27
Chapter 11 Chapter 11 BIOELECTRIC PHENOMENA

Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

  • Upload
    others

  • View
    13

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

Chapter 11Chapter 11BIOELECTRIC PHENOMENA

Page 2: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

11.3 NEURONS11.3.1 Membrane Potentials

l b• Resting Potential by separation of charge due to the selective permeability of

From C△v=△Q, where △v=60mV and C=1μF/cm2, the number of charges(1.6022×10‐19 C) equals 

approximately 108/m2 This chargesthe selective permeability of the membrane to ions

approximately 10 /m . This charges are located within 1 μm distance of 

the membrane.

Figure 11.1 Diagram of a typical neuron. Figure 11.2 Diagrams illustrating separation of charges across a cell membrane.

Page 3: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

11.3 NEURONS11.3.1 Membrane Potentials

d d d A l• Graded Response and Action Potentials– Neuron can change membrane potential of 

another neuron to which it is connected byanother neuron to which it is connected by releasing its neurotransmitter

– Graded response• The change in membrane potential due to transfer of chemical to electrical energy from one neuron to another

• Varies with amount of neurotransmitter received– Action potential

• Net result of activation of the nerve cell• Net result of activation of the nerve cell • Large depolarizing signal of up to 100 mV that travels along axon without loss and lasts 1‐5 msWh ti t ti l h d f t• When action potential reaches end of axon at presynaptic terminal, change in potential causes release of a packet of neurotransmitter

Page 4: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

11.3 NEURONS11 3 2 Resting Potential Ionic Concentrations11.3.2 Resting Potential, Ionic Concentrations,

and Channels

• Resting potential is maintained through– Selectively permeable membraneSe ecti e y pe eab e e b a e– Active ion pump

• Neuron cell membrane– ~ 10 nm thick– Lipid bilayer (i.e., two plates separated by an insulator)– Capacitive propertiesCapacitive properties

• Extracellular fluid primarily Na+ and Cl‐• Intracellular fluid primarily K+ and A‐p y

– (A‐) large organic anions primarily amino acids and proteins– Ions can only pass through membrane at ion channels

Page 5: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

11.3 NEURONS11 3 2 Resting Potential Ionic Concentrations11.3.2 Resting Potential, Ionic Concentrations,

and Channels• Io ha el a e io e ifi• Ion channels are ion specific

– Passive – responsible for resting potential– Active – responsible for graded response and action potential

• Structure (Figure not to scale)– Cell membrane is 20x size of ions– 10 x the size of channel10 x the size of channel– Spacing between channels 10x membrane thickness

• Passive – always open and ion specificE i t f Cl K+ N + C 2+– Exist for Cl‐, K+, Na+, Ca2+

• Active ‐ opened or closed– in response to an externalpelectrical or chemical stimulation– Also ion specific

Page 6: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

11.4 BASIC BIOPHYSICS TOOLS AND RELATIONSHIPSRELATIONSHIPS11.4.1 Basic Laws

[ ]d• Fick’s Law

– J=flow of ions due to diffusionD=diffusivity constant [m2/s]

[ ](diffusion) d IJ Ddx

= −

– D=diffusivity constant [m /s]– [I] = ion concentration– dx = membrane thickness

• Ohm’s Law (drift) [ ] dvJ Z I– J=flow of ions due to drift in electric field, E– μ = mobility in m2/sV– Z=ionic valence, e.g., Z for Na+ = 1; Z for Cl‐ = ‐1

[I] ion concentration

(drift) [ ]J Z Idx

μ= −

– [I] ion concentration– V=voltage across membrane– dv/dx = ‐E = electrical field

• Einstein Relationship

KTDqμ

=p

– Relationship between drift of particles in electric field under osmotic pressure (i.e., between diffusivity and mobility)

– K=Boltzmann’s constantT=absolute temp

q

– T=absolute temp– q=magnitude of electrical charge = 1.60186×10‐19C

Page 7: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

11.4 BASIC BIOPHYSICS TOOLS AND RELATIONSHIPS

11.4.2 Resting Potential of a Membrane Permeable to One Ion

+ -Electric potential Concentration

+

+

+ -

-

[K+]i[K+]o+

+

+

-

-

-

++--

the Nernst equation, named after a German physical chemist Walter Nernst, and Ek= vi – vo is known as the Nernst potential for K+ , which can be applied other permeable ions of Na+, Cl‐.

Page 8: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

11.4 BASIC BIOPHYSICS TOOLS AND RELATIONSHIPSRELATIONSHIPS

11.4.3 Donnan Equilibrium

• Membrane potential is due to presence of all ions and influenced by the concentration and permeability of each ioninfluenced by the concentration and permeability of each ion.

