20
Chapter 13 Future Directions 學學 學學學 學學R91943036

Chapter 13 Future Directions

  • Upload
    abba

  • View
    51

  • Download
    0

Embed Size (px)

DESCRIPTION

Chapter 13 Future Directions. 學生:郭智昇 學號: R91943036. Technology Trends. Technology Trends. SiGe HBT can be viewed as an “ adder ” to a high-speed CMOS core technology without perturbing the characteristics of the underlying core CMOS. SiGe 有優於 GaAs 的高集積度、高電子傳導率與高製造良率的競爭優勢 - PowerPoint PPT Presentation

Citation preview

Page 1: Chapter 13 Future Directions

Chapter 13Future Directions

學生:郭智昇學號: R91943036

Page 2: Chapter 13 Future Directions

Technology Trends

Page 3: Chapter 13 Future Directions

Technology Trends SiGe HBT can be viewed as an

“adder” to a high-speed CMOS core technology without perturbing the characteristics of the underlying core CMOS

Page 4: Chapter 13 Future Directions
Page 5: Chapter 13 Future Directions

SiGe 有優於 GaAs 的高集積度、高電子傳導率與高製造良率的競爭優勢

與矽比較, SiGe 在高頻環境下擁有低雜訊、低功率損耗的優點

可同時整合 FET 與 Bipolar 也是 SiGe 的發展優勢

SiGe 的用途涵蓋功率放大器、無線通訊的行動電話、 Bluetooth 、 DECT 等之 RF IC 、 SoC 或光纖骨幹網路 SONET 介面 IC

Page 6: Chapter 13 Future Directions

SiGe 製程技術

HBT HFET Optoelectronic

Page 7: Chapter 13 Future Directions

SiGe HBT 與 Si-Bipolar 相容,可透過三種不同的磊晶成長技術 -Selective 、 Differential 、 Blanket發展

SiGe HBT 元件結構分成 Doublepoly Selfaligned 、 Singlepoly Quasi-selfaligned 、 Mesatype

Page 8: Chapter 13 Future Directions

SiGe HFET 元件結構分成 MOSFET 與QW MOSFET 二種,其中 QW MOSFET 適用於低電壓及高傳輸率的系統環境

Optoelectronic 發展目的完全以光電IC 為主,包含光電檢測器、光纖節點、光纖高速 IC 、光導波管、光波通訊微機電開關等

Page 9: Chapter 13 Future Directions

Technology Trends Multiple breakdown voltage

versions of the core SiGe HBT will be available on the same die for greater circuit design flexibility

Carbon doping of SiGe HBT will become the mainstream makes thermal budget and profile control that much easier

Page 10: Chapter 13 Future Directions

Technology Trends Higher C content(2-3%) to produce

SiGeC alloys that are lattice-matched directly to Si

While SiGeC alloys with up to 3% C ,it seems unlikely that lattice-matching within the SiGe/Si system

Page 11: Chapter 13 Future Directions

Technology Trends First generation SiGe HBT fT,Peak=50 GHz Second generation performance

level 100—120 GHz peak fT

Third generation performance level

>200 GHz peak fT

Page 12: Chapter 13 Future Directions

Technology Trends SiGe technology will increaseingly

move to full copper metalization to support the requisite high device current densities as well as improve the Qs of the passives

Page 13: Chapter 13 Future Directions

Four approaches that might be used to improve the high-freq losses in SiGe

(1)Move to high-resistivity substrates(2)Use thicker top-side

dielectrics,combined with lower resistivity metal(Cu)(3)use postfabrication spun-on polymers

followed by Cu or Au for passives and transmission lines

(4)move to SiGe on SOI

Page 14: Chapter 13 Future Directions

Noise coupling Using conservative layout approaches

and intelligent placement of critical noise sensitive functions

e.g. do not put your LNA next to a large CMOS digital switching block

Deep-trench feature provides excellent noise isolation

Page 15: Chapter 13 Future Directions
Page 16: Chapter 13 Future Directions

Performance Limits

Page 17: Chapter 13 Future Directions

The peak fT in each SiGe technology generation occurs at roughly the same bias current

meaning that the collector current density is rising rapidly the level of demonstrated performance

Power saving potential for SiGe clearly holds great leverage for portable(battery-limited) system

Page 18: Chapter 13 Future Directions
Page 19: Chapter 13 Future Directions

What is the practical performance limit of a commercially visible SiGe HBT technology?

Attainable fmax is difficult Breakdown voltage must decrease as

the transistor performance improve

Page 20: Chapter 13 Future Directions