62
Chapter 3 Determinants 3.1 The Determinant of a Matrix 3.2 Evaluation of a Determinant u sing Elementary Operations 3.3 Properties of Determinants 3.4 Introduction to Eigenvalues 3.5 Application of Determinants Elementary Linear Algebra 投投投投投投投投 R. Larsen et al. (6 Edition)

Chapter 3 Determinants

Embed Size (px)

DESCRIPTION

Chapter 3 Determinants. 3.1 The Determinant of a Matrix 3.2 Evaluation of a Determinant using Elementary Operations 3.3 Properties of Determinants 3.4 Introduction to Eigenvalues 3.5 Application of Determinants. - PowerPoint PPT Presentation

Citation preview

Page 1: Chapter 3 Determinants

Chapter 3

Determinants

3.1 The Determinant of a Matrix

3.2 Evaluation of a Determinant using

Elementary Operations

3.3 Properties of Determinants

3.4 Introduction to Eigenvalues

3.5 Application of Determinants Elementary Linear Algebra 投影片設計編製者R. Larsen et al. (6 Edition) 淡江大學 電機系 翁慶昌 教授

Page 2: Chapter 3 Determinants

2/62

3.1 The Determinant of a Matrix

the determinant of a 2 × 2 matrix:

Note:

2221

1211

aa

aaA

12212211||)det( aaaaAA

2221

1211

aa

aa

2221

1211

aa

aa

Elementary Linear Algebra: Section 3.1, p.123

Page 3: Chapter 3 Determinants

3/62

Ex. 1: (The determinant of a matrix of order 2)

21

32

24

12

42

30

Note: The determinant of a matrix can be positive, zero, or negative.

)3(1)2(2 34 7

)1(4)2(2 44 0

)3(2)4(0 60 6

Elementary Linear Algebra: Section 3.1, p.123

Page 4: Chapter 3 Determinants

4/62

Minor of the entry :

The determinant of the matrix determined by deleting the ith row and jth column of A

Cofactor of :

ija

ijji

ij MC )1(

nnjnjnn

nijijii

nijijii

njj

ij

aaaa

aaaa

aaaa

aaaaa

M

)1()1(1

)1()1)(1()1)(1(1)1(

)1()1)(1()1)(1(1)1(

1)1(1)1(11211

ija

Elementary Linear Algebra: Section 3.1, p.124

Page 5: Chapter 3 Determinants

5/62

Ex:

333231

232221

131211

aaa

aaa

aaa

A

3332

131221 aa

aaM

212112

21 )1( MMC

3331

131122 aa

aaM

222222

22 )1( MMC

Elementary Linear Algebra: Section 3.1, p.124

Page 6: Chapter 3 Determinants

6/62

Notes: Sign pattern for cofactors

Elementary Linear Algebra: Section 3.1, p.124

3 × 3 matrix 4 × 4 matrix n ×n matrix

Notes:

Odd positions (where i+j is odd) have negative signs, and

even positions (where i+j is even) have positive signs.

Page 7: Chapter 3 Determinants

7/62

Ex 2: Find all the minors and cofactors of A.

,514

2312

M,110

2111

M

Sol: (1) All the minors of A.

404

1313

M

,210

1221

M ,414

1022

M 814

2023

M

,521

1231

M ,323

1032

M 613

2033

M

Elementary Linear Algebra: Section 3.1, p.125

104

213

120

A

Page 8: Chapter 3 Determinants

8/62

,514

2312

C,110

2111

C 404

1313

C

ijji

ij MC )1(

,210

1221

C ,414

1022

C 814

2023

C

,521

1231

C ,323

1032

C 613

2033

C

Elementary Linear Algebra: Section 3.1, p.125

Sol: (2) All the cofactors of A.

Page 9: Chapter 3 Determinants

9/62

Thm 3.1: (Expansion by cofactors)

n

jininiiiiijij CaCaCaCaAAa

12211||)det()(

(Cofactor expansion along the i-th row, i=1, 2,…, n )

n

injnjjjjjijij CaCaCaCaAAb

12211||)det()(

(Cofactor expansion along the j-th row, j=1, 2,…, n )

Let A is a square matrix of order n.