• For a 2‐ion example, at equilibrium, membrane is permeable to K+ and Cl‐ but not large cation R+g

• Donnan Equilibrium

Page 9: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

11.4 BASIC BIOPHYSICS TOOLS AND RELATIONSHIPSRELATIONSHIPS

11.4.4 Goldman EquationA l i i l d ’ d N i l• Actual resting potential doesn’t correspond to Nernst potential either for Na+ or K+ because Vm is affected by all permeable ions

• Goldman equation relates Vm and all permeable ions with following q p gtwo conditions;– Membrane potential or electric field must be constant

Assume cell membrane of width dx δ– Assume cell membrane of width dx=δ

Page 10: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

11.4 BASIC BIOPHYSICS TOOLS AND RELATIONSHIPSRELATIONSHIPS

11.4.4 Goldman Equation

[ ] [ ] [ ]P K P Na P ClkT + + −⎛ ⎞+ +[ ] [ ] [ ]ln[ ] [ ] [ ]

K o Na o Cl im

K i Na i Cl o

P K P Na P ClkTVq P K P Na P Cl+ + −

⎛ ⎞+ += ⎜ ⎟+ +⎝ ⎠

Page 11: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

11.4 BASIC BIOPHYSICS TOOLS AND RELATIONSHIPSRELATIONSHIPS

11.4.5 Ion Pumps• To maintain a constant resting potential flow of chargeTo maintain a constant resting potential, flow of charge 

into cell must be balanced by flow of charge out of cell.– For Na+, concentration and electric gradient drives Na+ into cell 

at restat rest– At Vm, K+ force due to diffusion is greater than due to drift and 

results in efflux of K+ out of cell• Changes in concentration gradient of K+ and Na+ is• Changes in concentration gradient of K and Na is 

prevented by the Na‐K pump.– Transports steady stream of Na+ out of cell and K+ into cellA i b li• Active pump consumes metabolic energy

Page 12: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

11.4 BASIC BIOPHYSICS TOOLS AND RELATIONSHIPSRELATIONSHIPS

11.4.5 Ion PumpsI l h ll b d• In general, when cell membrane is at rest, active and passive ion flows are balanced and a permanent potential exists across a membrane ifpotential exists across a membrane if– 1. Membrane is impermeable to some ions– 2. An active pump is present

• Concentrations of Na+ and K+ are determined by active pump, but other ions are determined by Vm using Nernst equationNernst equation

Page 13: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

11.4 BASIC BIOPHYSICS TOOLS AND RELATIONSHIPSRELATIONSHIPS

11.4.5 Ion Pumps

Example Problem 11.3 • Consider membrane with an active K+ pump, passive channels for 

K+ and Cl‐ and nonequilibrium initial concentration of [KCl] on both sides of the membrane and find an expression for flux from active pK+ pump

[ ]ConcentrationFrom Jcl=0, From [Cl‐]=[K+]

[K+]i[K+]o

[Cl-]o [Cl-]i

[K+]i

[Cl-]iElectric potential

Without pump, concentration would be equal inside and outside of membrane

Page 14: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

11.5 EQUIVALENT CIRCUIT MODEL FOR THE CELL MEMBRANEMEMBRANE

11.5.1 Electromotive and Resistive Properties

El• Electromotive Force Properties : – The Nernst potential for each ion is the electrical potential 

difference across the ion channel and modeled as a batterydifference across the ion channel and modeled as a battery.

• Resistive Properties :– Each channel has resistance R ( or conductance G = 1/R ) to the ( )

movement of electrical charge through it.– Conductance is related to membrane permeability.

• Na‐K Pump– Current generators

Page 15: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

11.5 EQUIVALENT CIRCUIT MODEL FOR THE CELL MEMBRANECELL MEMBRANE

11.5.2 Capacitive Properties

• Capacitance– Electrical conductors (cytoplasm and extracellular fluid) 

separated by an insulating material (lipid bilayer of theseparated by an insulating material (lipid bilayer of the membrane)

– ≈ 1μF/cm2

Cm

Page 16: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

11.5 EQUIVALENT CIRCUIT MODEL FOR THE CELL MEMBRANECELL MEMBRANE

11.5.2 Capacitive PropertiesE l P bl 11 6• Example Problem 11.6

since

Page 17: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

11.5 EQUIVALENT CIRCUIT MODEL FOR THE CELL MEMBRANECELL MEMBRANE

11.5.2 Capacitive Properties

Vm due to a series of 15 mA current pulses of 6ms duration with the onsets occurring at 0, 2, 4, 6, and 8 ms. Since the pulses occur within 5τ of the previous pulses, the effect of each on Vm iswithin 5τ of the previous pulses, the effect of each on Vm is additive, allowing the membrane to depolarize to approximately ‐45mV. If the pulses were spaced at intervals greater than 5τ, then Vm would be a series of pulse responses as previously illustrated.

