51
Chapter 4 Partial differentiation ( 편편편 ) ical methods in the physical sciences 3rd edition Mary L. Boas Lecture 12 Introduction of partial differentiation

Chapter 4 Partial differentiation ( 편미분 )

  • Upload
    donat

  • View
    195

  • Download
    49

Embed Size (px)

DESCRIPTION

Mathematical methods in the physical sciences 3rd edition Mary L. Boas. Chapter 4 Partial differentiation ( 편미분 ). Lecture 12 Introduction of partial differentiation. 1. Introduction. - Differentiation. ex. - Time rates such as velocity, acceleration, and rate of cooling of a hot body. - PowerPoint PPT Presentation

Citation preview

Page 1: Chapter 4 Partial differentiation ( 편미분 )

Chapter 4 Partial differentiation ( 편미분 )

Mathematical methods in the physical sciences 3rd edition Mary L. Boas

Lecture 12 Introduction of partial differentiation

Page 2: Chapter 4 Partial differentiation ( 편미분 )

1. Introduction

xyxfy

dx

dyyxfy

respect to with of rateor curve theof Slope :

ex.

- Time rates such as velocity, acceleration, and rate of cooling of a hot body.

- Rate of change of volume of a gas with applied pressure (P, V)

- Rate of decrease of fuel in your car tank with distance travelled (l, Q)

- Differential equation

- Finding Max. or Min.

- Differentiation

Page 3: Chapter 4 Partial differentiation ( 편미분 )

- Partial differentiation

yxfz ,

When we want to find the slope of z with respect to y, keeping x constant, we can use the partial differentiation.

)constant with respect towith or (..

yxx

z

y

z

constyconstx

x

y

z

.constxy

z

.constyx

z

Page 4: Chapter 4 Partial differentiation ( 편미분 )

1

2

322

2

2

,, s,expressionOther cf.

etc. , , ,

ffz

yx

z

yx

z

xyx

z

y

z

xx

z

x

z

x

xx

- High order partial derivatives

Example xyeyxyxfz 3,

,3 21

xyxx yeyxfzf

x

z

x

f

,32

xyyy xexfzf

y

z

y

f

,3 221

22xyxy

yxyx xyeexfzfyx

z

yx

f

Page 5: Chapter 4 Partial differentiation ( 편미분 )

(Caution)

rr

zyryyxz

rr

zrxyxxz

rr

zrrz

y

x

2,22

2,22

,sincos2,sincos

22222

22222

222222

?,,,

sin,cos

22

yx r

z

r

z

r

zyxz

ryrx

The symbol is usually read “the partial of z with respect to r, with x

held constant”. However, the important point to understand is that the notation

means that z has been written as a function of the variables r and x only, and then

differentiated with respect to r.

xrz /

Page 6: Chapter 4 Partial differentiation ( 편미분 )

2. Power series in two variables ( 두 변에 대한 멱급수 )

Example 1.

.!2!3!2

1!3

cossin,2323

xyxx

yxxyxyxf

Example 2

3322

321ln

322

322

32

yxyyx

xyxy

xyx

yxyxyxyx

Page 7: Chapter 4 Partial differentiation ( 편미분 )

- General expression

303

212

221

330

202

112

20011000

)())((

)()()()(

))(()()()(),(

byabyaxa

byaxaaxabya

byaxaaxabyaaxaayxf

First, express the function with the power series and then determine the coefficients.

)()(2 112010 byaaxaaf x

)(2)( 021101 byaaxaaf y

)(and/or )( containing terms2 20 byaxaf xx

)(and/or )( containing terms11 byaxaf xy

etc. , ),( , 2),(

, ),( , ),( , ),(

1120

011000

abafabaf

abafabafabaf

xyxx

yx

Finding partial derivatives,

Page 8: Chapter 4 Partial differentiation ( 편미분 )

0

),(!