Then the determinant of A is given by

or

Elementary Linear Algebra: Section 3.1, p.126

Page 10: Chapter 3 Determinants

10/62

Ex: The determinant of a matrix of order 3

333231

232221

131211

aaa

aaa

aaa

A

333323231313

323222221212

313121211111

333332323131

232322222121

131312121111)det(

CaCaCa

CaCaCa

CaCaCa

CaCaCa

CaCaCa

CaCaCaA

Elementary Linear Algebra: Section 3.1, Addition

Page 11: Chapter 3 Determinants

11/62

Ex 3: The determinant of a matrix of order 3

14)6)(1()8)(2()4)(1(

14)3)(0()4)(1()5)(2(

14)5)(4()2)(3()1)(0(

14)6)(1()3)(0()5)(4(

14)8)(2()4)(1()2)(3(

14)4)(1()5)(2()1)(0()det(

333323231313

323222221212

313121211111

333332323131

232322222121

131312121111

CaCaCa

CaCaCa

CaCaCa

CaCaCa

CaCaCa

CaCaCaA

Elementary Linear Algebra: Section 3.1, p.126

104

213

120

A

6 ,3 ,5

8 ,4 ,2

4 ,5 ,1

333231

232221

131211

2E

CCC

CCC

CCCx

Sol:

Page 12: Chapter 3 Determinants

12/62

Ex 5: (The determinant of a matrix of order 3)

?)det( A

144

213

120

A

110

21)1( 11

11

C

Sol:

5)5)(1(14

23)1( 21

12 C

404

13)1( 31

13

C

14

)4)(1()5)(2()1)(0(

)det( 131312121111

CaCaCaA

Elementary Linear Algebra: Section 3.1, p.128

Page 13: Chapter 3 Determinants

13/62

Ex 4: (The determinant of a matrix of order 4)

2043

3020

2011

0321

A ?)det( A

Elementary Linear Algebra: Section 3.1, p.127

Notes:

The row (or column) containing the most zeros is the best choice

for expansion by cofactors .

Page 14: Chapter 3 Determinants

14/62

Sol:

))(0())(0())(0())(3()det( 43332313 CCCCA

243

320

211

)1(3 31

133C

39

)13)(3(

)7)(1)(3()4)(1)(2(03

43

11)1)(3(

23

21)1)(2(

24

21)1)(0(3 322212

Elementary Linear Algebra: Section 3.1, p.127

Page 15: Chapter 3 Determinants

15/62

The determinant of a matrix of order 3:

333231

232221

131211

aaa

aaa

aaa

A

3231333231

2221232221

1211131211

aaaaa

aaaaa

aaaaa

122133112332

132231322113312312332211

||)det(

aaaaaa

aaaaaaaaaaaaAA

Add these three products.

Subtract these three products.

Elementary Linear Algebra: Section 3.1, p.127

Page 16: Chapter 3 Determinants

16/62

Ex 5:

144

213

120

A

44

13

20

–4

0

260)4(12160||)det( AA

16 –12

0 6

Elementary Linear Algebra: Section 3.1, p.128

Page 17: Chapter 3 Determinants

17/62

Upper triangular matrix:

Lower triangular matrix:

Diagonal matrix:

All the entries below the main diagonal are zeros.

All the entries above the main diagonal are zeros.

All the entries above and below the main diagonal are zeros.

Elementary Linear Algebra: Section 3.1, p.128

Note:

A matrix that is both upper and lower triangular is called diagonal.

Page 18: Chapter 3 Determinants

18/62

33

2322

131211

000

aaaaaa

333231

2221

11

000

aaaaa

a

Ex:

upper triangular

33

22

11

000000

aa

a

lower triangular diagonal

Elementary Linear Algebra: Section 3.1, p.128

Page 19: Chapter 3 Determinants

19/62

Thm 3.2: (Determinant of a Triangular Matrix)

If A is an n × n triangular matrix (upper triangular,

lower triangular, or diagonal), then its determinant is

the product of the entries on the main diagonal. That is

nnaaaaAA 332211||)det(

Elementary Linear Algebra: Section 3.1, p.129

Page 20: Chapter 3 Determinants

20/62

Ex 6: Find the determinants of the following triangular matrices.

