29
Winter 2015 Chem 350: Statistical Mechanics and Chemical Kinetics Chapter 5:Partition Functions and Properties of Real Molecules 41 Chapter 5: Partition Function and Properties for Real Molecules ............................................................. 41 Thermodynamics of a system of independent particles ........................................................................ 41 The Partition function ............................................................................................................................ 42 Origin of factor 1 ! N for identical particles ............................................................................................ 42 Reworking the Helmholtz free energy ................................................................................................... 43 Translational Partition Function: Particle in the box wave function (atoms) ........................................ 44 Relating to thermodynamic properties (translational motion, particle in the box) .............................. 46 Statistical Mechanics of diatomic molecules ......................................................................................... 48 Vibrational Partition function in harmonic approximation ................................................................... 48 Rotational Partition Function for a diatomic ......................................................................................... 52 The origin of the symmetry factor in rotational partition function ....................................................... 55 Polyatomic Systems ............................................................................................................................... 59 Chemical Reactions and Equilibrium (recall from thermodynamics)..................................................... 63 Statistical Mechanics of Gibbs free energy ............................................................................................ 64 Connect to thermodynamics of chemical equilibrium .......................................................................... 65 Chapter 5: Partition Function and Properties for Real Molecules Thermodynamics of a system of independent particles Neglect internal degrees of, in particular rotations, vibrations. Easiest atoms, e.g. rare gases Will look at molecules in the gas phase, which are dilute and at high temperature (ideal gases) Quantum Hamiltonian () ˆ i H hi = no interatomic interactions Solve () () () 1 1 1 a a a h ϕ εϕ = () () ( ) ( ) ˆ 1 2 ..... a a z H N ϕ ϕ ϕ () () ( ) () ( ) () () () ( ) ( ) 1 1 2 .... 1 2 2 .... a a z a b z h N h N ϕ ϕ ϕ ϕ ϕ ϕ = + () () ( ) ( ) ( ) .... 1 1 .... a b z hN N ϕ ϕ ϕ + + ( ) () () ( ) ... 1 2 ... a b z a b z N ε ε ε ϕ ϕ ϕ = + +

Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

  • Upload
    dohanh

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

41  

Chapter  5:  Partition  Function  and  Properties  for  Real  Molecules  .............................................................  41  Thermodynamics  of  a  system  of  independent  particles  ........................................................................  41  The  Partition  function  ............................................................................................................................  42  

Origin  of  factor  1!N  for  identical  particles  ............................................................................................  42  

Reworking  the  Helmholtz  free  energy  ...................................................................................................  43  Translational  Partition  Function:  Particle  in  the  box  wave  function  (atoms)  ........................................  44  Relating  to  thermodynamic  properties  (translational  motion,  particle  in  the  box)  ..............................  46  Statistical  Mechanics  of  diatomic  molecules  .........................................................................................  48  Vibrational  Partition  function  in  harmonic  approximation  ...................................................................  48  Rotational  Partition  Function  for  a  diatomic  .........................................................................................  52  The  origin  of  the  symmetry  factor  in  rotational  partition  function  .......................................................  55  Polyatomic  Systems  ...............................................................................................................................  59  Chemical  Reactions  and  Equilibrium  (recall  from  thermodynamics).  ....................................................  63  Statistical  Mechanics  of  Gibbs  free  energy  ............................................................................................  64  Connect  to  thermodynamics  of  chemical  equilibrium  ..........................................................................  65  

   Chapter  5:  Partition  Function  and  Properties  for  Real  Molecules    Thermodynamics  of  a  system  of  independent  particles       -­‐  Neglect  internal  degrees  of,  in  particular  rotations,  vibrations.  Easiest  atoms,  e.g.  rare  gases     -­‐  Will  look  at  molecules  in  the  gas  phase,  which  are  dilute  and  at  high  temperature  (ideal  gases)      

  Quantum  Hamiltonian   ( )ˆi

H h i=∑    no  inter-­‐atomic  interactions  

         

       →  Solve   ( ) ( ) ( )1 1 1a a ah ϕ ε ϕ=  

  →   ( ) ( ) ( )( )ˆ 1 2 .....a a zH Nϕ ϕ ϕ  

           ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )1 1 2 .... 1 2 2 ....a a z a b zh N h Nϕ ϕ ϕ ϕ ϕ ϕ= +  

            ( ) ( ) ( ) ( )( ).... 1 1 ....a b zh N Nϕ ϕ ϕ+ +  

    ( ) ( ) ( ) ( )... 1 2 ...a b z a b z Nε ε ε ϕ ϕ ϕ= + +  

Page 2: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

42  

      -­‐  product  of  single-­‐particle  wavefunctions  is  eigenfunction         -­‐  sum  of  one-­‐particle  eigenvalues  →  total  energies            The  Partition  function  

      /

allE kT

all statesQ e−= ∑  

      ( ). ... /

, , , ....