1),(

n

n

bafy

kx

hn

yxf

]))(,())()(,(2))(,([!2

1

))(,())(,(),(),(

22 bybafbyaxbafaxbaf

bybafaxbafbafyxf

yyxyxx

yx

]),(),(2),([!2

1 22 kbafhkbafhbaf yyxyxx

),(!2

12

bafy

kx

h

]),( 3),([!3

1),(

!3

1 23

3

bafkhbafhbafy

kx

h xxyxxx

Using a simpler form, x – a = h and y – b = k.

second-order terms,

similarly, third-order terms

Finally,

Then,

Page 9: Chapter 4 Partial differentiation ( 편미분 )

3. Total differentials ( 전 미분 )

dxydyxfdx

d

dx

dyy )('

x

y

dx

dyx

0lim

- Single variables

- Two variables and more

dyy

zdx

x

zdzyxfz

,

dzz

fdy

y

fdx

x

fduzyxfu ,,,

Page 10: Chapter 4 Partial differentiation ( 편미분 )

4. Approximations using differentials ( 미소량을 이용한 어림 )

Example 1. 25.0

1

1025.0

120

.10425.0

1

1025.0

1

25.02

125.0

2

1

1025.025.025.01025.0

1

20

20

2/32/3

2020

fxxf

fxffff

xxf

Page 11: Chapter 4 Partial differentiation ( 편미분 )

- Example 2. 322

2

1

11

nnn

3

32

2

211

1

nxf

nnfxnfnfnff

xxf

Page 12: Chapter 4 Partial differentiation ( 편미분 )

- Example 3. reduced mass1

21

11 mm

If m_1 is increased by 1%, what fractional change in m_2 leaves unchanged?

./01.0or01.0

unchanged 0

111

01.0

122

221

121

122

2

22

212

1

22

212

12

21

11

mmm

dm

m

m

m

dm

m

dm

dmmdmm

dmmdmmdmm

mdm

.03.03,01.0 ex. 22212221 mmmmmmmm

dxyxycf .

Page 13: Chapter 4 Partial differentiation ( 편미분 )

Example 4.2r

klR

Relative error rate: 5 % in the length measurement

and 10 % for the radius measurement

1.0/,05.0/ rdrldl

.25.01.0205.02largest 2

ln2lnlnln

r

dr

l

dl

R

dR

r

dr

l

dl

R

dR

rlkR

dxyxycf .

Page 14: Chapter 4 Partial differentiation ( 편미분 )

Chapter 4 Partial differentiation

Mathematical methods in the physical sciences 3rd edition Mary L. Boas

Lecture 13 Chain rule

Page 15: Chapter 4 Partial differentiation ( 편미분 )

5. Chain rule or differentiating a function of a function ( 연쇄법칙과 함수의 함수 미분하기 )

Example 1. ?2sinln dx

dyxy

.2cot222cos2sin

12sin

2sin

1xx

dx

dx

xx

dx

d

xdx

dy

dx

dv

dv

du

du

dy

dx

dy

xvvuuy

.2&sinwhere,ln

‘chain rule’

Page 16: Chapter 4 Partial differentiation ( 편미분 )

Example 2. ?sin2 2 dt

dzttz

y

zx

x

zy

dt

dy

y

z

dt

dx

x

z

dt

dz

dt

dyx

dt

dxy

dt

dz

tytxxyz

,

,sin&2where, 2

dyy

zdx

x

zdz

ttttdt

dzcos2sin4 2

Page 17: Chapter 4 Partial differentiation ( 편미분 )

Example 3. ?,sin,tanwhere, 1

dt

dztxtyxz y

.1

1lncos

21

txxtyx

dt

dy

y

z

dt

dx

x

z

dt

dz yy

Page 18: Chapter 4 Partial differentiation ( 편미분 )

6. Implicit differentiation ( 음함수 미분 )

Example 1. ?, 2

2

dt

xd

dt

dxtex x

xx

edt

dx

dt

dxe

dt

dx

1

11

We realized that x is a function and just differentiate each term of the equation with respect to t (implicit differentiation).