(a)

3351

0165

0024

0002

A (b)

20000

04000

00200

00030

00001

B

|A| = (2)(–2)(1)(3) = –12

|B| = (–1)(3)(2)(4)(–2) = 48

(a)

(b)

Sol:

Elementary Linear Algebra: Section 3.1, p.129

Page 21: Chapter 3 Determinants

21/62

Keywords in Section 3.1:

determinant : 行列式 minor : 子行列式 cofactor : 餘因子 expansion by cofactors : 餘因子展開 upper triangular matrix: 上三角矩陣 lower triangular matrix: 下三角矩陣 diagonal matrix: 對角矩陣

Page 22: Chapter 3 Determinants

22/62

3.2 Evaluation of a determinant using elementary operations

Thm 3.3: (Elementary row operations and determinants)

)()( ArBa ij

Let A and B be square matrices.

)det()det( AB

)()( )( ArBb ki )det()det( AkB

)()( )( ArBc kij )det()det( AB

Elementary Linear Algebra: Section 3.2, p.134

))( (i.e. AArij

))( (i.e. )( AkAr ki

))( (i.e. )( AAr kij

Page 23: Chapter 3 Determinants

23/62

121

410

321

A

Ex:

121

410

1284

1A

121

321

410

2A

121

232

321

3A

2)det( A

8)2)(4()det(4))(det()det()( )4(11

)4(11 AArAArA

2)2()det())(det()det( )( 122122 AArAArA

2)det())(det()det( )( )2(123

)2(123 AArAArA

Elementary Linear Algebra: Section 3.2, Addition

Page 24: Chapter 3 Determinants

24/62

Notes:

))(det()det( )det())(det( ArAAAr ijij

))(det(1

)det( )det())(det( )()( Ark

AAkAr ki

ki

))(det()det( )det())(det( )()( ArAAAr kij

kij

Elementary Linear Algebra: Section 3.2, pp.134-135

Page 25: Chapter 3 Determinants

25/62

Note:

A row-echelon form of a square matrix is always upper triangular.

Ex 2: (Evaluation a determinant using elementary row operations)

310221

1032A ?)det( A

Sol:

310

1032

221

310

221

1032

)det(12

r

A

Elementary Linear Algebra: Section 3.2, pp.134-135

Page 26: Chapter 3 Determinants

26/62

7)1)(1)(1)(7(

100

210

221

7 )1(

23

r

310

210

221

)1

)(1(

310

1470

221

71

)71(

2)2(

12

rr

Elementary Linear Algebra: Section 3.2, pp.134-135

Page 27: Chapter 3 Determinants

27/62

Notes:

AEEA

ijRE )1( 1 ijRE

AEARAArEA ijij

)( )2( kiRE kRE k

i )(

AEARAkArEA ki

ki )()(

)( )3( kijRE 1)( k

ijRE

AEARAArEA kij

kij )()( 1

Elementary Linear Algebra: Section 3.2, Addition

Page 28: Chapter 3 Determinants

28/62

Determinants and elementary column operations

Elementary Linear Algebra: Section 3.2, p.135

)()( AcBaij

Let A and B be square matrices.

)det()det( AB

)()( )( AcBb k

i )det()det( AkB

)()( )( AcBc k

ij )det()det( AB

))( (i.e. AAcij

))( (i.e. )( AkAc k

i

))( (i.e. )( AAc k

ij

Thm: (Elementary column operations and determinants)

Page 29: Chapter 3 Determinants

29/62

200

104

312

A

Ex:

200

140

321

2A

200

102

311

1A

200

104

012

3A

8)det( A

4)8)(2

1()det(

2

1))(det()det()( )4(

11

)2

1(

11 AAcAAcA

8)8()det())(det()det( )(12

212

2 AAcAAcA

8)det())(det()det( )( )3(

233

)3(

233 AAcAAcA

Elementary Linear Algebra: Section 3.2, p.135

Page 30: Chapter 3 Determinants

30/62

Thm 3.4: (Conditions that yield a zero determinant)

(a) An entire row (or an entire column) consists of zeros.