a b c d kT

a b c dQ e ε ε ε ε− + + += ∑  

              / / / ..a b ckT kT kT

a b ce e eε ε ε− − −⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠∑ ∑ ∑  

....a b cQ q q q= ⋅ ⋅      Since  every  atom/molecule  is  the  same   ....a b Nq q q q= =  

        ( )NQ q=    

 Where   N  is  the  number  of  particles, q  is  the  partition  function  for  a  single  component  (molecule).  The  overall  partition  function  Q of  the  system  is  just  the  product  of  the  individual  partition  functions.    General  feature:  If  Hamiltonian  is  a  sum  of  terms  without  cross  terms  (interactions)     →  partition  function  will  be  a  product  of  terms  corresponding  to  terms  in  H     →  form  of  the  total  wavefunction  is  also  a  product  function        -­‐  This  is  a  big  simplification.  However  this  is  only  partially  correct  as  it  only  applies  if  the  particles  were  distinguishable  from  one  another.  In  many  cases  the  particles  in  multi  molecule  systems  are  indistinguishable.  This  is  a  very  important  feature  of  quantum  mechanics.  

   

Origin  of  factor  1!N  for  identical  particles  

      All  particles  in  nature  should  be  viewed  as  either  bosons  or  fermions.  

→  Quantum  mechanical  wavefunctions  are  either  symmetric  or  antisymmetric  under  interchange  of  particle  coordinates  

      Fermions  →  antisymmetric,    Bosons  →  symmetric       If       ( ) ( ) ( )( )1 2 3a b cAψ ϕ ϕ ϕ=   a b c≠ ≠  

    In  our  sum  we  counted  all  permutations  of   , ,a b c  as  distinct  states   3!→  contributions        

But  there  is  only  1  fully  antisymmetryic  wavefunction   abc  (Slater  determinant)  (fermions,  e.g.  electrons)  and  also  only  1  symmetric  function  (bosons,  e.g.  certain  atoms).         →  For  3  particles  divide  by   3!  

Page 3: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

43  

                   For   N  particles  divide  by   !N    If  the  number  of  available  states  >>  the  number  of  particles  then  it  is  a  very  good  approximation  to  simply  divide  by   !N  

!

NqQN

=    

 This  was  done  even  for  classical  partition  functions,  but  the  reasons  were  not  clear  (although  [erroneous]  arguments  were  made)    This  statistics  is  known  as  Boltzmann  Statistics.      The  procedure  is  not  rigourously  correct  for  either  bosons  or  fermions.  It  does  the  counting  wrong  if  single-­‐particle  states  are  identical.    eg.   a bϕ ϕ=       a b= ,  same  product  wavefunction     →   For  fermions:  wavefunction  =  0                       For  bosons:  different  factor  to  count  symmetric  wavefunctions  (not  2  but  1)  

In  general  many  more  states  than  #  of  particles  (  >>> 2310 ).  In  that  case  simple  Boltzmann  counting  is  almost  exact.  

    However,  Boltzmann  approximation  is  not  always  valid       Eg.   -­‐  Electrons  in  metals         -­‐  photons  in  a  light  source         -­‐  very  light  particles     (more  elaborate  discussion  later  on)       In  general  if  we  have  species   ,A B  etc.  the  Boltzmann  partition  function  is  given  by    

     ( ) ( )

! !

A BN NA BAB

A B

q qQ

N N=    

 Reworking  the  Helmholtz  free  energy        

Using  Stirling’s  approximation  for   !N         A = −kBT lnQ         ( )ln ! ln ln 1N N N N N N= − = −  

  A = −kBT ln qN

N !⎛⎝⎜

⎞⎠⎟             ( )ln ln ln NN N e N

e⎛ ⎞= − = ⎜ ⎟⎝ ⎠

 

        = −kBT lnqN − ln N !( )             ln

NNe

⎛ ⎞= ⎜ ⎟⎝ ⎠  

           

= −kBT lnqN − ln N

e⎛⎝⎜

⎞⎠⎟

N⎛

⎝⎜

⎠⎟     !

NNNe

⎛ ⎞≈ ⎜ ⎟⎝ ⎠    (another  Stirling  approximation)  

       

= −kBT ln qe

N⎛⎝⎜

⎞⎠⎟

N⎛

⎝⎜

⎠⎟  

Page 4: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

44  

= −NkBT ln qe

N⎛⎝⎜

⎞⎠⎟        

NkBT = nN AkBT = nRT   8.314 /AN k R J molK= =  

ln qeA nRTN

⎛ ⎞= − ⎜ ⎟⎝ ⎠  

  The  Helmholtz  free  energy A  seems  to  contain  terms  that  do  not  scale  linearly  with   N ,  i.e.  non  interacting  particles  seem  to  interact!  This  is  a  consequence  of  (anti)  –  symmetry  requirement  of  many-­‐particle  wavefunction.  Later  we  will  see   ~q V ,  and  q/N  is  independent  of  the  size  of  the  system.  