1. xx edt

dxdtdxedxcf

.11

01

3

2

2

2

2

2

2

2

2again atingdifferenti

x

x

xdtdxx

xxx

e

e

e

e

dt

xd

dt

dxe

dt

xde

dt

xd

dt

dxe

dt

dx

This problem is even easier if we want only the numerical values of the derivatives at a point.

.02

111)2,

2

111)1

2

2

2

2

dt

xd

dt

xdnd

dt

dxor

dt

dx

dt

dxst

Page 19: Chapter 4 Partial differentiation ( 편미분 )

7. More chain rule ( 더 많은 연쇄법칙 )

Example 1. ?,,,sin,

t

z

s

ztsytsxxyz

.,cos, dtdsdydtdstsdxxdyydxdz

.cos.),(0For

cos.),(0For

])cos([])cos([

)())(cos(

xtsys

zconsttdt

xtsyt

zconstsds

dtxtsydsxtsy

dtdsxdtdstsydz

Page 20: Chapter 4 Partial differentiation ( 편미분 )

Example 2.

?,,2,,,ln2 222

t

u

s

utztsytsxzyxyxu

.2

ln2422ln2222

0 cf.

.2

ln24,ln24

.2

ln24ln24

22ln2222

ln222

dtz

yztytdt

z

ytdtzxtdtyx

dsdu

z

yztyt

t

uzyx

s

u

dtz

yztytdszyx

dtz

ytdtdszxtdtdsyx

zdydzz

yydxxdyxdxdu

s

- Using the differentials,

Page 21: Chapter 4 Partial differentiation ( 편미분 )

- Using the derivatives,

.2

ln2422ln2222

2ln2

ln2ln2

2

2222

z

yztyt

z

ytzxtyx

tt

zyxyxz

tst

zyxyxy

tst

zyxyxx

t

z

z

u

t

y

y

u

t

x

x

u

t

u

cf. Using the matrix form,

t

z

s

z

t

y

s

y

t

x

s

x

z

u

y

u

x

u

t

u

s

u

Page 22: Chapter 4 Partial differentiation ( 편미분 )

Example 3. ?/,sin,, 222 dtdzyetxtyxyxz y

dttx

t

dy

dx

eyt

yx

tdtxdyeytdx

tdtydyxdx

dyeyetdtxtdx

tdtydyxdx

dydxdz

yy

yy

cos1sincos1sin

,

cossin

,222

‘A computer may save us some time with the algebra.’

.for similarly ,

sin1

cos1

1sin

1cosdydt

tyeyx

txyeyt

eyt

yxeytdtx

ytdt

dx y

y

y

y

Page 23: Chapter 4 Partial differentiation ( 편미분 )

Example 4. ?/,/,,5, 2223322 tzsztsyxstyxxyxz

t

z

s

zdtdsdz

dyyxxy

dssyytdttyys

yx

yx

ytdtsds

ytdssdt

dx

tdtsdsydydxx

tdssdtdyyxdx

ydxxdyxdxdz

,, way,In this

.for similarly ,94

6262

23

32

222

3

.2223

32

2

22

22

2

2

2

2

2

Page 24: Chapter 4 Partial differentiation ( 편미분 )

Let’s skip Example 5.

Example 6. Rectangular vs. polar coordinates. (reciprocal)

sin

cos

ry

rx

x

y

yxr

1

22

tan

222

21

)/(1

/tan i)

r

y

xy

xy

x

y

xx

yrrx

sincos ii)

y

r

ry

yyyy

x

y

2

2222

/sin)csc(cot

i) and ii)-1 are different!!

constant y

constant r

Page 25: Chapter 4 Partial differentiation ( 편미분 )

This is a general rule: partial derivatives are not usually

reciprocals; they are reciprocals if the other independent variables (besides u or v)

are the same in both cases.

uvvu /&/

Page 26: Chapter 4 Partial differentiation ( 편미분 )

26/15

Chapter 4 Partial differentiation

Mathematical methods in the physical sciences 3rd edition Mary L. Boas

Lecture 14 Max. & Min.