Page 18: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

11.5 EQUIVALENT CIRCUIT MODEL FOR THE CELL MEMBRANECELL MEMBRANE

11.5.3 Change in Membrane Potential with DistanceE i l i i f i f b i• Equivalent circuit of series of membrane sections;– connected with axial resistance, Ra – resistance to the flow of current in the 

cytoplasm from one membrane section to the nextCh h b l d h• Change in the membrane potential Vm, △Vm, due to the current injection with relatively long time duration;– Determined by current through the resistance only– The resistance seen in n sections from the injection site = Rth + n×Ra

– Decreases exponentially with distance; 

Page 19: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

11.6 HODGKIN-HUXLEY MODEL OF THE ACTION POTENTIALACTION POTENTIAL

11.6.1 Action Potentials and the Voltage Clamp ExperimentH d ki d H l bli h d 5 i 1952 th t d ib d• Hodgkin and Huxley published 5 papers in 1952 that described a series of experiments and empirical model of an action potential in a squid giant axon;

O V h th h ld ti d lt d d t d t– Once Vm reaches threshold, time‐ and voltage‐dependent conductance changes occur in the active Na+ and K+ gates that drive Vm toward ENa, then back to EK, and finally to the resting potential.

• Hodgkin and Huxley used two experimental techniques;• Hodgkin and Huxley used two experimental techniques;– Space Clamp : to produce a constant Vm over a large region of the 

membrane by inserting a silver wire inside the axon and thus eliminating Raeliminating Ra.

– Voltage Clamp : to allow the control of Vm by eliminating the effect of further depolarization due to the influx INa and efflux of IK as membrane permeability changed.p y g

Figure 11.20 Illustration of the conductance gate for sodium.

Page 20: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

11.6 HODGKIN-HUXLEY MODEL OF THE ACTION POTENTIALACTION POTENTIAL

11.6.1 Action Potentials and the Voltage Clamp Experiment

• Voltage Clamp– First select a clamp voltage and then records the resultant– First select a clamp voltage and then records the resultant 

membrane current, Im, that is necessary to keep Vm at the clamp voltage

Page 21: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

11.6 HODGKIN-HUXLEY MODEL OF THE ACTION POTENTIALACTION POTENTIAL

11.6.1 Action Potentials and the Voltage Clamp Experiment

• INa + IK = Im – initial capacitive current –constant leakage currentconstant leakage current

• Let INa =0 by substituting a large i bl tiimpermeable cation for Na+ in the external solution, then measure IK and calculate INa

Page 22: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

11.6 HODGKIN-HUXLEY MODEL OF THE ACTION POTENTIALACTION POTENTIAL

11.6.1 Action Potentials and the Voltage Clamp Experimentf h A l• Reconstructing of the Action Potential

Page 23: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

11.6 HODGKIN-HUXLEY MODEL OF THE ACTION POTENTIALACTION POTENTIAL

11.6.2 Equations Describing GNa and GK

h l d b d k d l• The empirical equation used by Hodgkin and Huxley to model GNa and GK;

Page 24: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

11.6 HODGKIN-HUXLEY MODEL OF THE ACTION POTENTIALACTION POTENTIAL

11.6.3 Equation for the Dependence of the Membrane Potential

• A model of the cell membrane stimulated via an external stimulus Im;stimulus, Im;

Rl

El

Figure 11.28 Circuit model of an unmyelinated section of squid giant axon. The channels for K+

and Na+ are represented using the variable voltage–time conductances given in Equations 11.42 and11.44. The passive gates for Na+, K+, and Cl‐ are given by a leakage channel with resistance, Rl, andNernst potential, El. The Na‐K pump is not drawn for ease in analysis since it does not contribute any current to the rest of the circuit.

Page 25: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

11.6 HODGKIN-HUXLEY MODEL OF THE ACTION POTENTIALACTION POTENTIAL

11.6.3 Equation for the Dependence of the Membrane Potential

I U I• SIMULINK program

Page 26: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

11 7 MODEL OF THE WHOLE NEURON11.7 MODEL OF THE WHOLE NEURON• A model for entire neuron including the dendrite, soma, g , ,

axon, and presynaptic terminal;

Figure 11.33A segment of the axon with active and passive compartments.

Page 27: Chapter 11Chapter 11 BIOELECTRIC PHENOMENA

11 7 MODEL OF THE WHOLE NEURON11.7 MODEL OF THE WHOLE NEURON

Figure 11.34 SIMULINK model for two adjacent neurons.