      A = −NkBT ln qe

N⎛⎝⎜

⎞⎠⎟     ~        

−NkBT ln V

N⎛⎝⎜

⎞⎠⎟  

    A  will  be  proportional  to   N ,  in  the  end,  as  should  be  the  case.         Simple  system:  Non-­‐interacting  atoms            

n e ti α β γε ε ε ε= + +  

n :  nuclear  wave  function  (only  nuclear  spin  is  important.  Degeneracy  factor)  e :  electronic  (important  for  open  shell  atoms,  e.g.  O  or  C  atoms)  t :  translational  (kinetic  energy.  Most  important)  

 Translational  Partition  Function:  Particle  in  the  box  wave  function  (atoms)       Look  at  the  quantum  problem  1-­‐D  system,  then  extrapolate  to  3D            

    −

2

2md 2

dxψ = Eψ    

    Eigenfunctions       sin n xLπψ =    ,    

22

sind n n xdx L Lψ π π⎛ ⎞= −⎜ ⎟⎝ ⎠

 

2

2mnπL

⎛⎝⎜

⎞⎠⎟

2

sin nπ xL

= En sin nπ xL

 

En =

2π 2

2mL2

⎛⎝⎜

⎞⎠⎟

n22

228

h nmL

=     = h

2π  

      qT ,1D = e

− h2

8mL2kBTn2

n∑                   1,2,3...n =  

  Define      2

28hmL kT

Δ =         qt ,1D = e−Δ2n2

n∑  

   Since  the  energy  spacings  are  small  relative  to   kBT  it  is  possible  to  use  an  integral  in  the  place  of  summation            

Page 5: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

45  

         

               

qt ,1D = e−Δ2n2

n∑ ≈ e−Δ2x2

dx0

∫ = 1Δ

12

π1      (look  up  the  integral  in  chapter  3)  

qt ,1D = 1

2Δπ = 1

Δπ4=

8mkBTL2

h2

π4= LΛ

 

Λ = Δ 4

π= h2

2mπkBT    where  Λ  is  called  the  thermal  deBroglie  wavelength  

,1x

t DLq =Λ  

    Moving  into  3D         ,3 ,1 ,1 ,1t D x D y D z Dq q q q= ⋅ ⋅    

    ,3 3 3x y z

t D

L L L Vq⋅ ⋅

= =Λ Λ

       the  molecular  partition  function  for  translational  motion  

 Approximation  is  best  if  particle  is  heavy,  box  is  large  →  classical  limit  (many  energy  levels,  high  density  of  states,  sum  is  integral,  also  we  neglected  interactions.)    

 

   

1Λ3 =

2πmkBTh2

⎝⎜

⎠⎟

3

=2πmkB

h2

⎛⎝⎜

⎞⎠⎟

3/2

T 3/2 =αT 3/2      

define   α =

2πmkB

h2

⎛⎝⎜

⎞⎠⎟

3/2

 (constant,  m  is  mass  of  particles)  

      3/2,3 3t D

Vq VTα= =Λ  

 

    Other  contributions  to  partition  function  (less  important  usually)    o

n nq g=              (nuclear  degeneracy,  think  NMR  nuclear  spins)  

qe = e−Ei /kBT

i∑  (sum  over  states)        (electronic,  only  for  open-­‐shell    

                           atoms/molecules,  e.g.  O2  molecule)  

            /E kTg e αα

α

−=∑    (sum  over  energy  levels)  

    /iE Eα :  molecular  energies,  do  not  depend  on   ,N V !    

Page 6: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

46  

 Relating  to  thermodynamic  properties  (translational  motion,  particle  in  the  box)  

    ln qeA nRTN

⎛ ⎞= − ⎜ ⎟⎝ ⎠     3/2

,3T Dq VTα=  

   

3/2

ln VT eA nRTN

α⎛ ⎞= − ⎜ ⎟

⎝ ⎠  

          3ln ln ln2

VnRT e TN

α⎛ ⎞= − + +⎜ ⎟⎝ ⎠    

   

1A NP nRTV V N∂⎛ ⎞ ⎛ ⎞= − = ⋅⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠  

                                                         PV nRT=   (ideal  gas  law!)