Page 27: Chapter 4 Partial differentiation ( 편미분 )

27/15

8. Application of partial differentiation to maximum and minimum problems ( 최대 , 최소값 문제에서 편미분의 응용 )

- dy/dx=0 is a sufficient condition for max. or min. of f(x).

min. (concave) max. (convex)inflection

(d2y/dx2 > 0) (d2y/dx2 < 0)(d2y/dx2 = 0)

cf. saddle point

- To minimize z = f(x,y),

.0&0

y

z

x

z

Page 28: Chapter 4 Partial differentiation ( 편미분 )

28/15

t.independen are ),,( of variablesonly two

fixedtantan22

1 2

lw

lwwlwV

Example. A pup tent of given volume, V, with ends but no floor, is to be made using the least possible material. find the proportions.

w2 l

To minimize A,

.0cotcsc2

sec2,0csc2

tan4 222

w

Vw

A

w

Vw

w

A

tan.csc

2tan2

tancos

2tan2

cos

2tan2 area Material

22

22

2

w

Vl

w

Vw

w

Vww

lwwA

.2/2,45,2/1cos0cos,0sin

.sin

coscos

sin2

cos

sec

cotcsc

tan2

csc

22

2

2

223

lwlwV

orVV

w

Page 29: Chapter 4 Partial differentiation ( 편미분 )

29/15

9. Maximum and minimum problems with constants; Lagrange multipliers ( 제한조건이 있는 최대 최소값 문제 ; Lagrange 곱수 )

Example 1. shortest distance

. use sLet'

?ofmin,1

222

222

yxfd

yxdxy

- Methods: (a) elimination,

(b) implicit differentiation,

(c) Lagrange multipliers

(a) Elimination ( 제거방법 )

).2/1min.(2/1at4

max.) relative(0at2212

2/1,0024

1211

22

2

3

2442222222

yx

xx

dx

fd

xxxxdx

df

xxxxxxxyxf

Page 30: Chapter 4 Partial differentiation ( 편미분 )

30/15

(b) Implicit differentiation ( 음함수 미분 )

xdxdyxyxyxdx

dfdxxyxdf

dx

dyyx

dx

dfydyxdxdf

yxf

2142or,42

.22or,22

2

22

2/1,00142

on)minimizatifor condition (.042, minimize To

2

xxxxx

xyxdx

dff

. , of values theknoweasily We.222

2

2

2

22

2

2

dx

yd

dx

dy

dx

ydy

dx

dy

dx

fd

Page 31: Chapter 4 Partial differentiation ( 편미분 )

31/15

Example 2. Shortest distance from the origin to the plane .322 zyx

.13

2

3

2

3

1

3

1

3

2

0222232,0222232

.0 on,minimizatiFor

neliminatio223

222

min

222222

f

xzy

zzyz

fyzy

y

f

z

f

y

f

zyzyzyxf

cf. Equation of plane, ax+by+cz=d

If (a,b,c) is a unit vector, abs(d) is a distance from the origin.

Page 32: Chapter 4 Partial differentiation ( 편미분 )

32/15

(c) Lagrange Multipliers

yxyxfyxF

yy

f

xx

f

dyyy

fdx

xx

f

dyy

dxx

d

dyy

fdx

x

fdf

constyxyxf

,,, of min.or max.for condition

0,0

0

constraint

min.or max.for condition

.),(),,(

‘two functions’

‘single function’

cf. valid for more than variables, ex. (x,y,z)

Page 33: Chapter 4 Partial differentiation ( 편미분 )

33/15

.02

.1,0.12220

,

1,,,222

222

yy

F

xxxxx

F

xyyxfyxF

xyyxyxyxf

- Using the Lagrange multipliers,

.2

1,

2

11

2,10

xy

yx

21 xy

Page 34: Chapter 4 Partial differentiation ( 편미분 )

