93
Chapter 13 Intracellular Vesicular Traffic 張張張 張張張張

Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Embed Size (px)

Citation preview

Page 1: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Chapter 13

• Intracellular Vesicular Traffic

張學偉 助理教授

Page 2: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 3: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 4: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 5: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

The molecular mechanisms of membrane transport and the

maintenance of compartmental diversity

Page 6: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 7: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 8: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

GFP-FUSION PROTEINS HAVE REVOLUTIONIZED THE STUDY OF INTRACELLULAR TRANSPORT

Page 9: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

There are various types of coated vesicles

Each type is used for different transport steps in the cell.

Mediate transportfrom Golgi & fromplasma membrane

Mediate transportfrom ER & Golgi

Page 10: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 11: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

The assembly of a clathrin coat drives vesicle formation

Page 12: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Major coat protein: clathrin & adaptin

There are at least four types of adaptins, each specific for a different set of cargo receptor.

by charperone (hsp70)

Page 13: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Both the pinching-off and uncoating of coated vesicles are

regulated processes

Page 14: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 15: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Not all transport vesicles are spherical

Various size & shape

Page 16: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Monomeric GTPase control coat assembly

Page 17: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

SNARE proteins and targeting GTPases guide membrane transport

Page 18: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 19: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Trans-SNARE complex

Page 20: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Interacting SNAREs need to be pried apart before they can function again

cytosol

Cycle

Page 21: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Rab proteins (monomeric GTPase) help ensure the specificity of vesicle docking

Page 22: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Rab facilitate docking of transport vescicles.

cycleRab &its effectorStructure vary greatly

Function common(1.concentrate & tethervesicle near target site2. Trigger release of SNARP control protein)

Page 23: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

SNARE may mediate membrane fusion

Process for SNARE concentrate in membrane fusion

Page 24: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Viral fusion proteins and SNAREs may use similar strategies

Page 25: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 26: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Transport from the ER through the golgi apparatus

Page 27: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 28: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Cargo Recruitment

ER exit site

50nm vesicle > 200 mem protein

Page 29: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Only proteins that are properly folded and assembled can leave the ER

ER resident protein

Incomplete

Page 30: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

CF (Cystic fibrosis)

Defect in Cl- transport

This is not because the mutation inactivated the protein, But because the active protein is discarded before it reaches the plasma membrane.

Page 31: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Transport from the ER to the Golgi apparatus is mediated by vesicular tubular clusters.

Heterotypic fusion

Homotypic memb fusion is not restricted to form VTC.

Page 32: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

The structure formed when ER-derived vesicles fuse with one another are called.

Page 33: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

ER retrival signal

Page 34: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

The retrieval pathway to the ER uses sorting signals

Lys-Asp-Glu-Leu (KDEL)

KKXX at c-terminal end direct interact with COPI coat

Short retrieval signal at c-terminal

Resident ER membrane protein

Page 35: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 36: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Many proteins are selectively retained in the compartments in

which they function

Aggregation of proteins that function in the same compartment- called kin recognition

Page 37: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

The golgi apparatus consists of an ordered series of compartments.

Page 38: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 39: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 40: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 41: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Two major classes of N-linked oligosaccharide

complex

High mannoseNo new sugar added in Golgi

Page 42: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Oligosaccharide processing in ER and Golgi

Page 43: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

High specificendoglycosidase

Can distinguish betweenthese two type

Page 44: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Proteoglycans are assembled in the Golgi Apparatus

O-linked glycosylation

Proteoglycans are secreted or anchored to plasma membrane

Page 45: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

What is the purpose of N-glycosylation?

1. N-linked is prevalent in all eukaryotes, but absent in procaryotes.2. limited flexibility.3. Recognition4. Regulation of development5. Protective coat unit6. Cell-cell adhesion

Page 46: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

N-linked

Page 47: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

The golgi cisternae are organized as a series of processing compartments

Page 48: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Functional compartmentalization

Page 49: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 50: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Matrix proteins form a dynamic scaffold that helps organize the

apparatus

Page 51: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Transport from trans golgi network to lysosomes

Page 52: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 53: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Lysosome are the principal sitesof intracellular digestion

Page 54: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Lysosomes are heterogeneous(morphology)

The diversity reflects the wide range of digestive function.

Page 55: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Plant and fungal vacuoles are remarkably verstile lysosomes

Page 56: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Controlling size

Vacuole function:Storage, degrade, cell size, turgr pressure, homostatic device

Page 57: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Three pathways to degradation in lysosomes.

Page 58: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

M6P receptor recognizes lysosomal proteins in the Trans Golgi network (TGN)

Page 59: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

The M6P receptor shuttles between specific membranes

Page 60: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 61: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 62: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Transport into the cell from the plasma membrane:

endocytosis

Page 63: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 64: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 65: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 66: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 67: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 68: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 69: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 70: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 71: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 72: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 73: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 74: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 75: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 76: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 77: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 78: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 79: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 80: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Transport from the trans golgi network to the cell exterior:

exocytosis

Page 81: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 82: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 83: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 84: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 85: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 86: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 87: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 88: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 89: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 90: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 91: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 92: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授
Page 93: Chapter 13 Intracellular Vesicular Traffic 張學偉 助理教授

Chapter 13 practice

1. The endocytic and biosynthetic-secretory and retrieval pathway.2. Utilization of different coats in vesicular traffic.3. The role of SNAREs and SNAREs-interacting proteins in vesicle

transport .4. The traffic role of COPI &COPII coat shuttling between Golgi and ER. 5. What is KDEL signal and its role in retrieval pathway.6. How to distinguish between the high-mannose oligosaccharide and

complex oligosaccharide.7. Write the full name for Glc NAc, NANA(sialic acid).8. The functional compartmentization of Golgi apparatus.9. Three pathways to degradation in lysosomes.10. How to transport lysosomal enzyme to lysosome from ER.11. Possible fates for endocytosed transmembrane receptor proteins. 12. The receptor-mediated endocytosis of LDL.13. Three best-understanding pathways of protein sorting in trans Golgi.