     

3/2

,

lnN V

A d VT eS nRTT dT N

α⎡ ⎤∂⎛ ⎞= − = ⎢ ⎥⎜ ⎟∂⎝ ⎠ ⎣ ⎦    

3ln ln ln ln2

d nRT e V T NdT

α⎡ ⎤⎛ ⎞= + + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦      

3/2 3ln2

VT e nRTnRN T

α= +  

3/23 ln2

VT eS nR nRN

α= +  

 

2 AU TT T

⎛ ⎞∂ ⎛ ⎞= − ⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠    

3/22 ln VTT nRT N

α⎛ ⎞⎛ ⎞∂= − ⎜ ⎟⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠    

232nRTT

=  

32

U nRT=  32V

UC nRT

∂⎛ ⎞= =⎜ ⎟∂⎝ ⎠  

 H U PV= +  

3 52 2

H nRT nRT nRT= + =  

52P

HC nRT

∂⎛ ⎞= =⎜ ⎟∂⎝ ⎠  

   

         

Page 7: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

47  

      A = −nRT ln qe

N⎛⎝⎜

⎞⎠⎟= −NkBT ln qe

N⎛⎝⎜

⎞⎠⎟  

      µ = ∂A

∂N⎛⎝⎜

⎞⎠⎟ T ,V

= ∂∂N

−NkBT ln αVT 3/2eN

⎛⎝⎜

⎞⎠⎟

⎝⎜⎞

⎠⎟    

            = −kBT lnαVT 3/2e

N+ −NkBT ⋅ − 1

N⎛⎝⎜

⎞⎠⎟

⎛⎝⎜

⎞⎠⎟     = − kBT lne − kBT αVT 3/2

N+ kBT  

      µ = −kBT lnαVT 3/2

N  

      µ N , P,T( ) = −kBT lnαT 3/2NkT

NP= −kBT lnαT 3/2kT

P= −kBT lnαkT 5/2

P  

 

      µ = N Aµ = −N AkBT lnαT 5/2k

P= −RT ln

αT 5/2kB

P  

     

      G = nµ = −nRT ln

αT 5/2kB

P0

⋅P0

P⎛

⎝⎜⎞

⎠⎟  

      G = −nRT ln αT 5/2k

P0

⎝⎜⎞

⎠⎟− nRT ln

P0

P⎛⎝⎜

⎞⎠⎟  

      G = G0 − nRT ln

P0

P⎛⎝⎜

⎞⎠⎟= Go + nRT ln P

Po

⎝⎜⎞

⎠⎟  

    Check  formula  for   S  compared  to  thermodynamics:  The  formulas  below  check  with                                            thermodynamics  as  taught  in  chem254.  

     3/23 ln

2VTS nR nRNα⎛ ⎞

= + ⎜ ⎟⎝ ⎠

     

5/23 ln2

kTnR nRPα⎛ ⎞

= + ⎜ ⎟⎝ ⎠

 

1 2 V V→ ,    T        constant   2

1

ln VS nRV

⎛ ⎞Δ = ⎜ ⎟

⎝ ⎠  

1 2 T T→ ,      V        constant                       2

1

3 ln2

TS nRT

⎛ ⎞Δ = ⎜ ⎟

⎝ ⎠  =  

CV ln

T2

T1

⎝⎜⎞

⎠⎟    

1 2 T T→ ,       P        constant   2

1

5 ln2

TS nRT

⎛ ⎞Δ = ⎜ ⎟

⎝ ⎠=  

CP ln

T2

T1

⎝⎜⎞

⎠⎟  

1 2 P P→ ,      T        constant   2

1

ln PS nRP

⎛ ⎞Δ = − ⎜ ⎟

⎝ ⎠  

All  of  ideal  gas  thermodynamics  follows  from   A = −NkBT ln

qteN

⎛⎝⎜

⎞⎠⎟,   ( )

!

NtqQN

=  translational  

partition  function.  This  is  a  very  satisfying  result:  particle  in  the  box  quantum  mechanics!  

Page 8: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

48  

   Statistical  Mechanics  of  diatomic  molecules          

Molecules  have:  translational,  rotational,  vibrational,  electronic  and  nuclear  spin  degrees  of  freedom    To  good  approximation:   t r v e nE E E E E E= + + + +    This  is  not  quite  true,  in  particular  there  could  be  a  coupling  between  rotational  and  vibrational  motions  (certainly  for  higher  levels).    

        t r v e nq q q q q q= ⋅ ⋅ ⋅ ⋅    (not  quite  true  as  well,  complications  do  arise)  

tq  is  the  same  as  for  atoms..   3/2tq VTα= ,  

α =

2π MkB

h2

⎛⎝⎜

⎞⎠⎟

3/2

.  Same  ideal  gas  

assumptions,  works  best  at  low  density,  light  molecules,  and  works  only  for  gases.  At  low  temperatures,  gases  condense  or  solidify  due  to  (weak)  interactions.      

eq :  typically  only  one  electronic  level  contributes.  This  would  be  different  for  radicals  or  triplet  states.  Even  then:  simply  account  for  degeneracies.    Unexpected  complication:  strong  coupling  between  nuclear  and  rotational  wavefunction  (another  manifestation  of  (anti)symmetry).    

nrq  rotation  +  nuclear  should  be  treated  together  “Pauli  principle  for  nuclei”.  