34/15

Example 3. Find the volume of the largest rectangular parallelepiped (that is box)

with edges parallel to the axes, inscribed in the ellipsoid, 12

2

2

2

2

2

c

z

b

y

a

x

.02

8,02

8,02

8

8,,

1,,

222

2

2

2

2

2

2

2

2

2

2

2

2

c

zxy

z

F

b

yxz

y

F

a

xyz

x

F

c

z

b

y

a

xxyzfzyxF

c

z

b

y

a

xzyx

.120283283 2

2

2

2

2

2

xyzxyzc

x

b

x

a

xxyz

Multiplying each equation with the other variable, and then, adding all three,

33

88 volumeMaximum

3

1,

3

1Similarly,

.3

10

2128

28

2222

2222

abcxyzczby

axa

xxyzyz

a

xyz

x

F

Page 35: Chapter 4 Partial differentiation ( 편미분 )

35/15

- More constraints

0

,0

,0

.,,,.,,,,),,,,(

22222

11111

21

dww

dzz

dyy

dxx

d

dww

dzz

dyy

dxx

d

dww

fdz

x

fdy

y

fdx

x

fdf

constwzyxconstwzyxwzyxf

Page 36: Chapter 4 Partial differentiation ( 편미분 )

36/15

0

22

11

22

11

22

11

22

11

2211

2211

dwwww

fdz

zzz

f

dyyyy

fdx

xxx

f

dddfdF

fF

0,0 22

11

22

11

www

f

zzz

f

0 22

11

xxx

f 0 22

11

yyy

f

To find the maximum or minimum of f subject to the conditions Φ1=const.

and Φ2=const., define F=f + λ1 Φ1+ λ2 Φ2 and set each of the partial derivatives

of F equal to zero. Solve these equation and the Φ equation for the variables and

the λ’s.

Page 37: Chapter 4 Partial differentiation ( 편미분 )

37/15

Example 4. Minimized distance from the origin to the intersection of 0247,6 zxxy

.2/510/7,2/5,5/12

.0242,02,072

247

1221

21222

2211

dzyx

zz

Fxy

y

Fyx

x

F

xyzxzyx

fF

Page 38: Chapter 4 Partial differentiation ( 편미분 )

38/15

10. Endpoint or boundary point problems ( 끝점 혹은 경계점 문제 )

- Besides the extreme points, we should check the boundary points (or lines).

case I case II

case III case IV

Page 39: Chapter 4 Partial differentiation ( 편미분 )

39/15

Example 1. A piece of wire 40 cm long is to be used to form the perimeters of a square and a circle in such a way as to make the total area (of a square and circle) a maximum.

.56,8.2,54

1

.0104

122

1

2

11022

2

110

22

Arr

rrrdr

dA

rrA

.:04

122

2

Mindr

Ad

**circleonly .127/400,/20,402At

squareonly .100,0At

Arr

Ar

Considering the values at the boundary points,

r

(40-2r)/4

Page 40: Chapter 4 Partial differentiation ( 편미분 )

40/15

Example 2. The temperature in a rectangular plate bounded by the lines,5,3,0,0 yxyx10022 yxxyT

.100,002,02 22

Tyxxxyy

Txyy

x

T

(0,0)

(3,5)

x=3

y=5

.4

1131,

2

501025

100525

5)2

.4

193,

2

3096

10093

3)1

2

2

Txxdx

dT

xxT

y

Tyydy

dT

yyT

x

and check corners. At (3,5), T= 130.

- Differentiating,

- Boundary check

max.

min.

Page 41: Chapter 4 Partial differentiation ( 편미분 )

41/15

H. W. (Due 5/21)

Chapter 4

4-15, 6-4, 9-11, 10-9

Page 42: Chapter 4 Partial differentiation ( 편미분 )

Chapter 4 Partial differentiation

Mathematical methods in the physical sciences 3rd edition Mary L. Boas

Lecture 15 Change of variables

Page 43: Chapter 4 Partial differentiation ( 편미분 )

11. Change of variables ( 변수 변환 )

Sometimes, we can make the differential equation simpler by changing variables.