(b) Two rows (or two columns) are equal.

(c) One row (or column) is a multiple of another row (or column).

If A is a square matrix and any of the following conditions is true, t

hen det (A) = 0.

Elementary Linear Algebra: Section 3.2, p.136

Page 31: Chapter 3 Determinants

31/62

0

654

000

321

0

063

052

041

0

654

222

111

0

261

251

241

0

642

654

321

0

6123

5102

481

Ex:

Elementary Linear Algebra: Section 3.2, Addition

Page 32: Chapter 3 Determinants

32/62

Cofactor Expansion Row Reduction

Order n Additions Multiplications Additions Multiplications

3 5 9 5 10

5 119 205 30 45

10 3,628,799 6,235,300 285 339

Note:

Elementary Linear Algebra: Section 3.2, p.138

Page 33: Chapter 3 Determinants

33/62

Ex 5: (Evaluating a determinant)

603

142

253

A

Sol:

3)1)(3(34

45)1)(3(

003

342

453

603

142

253

)det(

13

)2(13

C

A

3)5

3)(5(

63)1)(5(

603

0

253

603

142

253

)det(

53

52

21

53

52

)5

4(

12

r

A

Elementary Linear Algebra: Section 3.2, p.138

Page 34: Chapter 3 Determinants

34/62

Ex 6: (Evaluating a determinant)

Sol:

0231134213321011231223102

A

10034651

32112312

1)(1)(

1000346501321011231223102

0231134213321011231223102

)det(

22

)1(25

)1(24

rr

A

Elementary Linear Algebra: Section 3.2, p.139

Page 35: Chapter 3 Determinants

35/62

6513

218

500

6513

218

318

)1(1)(

1000

46513

3218

2318

)1(21

44

)3(41

r

C

135

)27)(5(

513

181)5( 31

Elementary Linear Algebra: Section 3.2, p.140

Page 36: Chapter 3 Determinants

36/62

3.3 Properties of Determinants

Notes:

)det()det()det( BABA

Thm 3.5: (Determinant of a matrix product)

(1) det (EA) = det (E) det (A)

(2)

(3)

333231

232221

131211

333231

232221

131211

aaa

bbb

aaa

aaa

aaa

aaa

333231

232322222222

131211

aaa

bababa

aaa

det (AB) = det (A) det (B)

Elementary Linear Algebra: Section 3.3, p.143

Page 37: Chapter 3 Determinants

37/62

Ex 1: (The determinant of a matrix product)

101

230

221

A

213

210

102

B

7

101

230

221

||

A 11

213

210

102

|| B

Sol:

Find |A|, |B|, and |AB|

Elementary Linear Algebra: Section 3.3, p.143

Page 38: Chapter 3 Determinants

38/62

115

1016

148

213

210

102

101

230

221

AB

77

115

1016

148

|| AB

|AB| = |A| |B|

Check:

Elementary Linear Algebra: Section 3.3, p.143

Page 39: Chapter 3 Determinants

39/62

Ex 2:

5

132

503

421

,

103020

50030

402010

A

Find |A|.Sol:

132

503

421

10A 5000)5)(1000(

132

503

421

103

A

Thm 3.6: (Determinant of a scalar multiple of a matrix)

If A is an n × n matrix and c is a scalar, then

det (cA) = cn det (A)

Elementary Linear Algebra: Section 3.3, p.144

Page 40: Chapter 3 Determinants

40/62

Ex 3: (Classifying square matrices as singular or nonsingular)

0A

123

123

120

A

123

123

120

B

A has no inverse (it is singular).

012B B has an inverse (it is nonsingular).

Sol:

Thm 3.7: (Determinant of an invertible matrix)

A square matrix A is invertible (nonsingular) if and only if

det (A) 0

Elementary Linear Algebra: Section 3.3, p.145

Page 41: Chapter 3 Determinants

41/62

Ex 4:?1 A

012

210

301

A?TA(a) (b)

4

012

210

301

|| A 4111

AA

4 AAT

Sol:

Thm 3.8: (Determinant of an inverse matrix)

.)Adet(

1)Adet( theninvertible is If 1 ,A

Thm 3.9: (Determinant of a transpose)

).det()det( thenmatrix, square a isIf T AAA

Elementary Linear Algebra: Section 3.3, pp.146-148

Page 42: Chapter 3 Determinants

42/62

If A is an n × n matrix, then the following statements are equivalent.

(1) A is invertible.

(2) Ax = b has a unique solution for every n × 1 matrix b.

(3) Ax = 0 has only the trivial solution.

(4) A is row-equivalent to In

(5) A can be written as the product of elementary matrices.

(6) det (A) 0

Equivalent conditions for a nonsingular matrix:

Elementary Linear Algebra: Section 3.3, p.147

Page 43: Chapter 3 Determinants

43/62

Ex 5: Which of the following system has a unique solution?

(a)

423

423

12

321

321

32

xxx

xxx

xx

(b)

423

423

12

321

321

32

xxx

xxx

xx

Elementary Linear Algebra: Section 3.3, p.148

Page 44: Chapter 3 Determinants

44/62

Sol:bxA(a)

0A This system does not have a unique solution.

(b) bxB

012 B

This system has a unique solution.

Elementary Linear Algebra: Section 3.3, p.148

Page 45: Chapter 3 Determinants

45/62

3.4 Introduction to Eigenvalues

Eigenvalue problem:

If A is an nn matrix, do there exist n1 nonzero matrices

x such that Ax is a scalar multiple of x? Eigenvalue and eigenvector:

A : an nn matrix

: a scalar

x: a n1 nonzero column matrix

xAx

Eigenvalue

Eigenvector

(The fundamental equation for the eigenvalue problem)

Elementary Linear Algebra: Section 3.4, p.152

Page 46: Chapter 3 Determinants

46/62

Ex 1: (Verifying eigenvalues and eigenvectors)

32

41A

1

11x

11 51

15

5

5

1

1

32

41xAx

Eigenvalue

22 )1(1

21

1

2

1

2

32

41xAx

Eigenvalue

Eigenvector

Eigenvector

1

22x

Elementary Linear Algebra: Section 3.4, p.152

Page 47: Chapter 3 Determinants

47/62

Question:

Given an nn matrix A, how can you find the eigenvalues and

corresponding eigenvectors?

Characteristic equation of AMnn:

0)I()Idet( 011

1 cccAA n

nn

If has nonzero solutions iff . 0)I( xA 0)Idet( A

0)I( xAxAx

Note:

(homogeneous system)

Elementary Linear Algebra: section 3.4, p.153

Page 48: Chapter 3 Determinants

48/62

Ex 2: (Finding eigenvalues and eigenvectors)

32

41A

Sol: Characteristic equation:

0)1)(5(54

32

41I

2

A

Eigenvalues: 1 ,5 21

1 ,5

Elementary Linear Algebra: Section 3.4, p.153

Page 49: Chapter 3 Determinants

49/62

1)2( 2

0 ,1

22

0

0

42

42)I(

2

1

2

12

ttt

t

x

x

x

xxA

5)1( 1

0 ,1

1

0

0

22

44)I(

2

1

2

11

ttt

t

x

x

x

xxA

Elementary Linear Algebra: Section 3.4, p.153

Page 50: Chapter 3 Determinants

50/62

Ex 3: (Finding eigenvalues and eigenvectors)

011

121

221

A

Sol: Characteristic equation:

0)3)(1)(1(

11

121

221

I

A

3 ,1 ,1 :seigenvalue The 321

Elementary Linear Algebra: Section 3.4, p.154

Page 51: Chapter 3 Determinants

51/62

11

000

110

201

~

111

111

220

I1 A

0 ,

1

1

2

:rseigenvecto

2

3

2

1

tt

t

t

t

x

x

x

12

000

110

201

~

111

131

222

I2 A

0 ,

1

1

2

:rseigenvecto

2

3

2

1

tt

t

t

t

x

x

x

Elementary Linear Algebra: Section 3.4, p.155

Page 52: Chapter 3 Determinants

52/62

33

000

110

201

~

311

111

222

I3 A

0 ,

1

1

2

:rseigenvecto

2

3

2

1

tt

t

t

t

x

x

x

Elementary Linear Algebra: Section 3.4, p.156

Page 53: Chapter 3 Determinants

53/62

3.5 Applications of Determinants Matrix of cofactors of A:

nnnn

n

n

ij

CCC

CCC

CCC

C

21

22221

11211

ijji

ij MC )1(

nnnn

n

n

Tij

CCC

CCC

CCC

CAadj

21

22212

12111

)(

Adjoint matrix of A:

Elementary Linear Algebra: Section 3.5, p.158

Page 54: Chapter 3 Determinants

54/62

Thm 3.10: (The inverse of a matrix given by its adjoint)

bcadA )det(

If A is an n × n invertible matrix, then

)()det(

11 AadjA

A

dc

baA

ac

bdAadj )(

)(

det11 Aadj

AA

Ex:

ac

bd

bcad1

Elementary Linear Algebra: Section 3.5, p.159

Page 55: Chapter 3 Determinants

55/62

Ex 1 & Ex 2:

1A

201

120

231

A(a) Find the adjoint of A.

(b) Use the adjoint of A to find

,420

1211

C

Sol:

,121

1012

C 2

01

2013

C

ijji

ij MC )1(

,620

2321 C ,0

21

2122

C 3

01

3123

C

,712

2331

C ,1

10

2132

C 2

20

3133

C

Elementary Linear Algebra: Section 3.5, p.160

Page 56: Chapter 3 Determinants

56/62

cofactor matrix of A

217

306

214

ijC

adjoint matrix of A

232

101

764

)( TijCAadj

232

101

764

31

inverse matrix of A

)(

det11 Aadj

AA 3det A

32

32

31

31

37

34

1

0

2

Check: IAA 1

Elementary Linear Algebra: Section 3.5, p.160

Page 57: Chapter 3 Determinants

57/62

Thm 3.11: (Cramer’s Rule)

11212111 bxaxaxa nn

nnnnnn

nn

bxaxaxa

bxaxaxa

2211

22222121

bxA )()2()1( ,,, n

nnij AAAaA

nx

x

x

2

1

x

nb

b

b

2

1

b

0)det(

21

22221

11211

nnnn

n

n

aaa

aaa

aaa

A

(this system has a unique solution)

Elementary Linear Algebra: Section 3.5, p.163

Page 58: Chapter 3 Determinants

58/62

)()1()1()2()1( ,,,,,,, njjj AAbAAAA

nnjnnjnn

njj

njj

aabaa

aabaa

aabaa

)1()1(1

2)1(22)1(221

1)1(11)1(111

njnjjj CbCbCbA 2211)det(( i.e. )

,)det(

)det(

A

Ax j

j nj ,,2,1

Elementary Linear Algebra: Section 3.5, p.163

Page 59: Chapter 3 Determinants

59/62

Pf:

0)det( A A x = b,

bx 1 A b)()det(

1Aadj

A

nnnnn

n

n

b

b

b

CCC

CCC

CCC

A

2

1

21

22212

12111

)det(

1

nnnnn

nn

nn

CbCbCb

CbCbCb

CbCbCb

A

2211

2222121

1212111

)det(1

Elementary Linear Algebra: Section 3.5, p.163

Page 60: Chapter 3 Determinants

60/62

)det(

)det(

A

Aj

)()det(

12211 njnjjj CbCbCb

Ax

nj ,,2,1

Elementary Linear Algebra: Section 3.5, p.163

Page 61: Chapter 3 Determinants

61/62

Ex 4: Use Cramer’s rule to solve the system of linear equations.

8

442

100

321

)det( 1

A

2443

02

132

zyx

zx

zyx

Sol:

10

443

102

321

)det(

A

,15

423

102

311

)det( 2

A 16

243

002

121

)det( 3

A

54

)det()det( 1

AA

x23

)det()det( 2

AA

y58

)det()det( 3

AA

z

Elementary Linear Algebra: Section 3.5, p.163

Page 62: Chapter 3 Determinants

62/62

Keywords in Section 3.5:

matrix of cofactors : 餘因子矩陣 adjoint matrix : 伴隨矩陣 Cramer’s rule : Cramer 法則