Note:  the  factor  1!N  was  also  result  of  requiring  (anti)symmetric  wavefunctions.  The  

nuclear+rotation  aspect  will  be  discussed  later.    Simple  results  are  obtained  when  vibrations  and  rotations  can  be  treated  separately  (no  coupling)  and  harmonic  oscillator  is  used  for  vibrations.  

 Vibrational  Partition  function  in  harmonic  approximation    

  Eharm = 1

2gx2    

where   ( )0x R R= −  (Harmonic  approximation)  

  H = −

2

2µd 2

dx2 +12

gx2⎛⎝⎜

⎞⎠⎟        

 where   1 2

1 2

m mm m

µ =+

 (reduced  mass)    

  12nE n ω⎛ ⎞= +⎜ ⎟⎝ ⎠h             0,1,2...n =      and        

ω = g

µ        

Page 9: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

49  

( g  is  the  force  constant  and  depends  on  the  molecule)               (only  need   g and   µ  and  you  will  find  all  the  energies)         This  would  be  discussed  in  a  quantum  mechanics  class      Finding  the  partition  function  

  Energy  levels  harmonic  oscillator:     En =

12ω + nω           0,1,2...n =  

      e−En /kBT = e

−12!ω /kBT

⋅e−n!ω /kBT    

   

      qV = e

−12!ω /kBT( )

e−n !ω /kBT( )n=0,1,2..∑  

      Set   y = e− !ω /kBT( )  

e−2 !ω /kBT( ) = e− !ω /kBT( )e− !ω /kBT( ) = y2          so             e

−n !ω /kBT( ) = yn    

      qV = e

−12!ω /kBT( )

1+ y + y2 + y3 + ....( ) = e−1

2!ω /kBT( )

yn

n=0,1,2∑    

( )2 3

0,1,2...

11 ....1

n

ny y y y

y=

= + + + + =−∑    (known  math  relation)  

      qV = e

−12!ω /kBT( )

⋅ 11− y

⎛⎝⎜

⎞⎠⎟  

    qV = e

−12!ω /kBT( )

⋅ 11− e− !ω /kBT( )

⎛⎝⎜

⎞⎠⎟   partition  function  with  zero  point  energy  included  

 

Define    vibrational  temperature,   TV = !ω

kB

   →   1/J JK−    =   K  (kelvins)    so   VTT

 is  dimensionless  

  qV = e

−12

TV /T( )⋅ 1

1− e− Tv /T( )⎛⎝⎜

⎞⎠⎟  

In  p-­‐chem  vibrational  and  rotational  ‘energies’  are  often  expressed  in  cm-­‐1.  There  is  a  conversion  factor  between  energy  (in  J)  and  cm-­‐1.  If  we  use  the  same  conversion  for   kB  everything  makes  

sense.  Hence  in  practice  we  use  the  formula:  

TV =

!ω!kB

(units : cm−1

cm−1K −1 = K ), !kB = 0.6950348 cm−1K −1

 More  careful  discussion  is  found  in  the  section  on  rotational  energies.    For  some  molecules,  the  internal  rotation  can  range  from  relatively  small   !ω ≈ 200cm−1 ,  to  

something  like  C-­‐H  stretching   !ω ≈ 3100cm−1 ,  hence   TV =

!ω!kB

 can  range  from  about  300  –  6000K.    

Page 10: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

50  

e−1

2!ω /kBT

⋅e−n!ω /kBT = e−1

2TV /T( )

⋅e−n TV /T( )  ,  since   VT ranges  from  300  –  6000K,  typically  a  large  T  value  is  needed  for  a  decent  population  of  excited  states  (n=1  or  higher).    

       Energy  scale  is  not  convenient  if  we  want  to  consider  mixtures  of  molecules,  as  we  have  chosen  the  zero  of  energy  as  the  bottom  of  the  well.  From  quantum  chemical  calculations  one  can  obtain  good  estimates  for  the  total  ‘electronic’  energy  at  the  equilibrium  distance.  We  can  denote  this  energy  as  

E0el = Eel (R0 ) .  The  energy  of  the  ground  vibrational  level  is  then  denoted  as  

Eg = E0

el + 12!ω = E0 + Ezp .  Here  

Ezp  denotes  the  so-­‐called  zeropoint  energy.  It  is  the  energy  of  the  

lowest  vibrational  level.  The  same  kind  of  formula  will  be  applicable  for  general  poyatomic  molecules.  In  practice  it  is  very  useful  to  treat  the  total  electronic  energy  and  the  vibrational  energies  together.  This  will  lead  to  formulas  we  will  use  for  polyatomic  molecules,  and  in  particular  when  we  discuss  chemical  reactions  and  the  associated  change  in  the  Gibbs  free  energy.  Then  the  electronic  energy  will  play  a  primary  role.      

The  electronic/vibrational  partition  function  becomes     qe/V = e−Eg /kT ⋅ 1

1− e− TV /T( )⎛⎝⎜

⎞⎠⎟  

Three  cases  are  of  special  interest:       a.)  The  low  temperature  limit:    

If   ( )/VT T  is  large  (low  T ,  or  high   TV )     e−(TV /T ) → 0  ;         qe/V = e−Eg /kT

 This  means  that  all  molecules  are  in  the  lowest  vibrational  state  in  the  electronic  ground  state.  This  is  the  usual  case.  In  general  very  few  molecules  are  vibrationally  excited.  If  we  neglect  the  excited  molecules  we  get  the  so-­‐called  low  temperature  limit.  It  follows:  

 

A = −NkBT ln(qe/V ) = −NkBT (−Eg

kBT) = NEg

S = − ∂A∂T

⎛⎝⎜

⎞⎠⎟= 0; U = A+TS = A = NEg ; Cv = 0

 

This  is  all  perfectly  consistent  with  the  fact  that  all  molecules  are  in  the  ground  electronic  and  vibrational  state.     b)  The  high  T  limit.  This  is  historically  interesting.    

Consider  the  large  T  limit  of  better   / VT T  is  large  

      eEg /kBT 1

1− e−Tv /T

⎛⎝⎜

⎞⎠⎟     /1 , 1 /VT Tx

Ve x e T T−− ≈ − − ≈  

Page 11: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

51  

                      qe/V = e−Eg /kBT T

TV

⎛⎝⎜

⎞⎠⎟  

 

      !AV = −NkBT lnqV = NEg − NkBT ln T

TV

⎛⎝⎜

⎞⎠⎟  

      !SV = +NkB ln T

TV

⎛⎝⎜

⎞⎠⎟+ NkB  

      !UV = !AV +T !SV = NEg + NkBT = NEg + nRT  

      CV = NkB = nR  

Famous  classical  Equipartition  theorem:  For  every   ( )2xP  and   2x  in  Hamiltonian,  the  contribution  to  

internal  energy  is  12RT  per  mole  →  contribution  to   VC  is  

12R  

“Every  vibrational  mode  contributes   nRT  to  U ,  and   nR  to   VC  at  high  temperature”.      This  is  exactly  the  prediction  from  classical  mechanics  (for  any  temperature),  and  this  result  is  typically  very  wrong.  You  can  think  of  the  classical  limit  when  the  energy  level  spacing  or  ω  is  very  small  (0  in  the  limit).  This  was  a  much  disputed  discrepancy  during  the  time  of  Maxwell  and  Boltzmann  when  they  derived  the  kinetic  theory  of  gases.  Classical  mechanics  assumes  a  vibrating  particle  can  have  any  energy.  In  quantum  mechanics  the  energy  is  quantized,  and  the  first  excited  vibrational  state  is  often  so  high  in  energy  that  only  the  ground  state  is  populated  at  room  temperature  or  below.  This  discrepancy  greatly  hindered  the  acceptance  of  statistical  mechanics  (and  the  molecular  hypothesis):  The  theory  made  some  totally  wrong  predictions.  How  can  it  be  correct?  Of  course  what  was  missing  was  quantum  mechanics,  to  describe  the  internal  motion  of  molecules.        c)  Exact  thermodynamic  values  for  the  electronic  /  vibrational  partition  function  for  a  non-­‐degenerate  electronic  state.    

qV = e−Eg /kBT ⋅ 1

1− e− TV /T( )⎛⎝⎜

⎞⎠⎟  

 

AV = −NkBT lne−Eg /kBT − ln 1− e−TV /T( )( )    

= NEg + NkT ln 1− e−TV /T( )  

      ( ) ( ) ( )/ /2/

ln 11

V V

V

T T T TV VV T T

A TNkTS kN e eT Te

− −−

∂⎛ ⎞ ⎛ ⎞= − = − − −⎜ ⎟ ⎜ ⎟∂ −⎝ ⎠ ⎝ ⎠  

    If  we  multiply  this  by  /

/

V

V

T T

T Tee

 then  we  get  

       

SV = −NkB ln 1− e−Tv /T( ) + NkBTV / TeTV /T −1( )  

Page 12: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

52  

     

U = A+TS = NEg +NkBTV

eTV /T −1( )  

      µ =

∂AV

∂N⎛⎝⎜

⎞⎠⎟ T ,V

= Eg + kBT ln 1− e−TV /T( )     This  is  all  exact,  for  harmonic  oscillator.  On  a  computer  these  formulas  are  easily  evaluated  exactly.  However,  in  questions  on  paper  (midterm  and  final)  we  will  usually  invoke  the  low  temperature  approximation.    All  that  remains  then  from  the  vibrational  contribution  is  the  zero-­‐point  energy  contribution  to  the  electronic  energy.  This  is  always  an  important  contribution.          Rotational  Partition  Function  for  a  diatomic    

Use  the  so  called  rigid  rotor  approximation,  neglect  coupling  between  rotations  and  vibrations  (small  error)    

 The  Quantum  Mechanical  Hamiltionian    for  rotations  

    H = L2

2µR2       µ =

m1m2

m1 + m2

   

2L :    angular  momentum  operator  depending  on   ,θ ϕ  ,           R :  internuclear  distance     Note:   2L is  the  same  operator  that  shows  up  for  the  H-­‐atom  orbitals:  s,p,d,f  functions            

  L2Yl

m θ ,ϕ( ) = !2l l +1( )Ylm θ ,ϕ( )      

      .....lm l l= − +         0l =     s     0         1l =     p                    -­‐1,  0,  +1    

2l =     d        -­‐2,  -­‐1,  0,  +1,  +2  3l =     f   -­‐3,  -­‐2,  -­‐1,  0  ,  +1,  +2,  +3  

    Known  solutions  for  energy  eigenvalues  

      EJ =

!2

2µR2 J J +1( ) ( )1BJ J= +   0,1,2...J =  

      Has  degeneracy   gJ = 2J +1( ), from M = −J ...J  

     States:   YJ

M θ ,ϕ( )   M = −J ,−J +1.....J −1, J           ( ) 2 1J→ +  

 

  Energy  levels  are  often  expressed  in   cm−1   hυ = hc

λ= hc !k  

      EJ = BJ J +1( )

= h

8π 2cµR2        (in   1cm− )       2R Iµ =    (moment  of  inertia)  

    A  convenient  conversion:       11 8065.5eV cm−≈  

Page 13: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

53  

Also  the  Boltzmann  constant  can  be  converted  to  cm-­‐1  K-­‐1  units:   !kB =

kB

hc≈ 0.695cm−1K −1

 

These  are  very  convenient  units  for  rotational  energies  (also  for  vibrational  energies).    Rotational  partition  function    

      qR = 2J +1( )e−BJ J+1( )/kBT

J=0,1,2..∑ = 2J +1( )e− BJ J+1( )/ kBT

J=0,1,2..∑  

  Note:  we  sum  over  energy  levels   J ,  and  need  to  explicitly  include  degeneracies    Using  a  math  program,  one  can  carry  out  the  sum  explicitly  (eg.  Run  until   maxJ =  100)    

In  practice,  in  the  “high  temperature”  limit  one  replaces  the  sum  by  an  integral  

        qR ≈ 2x +1( )e− Bx x+1( )/ kBT dx

0

∫  

  Substitute     ( ) 21y x x x x= + = +  

      ( )2 1dy x dx= +  

  qR = e− By/ kBT dy = −

kBTB

e− By/ kT⎡⎣ ⎤⎦0

∫0

=kBTB

 

  qR =

kBTB

= TTR

         where   , B , kB  are  in  units  of   cm−1    

                                                             ( B = !2

2µR2  for  diatomic,     !B = B / (hc)    )  

  TR = B

kB

=BkB

   Rotational  temperature  (in  Kelvins)  

The  high  temperature  limit  is  quite  accurate  for  most  molecules  (we  will  check  in  Matlab).  Hower  there  is  a  complication.    This  formula  is  “correct”  for  heteronuclear  diatomics  like  CO ,  but  for  homonuclear  case,  like   2H it  is  off  by  a  factor  of  2.      One  can  correct  for  this    

      qR =

kBTσ B

= TσTR

   

where  σ  is  the  (mysterious)  symmetry  factor    ;     1σ =  for  heteronuclear,   2σ =  for  homonuclear        

 To  understand  the  symmetry  factor  one  has  to  take  nuclear  spin  into  consideration.  It  is  really  a  

consequence  of  the  Pauli  principle  for  nuclei.  It  is  comparable  to  the  Boltzmann  factor  1!N  in  

!

NqQN

= .  

 

Page 14: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

54  

In  the  next  lecture  I  will  discuss  the  rotational  partition  function  for   2 2,H D  and  HD  isotopes.  This  will  give  us  a  better  idea  of  the  origin  of  the  mysterious  σ .  

 Thermodynamics  in  high  temperature  limit:  Contributions  due  to  rotational  degree  of  freedom  

      AR = −nRT ln T

σTR

= −NkBT ln TσTR

   

                       (R  is  the  gas  constant  again,  not  the  interatomic  distance)  

     ,

lnRR

V N R

A TS nR nRT Tσ

∂⎛ ⎞= − = +⎜ ⎟∂⎝ ⎠  

      R R RU A TS nRT= + =           ,V RC nR=  

      µR = −N A

∂AR

∂N⎛⎝⎜

⎞⎠⎟ T ,V

= −N AkBT ln TσTR

= −RT ln TσTR

 

Let  me  note  that  the  high  temperature  limit  for  rotations  is  excellent  in  practice.  It  agrees  with  the  

classical  treatment  of  rotations.  According  to  the  equipartition  theorem  we  have  have   12

RT  of  energy  

for  each  kinetic  energy  degree  of  freedom.  Rotation  of  a  rod  (or  diatomic)  corresponds  to  2  degrees  of  freedom,  so  the  result  would  be   U R = nRT as  above.  The  rotational  energy  levels  are  so  finely  spaced,  that  the  classical  treatment  works  well.  Except:  it  cannot  account  for  the  symmetry  factor.  This  is  a  quantum  mechanical  effect.    

Probability  to  find  molecules  in  energy  level   ( )JP E  

    ( ) ( ) ( )1 /2 1RJ J T T

JR

JP E e

q− ++

=  

      ( ) ( )1 /2 1 RJ J T TRTJ eTσ − +≈ +  

 We  can  also  plot  the  probability  to  find  a  particular  state  (one  from    the 2 1J + )     YJ

M (θ ,ϕ )        

Page 15: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

55  

        This  peaks  at  the  ground  state,  which  always  has  the  highest  probability      The  origin  of  the  symmetry  factor  in  rotational  partition  function        

Nuclei  can  be  bosons  (consisting  of  even  number  of  fermions)  or  fermions  (consisting  of  odd  number  of  fermions).  This  character  is  reflected  by  nuclear  spin:  Bosons  will  have  integer  spin,  Fermions  have  half  integer  spin.      Nuclei  are  described  by  Quantum  Mechanical  wave  functions  and  they  obey  fundamental  symmetries  of  nature     -­‐  ψ  is  symmetric  under  interchange  of  identical  bosons     -­‐  ψ  is  anti  symmetric  under  interchange  of  identical  fermions      Consider  a  system  consisting  of  2  nuclei  diatomics  →  nuclear  wavefunction  has  both  a  spatial  and  a  spin  part.  Focus  first  on  H -­‐  atom,  spin  ½,   ,α β  functions.          Nuclear  spin  functions  for  H2  molecule:  

          ( ) ( )1 2α α  

    orthohydrogen   →         ( ) ( ) ( ) ( )1 2 1 2 2α β β α⎡ + ⎤⎣ ⎦      symmetric  

             =  triplet     ( ) ( )1 2β β               Parahydrogen    

α 1( )β 2( )− β 1( )α 2( )⎡⎣ ⎤⎦ 2   antisymmetric  

           =  singlet       Nuclear  spin  functions  are  virtually  degenerate  (even  in  presence  of  a  magnetic  field)    

For  us  the  symmetry  of  the  spin-­‐eigenfunctions  are  most  important.  Consider  2  nuclei  of  general  spin   I  

Page 16: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

56  

          Symmetric     ( )1 2 2 1 2mm m m+          ( m1 ≤ m2 m1  =  m2  is  included)      

    ( )( ) ( )( )1 2 1 2 2 1 2 12

I I I I+ + = + +    (symmetric  functions)  ,  e.g.  1 3 2 32 2

I = → ⋅ =      

    Antisymmetric     ( )1 2 2 1 2mm m m−              ( m1 < m2 ,  m1  =  m2  is  excluded)        

    ( )( ) ( )1 2 1 2 2 12

I I I I+ = +    (antisymmetricfunctions),  e.g.    1 1 2 12 2

I = → ⋅ =      

(see  above)    

(compare  square  n  x  n  matrix  which  has   ( )1 12n n +  entries  in  upper  block  including  the  diagonal  

(i>=j),  while  there  are ( )1 12n n − entries  in  the  lower  block  (i<j),    excluding  diagonal)  

 Symmetry  of  nuclear  spin  function  under  permutation  is  now  understood.  What  about  spatial  part  of  nuclear  wave  function?    Consider  the  nuclear  coordinates  

R1,R2  

      Center  of  mass  coordinate  

R1 + R2

2=Rcm   (for  identical  nuclei)    

R1 −R2        =   sin cosR θ ϕ  

    sin sinR θ ϕ       cosR θ  

R =R2 −

R1  

      Nuclear  wavefunction:        

ψ t

Rcm( ) ⋅ψ V R( ) ⋅ψ R θ ,ϕ( )          (translational,  vibrational,  rotational  parts)    

              If  

R1 ↔

R2  (interchange)  then  

Rcm  and   R  are  unaffected  

    However:         P12

R2 −

R1( ) = −

R2 −

R1( )  

                         =     sin cosR θ ϕ−             sin sinR θ ϕ−             cosR θ−     Interchanging  nuclei  

R1 ↔

R2  is  equivalent  to    

Page 17: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

57  

      θ π θ→ −   ( ) ( )cos cosπ θ θ− = −  

          ( ) ( )sin sinπ θ θ− =  

      ϕ ϕ π→ +   ( ) ( )cos cosϕ π ