 4Kinematic and Dynamic Theory

(Chapter 11, 13,18, 24)

(Chapter 11, 13,18)

(Chapter 26)

Tuesday, August 30, 11

Page 2: Chap4_Kinematic and Dynamic Scattering

4.1  運動學強度(Kinema,cal  Intensity)• 回顧:薄膜的電子繞射並不⼀一定要100%滿足Bragg’s繞射條件• Bragg’s繞射條件  2dsinθ  =  λ                                                                      k’-­‐k0  =  g

• 繞射光的強度(結構因子的振幅)          與倒晶格點到Ewald球的距離          有關(s)• 另s為激發誤差(devia,on  or  excita,on            error)                                                                                              (relaxed  Bragg’s  condi,on)

Tuesday, August 30, 11

Page 3: Chap4_Kinematic and Dynamic Scattering

3

Tuesday, August 30, 11

Page 4: Chap4_Kinematic and Dynamic Scattering

4

Tuesday, August 30, 11

Page 5: Chap4_Kinematic and Dynamic Scattering

運動學理論在以下兩個條件下可被接受為第⼀一近似

(1)當樣品很薄時:沒有足夠的“繞射中心”去建                                                                            立足夠強的繞射光(2)當晶體遠離真正的繞射中心時:弱光

Tuesday, August 30, 11

Page 6: Chap4_Kinematic and Dynamic Scattering

single atom

Io Isc∝ |f(θ)|2

Unit cell

Io∝ |F(θ)|2Isc

Recall

Thin sample

Io

∝ |F(θ)|2Isc

t

dark field

bright field

dark field

bright field dark

field

bright field

Tuesday, August 30, 11

Page 7: Chap4_Kinematic and Dynamic Scattering

single atom

Io Isc∝ |f(θ)|2

Unit cell

Io∝ |F(θ)|2Isc

Recall

Thin sample

Io

∝ |F(θ)|2Isc

t

dark field

bright field

dark field

bright field dark

field

bright field

Tuesday, August 30, 11

Page 8: Chap4_Kinematic and Dynamic Scattering

single atom

Io Isc∝ |f(θ)|2

Unit cell

Io∝ |F(θ)|2Isc

Recall

Thin sample

Io

∝ |F(θ)|2Isc

t

Isc

dark field

bright field

dark field

bright field dark

field

bright field

Tuesday, August 30, 11

Page 9: Chap4_Kinematic and Dynamic Scattering

single atom

Io Isc∝ |f(θ)|2

Unit cell

Io∝ |F(θ)|2Isc

Recall

Thin sample

Io

∝ |F(θ)|2Isc

t

Isc

Ω為晶胞體積繞射強度以單位晶胞體積為標準

dark field

bright field

dark field

bright field dark

field

bright field

Tuesday, August 30, 11

Page 10: Chap4_Kinematic and Dynamic Scattering

定義:

運動學強度•光只被散射一次•ISC<< I0 = 1 (遠離Bragg’s條件)

• ξxg = ~µm

• ξg我們稱之為消光距離(extinction distance)• 消光距離的物理意義就是當試片的厚度大於ξg時,散射光g 的強度大於入射光強度(入射光的能量完全轉移至散射光方向)• 我們因此必須考慮到由散射光束所引起之第二次散射。我們 稱之為動力學效應(dynamical effect)。

ξg

IscI0 (二次波源)

Tuesday, August 30, 11

Page 11: Chap4_Kinematic and Dynamic Scattering

8

(Chapter 18)

Tuesday, August 30, 11

Page 12: Chap4_Kinematic and Dynamic Scattering

9

(Chapter 18)

Tuesday, August 30, 11

Page 13: Chap4_Kinematic and Dynamic Scattering

10

Si[130]

Double Diffraction (Chapter 18)

Tuesday, August 30, 11

Page 14: Chap4_Kinematic and Dynamic Scattering

4.2 Kinematic Contrast- mass/ thickness contrast- Bragg (orientation) contrast

Bright Field Dark Field

Tuesday, August 30, 11

Page 15: Chap4_Kinematic and Dynamic Scattering

12

Io=1-Isc

4.2.1 Thickness Fringe

Bright Field Dark Field

Wedge Shape

Tuesday, August 30, 11

Page 16: Chap4_Kinematic and Dynamic Scattering

12

IscIo=1-Isc

4.2.1 Thickness Fringe

Bright Field Dark Field

Wedge Shape

Tuesday, August 30, 11

Page 17: Chap4_Kinematic and Dynamic Scattering

(II)  Thickness  Fringes

• 明場與暗場像是 運動學的範圍才 可能是互補

•在運動學的範圍內有吸 收的因素,明場與暗場 之強度沒直接的關係

Dark FieldBright Field

Wedge Shape

Tuesday, August 30, 11

Page 18: Chap4_Kinematic and Dynamic Scattering

14

an etch pit in a Ge sample which is the usual inverted pyramid with {111} planes

(III)  Thickness  Fringes

GaAsGaAs tt

傾斜晶界

化學浸蝕破洞

MgO

Tuesday, August 30, 11

Page 19: Chap4_Kinematic and Dynamic Scattering

4.2.2  Mass  Contrast

CuMgO

CuMgO

Tuesday, August 30, 11

Page 20: Chap4_Kinematic and Dynamic Scattering

4.2.3  Bend  Contours  (Bragg  contrast)(實空間結晶訊息)

Tuesday, August 30, 11

Page 21: Chap4_Kinematic and Dynamic Scattering

17

Tuesday, August 30, 11

Page 22: Chap4_Kinematic and Dynamic Scattering

4.3  

Strain Contrast(defects: dislocation, interface, stacking fault)

電子繞射動力學 (Dynamic Diffraction Theory)

•當

Ψg可以當成二次波源,這時運動學不適用,必須考慮‘’動力學“

•對運動學而言,穿透光和繞射光不互相干擾

動力學而言,穿透光和繞射光互相修正(影響)

•考慮雙光束條件,只有一個g很強被激發,其他的繞射光

S>>0或S<<0

(Chapter 13)

Tuesday, August 30, 11

Page 23: Chap4_Kinematic and Dynamic Scattering

4.3.1 Howie- Whelan Equation

其解, 動力學強度

運動學強度

Seff=[(s2+1)/ξ2]1/2

有效的激發誤差 (描述電子與

樣品作用之強弱) 則

Tuesday, August 30, 11

Page 24: Chap4_Kinematic and Dynamic Scattering

•當S=0時,Seff =ξg-1 I0 =1-Ig

•當|S|很大時,S~Seff (動力學退化與運動學相重合):弱光束

Seff=[(s2+1)/ξ2]1/2

有效的激發誤差 (描述電子與樣品作用之強弱) 則

有晶格扭曲時(或位移),Howie-Whelan Eqn.之修正連續R 固定R

因為缺陷因素引起相位之變化

˙

˙

Tuesday, August 30, 11

Page 25: Chap4_Kinematic and Dynamic Scattering

Edge Dislocation (邊刃差排)

R

b

4.3.2 Line Defects

Tuesday, August 30, 11

Page 26: Chap4_Kinematic and Dynamic Scattering

22

Tuesday, August 30, 11

Page 27: Chap4_Kinematic and Dynamic Scattering

22

Tuesday, August 30, 11

Page 28: Chap4_Kinematic and Dynamic Scattering

22

Tuesday, August 30, 11

Page 29: Chap4_Kinematic and Dynamic Scattering

23

• 若g · R=0 則雖有缺陷,但不引起對比

• g · R是因為缺陷之應變場,使晶格扭曲,變形或位移,所以 在TEM影像我們看到的是缺陷的應變場

•若R(r)延續很遠(長程應變)則缺陷之影像是很寬的;相反的,若R (r) 是非常局部化則缺陷之對比亦侷限在很小區域

有晶格扭曲時(或位移),Howie-Whelan Eqn.之修正連續R 固定R

因為缺陷因素引起相位之變化

˙

˙

(Chapter 26)

Tuesday, August 30, 11

Page 30: Chap4_Kinematic and Dynamic Scattering

24

•因為局部應變場的變化,使得每一個column的繞射條件皆不同( 不同)

•因而產生對比之分佈

•事實上,我們看到的是入射電子與應變場之作用結

果(g · R 對比)

Tuesday, August 30, 11

Page 31: Chap4_Kinematic and Dynamic Scattering

• 繞射光偵測不到差排應變場對晶格的扭曲

所以dislocation沒有對比

g · b( g · R= 0)是用來測定 dislocation Burgers Vector 的準則

No contrast

g

Tuesday, August 30, 11

Page 32: Chap4_Kinematic and Dynamic Scattering

26

Tuesday, August 30, 11

Page 33: Chap4_Kinematic and Dynamic Scattering

27

Tuesday, August 30, 11

Page 34: Chap4_Kinematic and Dynamic Scattering

28

Tuesday, August 30, 11

Page 35: Chap4_Kinematic and Dynamic Scattering

29

Tuesday, August 30, 11

Page 36: Chap4_Kinematic and Dynamic Scattering

30

Tuesday, August 30, 11

Page 37: Chap4_Kinematic and Dynamic Scattering

31

Tuesday, August 30, 11

Page 38: Chap4_Kinematic and Dynamic Scattering

Tuesday, August 30, 11

Page 39: Chap4_Kinematic and Dynamic Scattering

Tuesday, August 30, 11

Page 40: Chap4_Kinematic and Dynamic Scattering

partial dislocations

At the bottom surface: the contrast in BF and DF are complementary

At the top surface: the contrast in BF and DF are same

Tuesday, August 30, 11

Page 41: Chap4_Kinematic and Dynamic Scattering

Tuesday, August 30, 11

Page 42: Chap4_Kinematic and Dynamic Scattering

36

Tuesday, August 30, 11

Page 43: Chap4_Kinematic and Dynamic Scattering

37

Tuesday, August 30, 11

Page 44: Chap4_Kinematic and Dynamic Scattering

38

Tuesday, August 30, 11

Page 45: Chap4_Kinematic and Dynamic Scattering

39

APB (or IDB) of GaAs

Tuesday, August 30, 11

Page 46: Chap4_Kinematic and Dynamic Scattering

40

Tuesday, August 30, 11

Page 47: Chap4_Kinematic and Dynamic Scattering

41

Tuesday, August 30, 11

Page 48: Chap4_Kinematic and Dynamic Scattering

Tuesday, August 30, 11

Page 49: Chap4_Kinematic and Dynamic Scattering

Tuesday, August 30, 11

Page 50: Chap4_Kinematic and Dynamic Scattering

Tuesday, August 30, 11

Page 51: Chap4_Kinematic and Dynamic Scattering

45

Tuesday, August 30, 11

Page 52: Chap4_Kinematic and Dynamic Scattering

46

Dislocation in Σ13 Grain Boundary of Zn

g1

g2

Tuesday, August 30, 11

Page 53: Chap4_Kinematic and Dynamic Scattering

47

Tuesday, August 30, 11