Example 1. Make the change of variables.

01

, , 2

2

22

2

t

F

vx

Fvtxsvtxr

Fsrs

F

r

F

x

s

s

F

x

r

r

F

x

F)(

Fsr

vs

Fv

r

Fv

t

s

s

F

t

r

r

F

t

F)(

Here, we can use the operation notation,

srx

)(sr

vt

Page 44: Chapter 4 Partial differentiation ( 편미분 )

2

22

2

2

2

2

2))(()(s

F

sr

F

r

F

s

F

r

F

srx

F

xx

F

)2()()()(2

22

2

22

2

2

s

F

sr

F

r

Fv

s

F

r

Fv

srv

t

F

tt

F

041 2

2

2

22

2

sr

F

t

F

vx

F

01

2

2

22

2

t

F

vx

Fcf. compare with the original eq,

Then,

rgsfFs

F

rsr

F

0)(2

)()()()( vtxgvtxfsgrfF

Page 45: Chapter 4 Partial differentiation ( 편미분 )

cf.

rgsfF

sconstsfF

ss

F

s

F

rsr

F

.)without function a becan (.

.only ith function w some0)(2

Page 46: Chapter 4 Partial differentiation ( 편미분 )

Example 2. Laplace equation

02

2

2

2

y

F

x

F0

1)(

12

2

2

F

rr

Fr

rr

sin

cos

ry

rxfor

cos

sinsin

cossin

rz

ry

rx

for

)sin

1sin

sin

1(

11 .

2

2

2222

2

2

2

2

2

2

2

FFr

rFrrz

F

y

F

x

Fcf

cylindrical

spherical

cf. Schrodinger eq.: Um

HEH 2

2ˆ ,ˆ

Page 47: Chapter 4 Partial differentiation ( 편미분 )

y

Fr

x

Fr

y

y

Fx

x

FF

y

F

x

F

r

y

y

F

r

x

x

F

r

F

cossin

sincos

Fr

F

rry

Fx

F

Fr

F

y

Fx

F

rr

1

cossin

sincos

cossin

sincos

(i)

Page 48: Chapter 4 Partial differentiation ( 편미분 )

(ii)

F

rr

F

y

F

y

r

r

F

y

F

F

rr

F

x

F

x

r

r

F

x

F

cossin

sincos

For convenience,

F

rr

F

y

FH

F

rr

F

x

FG

cossin

sincos

H

rr

H

x

H

y

F

G

rr

G

x

G

x

F

cossin

sincos

2

2

2

2

Page 49: Chapter 4 Partial differentiation ( 편미분 )

GH

rr

H

r

G

y

F

x

Fsincos

1sincos

2

2

2

2

F

rr

F

rr

F

r

H

F

rr

F

rr

F

r

G

2

2

2

2

2

2

2

2

coscossin

sinsincos

2

2

2

222 )sin(cossincos

r

F

r

F

r

H

r

G

1) 2)

1)

Page 50: Chapter 4 Partial differentiation ( 편미분 )

F

r

F

rr

F

r

FH

F

r

F

rr

F

r

FG

sincoscossin

cossinsincos

2

22

2

22

)1

(1

sincos1

2

2

F

rr

F

r

GH

r

2

2

22

2

2

2 1)(

1

F

rr

Fr

rry

F

x

FFinally,

2)

GH

rr

H

r

G

y

F

x

Fsincos

1sincos

2

2

2

2

1) 2)

Page 51: Chapter 4 Partial differentiation ( 편미분 )

12. Differentiation of integrals; Leibniz’ rule ( 적분의 미분 ; Leibniz 규칙 )

.

.

dx

duuf

dx

dvvfdttf

dx

d

aFxFtFdttfdx

xdFxf

xv

xu

x

a

x

a

‘Leibniz’ rule’

.,,,

v

u

xv

xudt

x

f

dx

duuxf

dx

dvvxfdttxf

dx

d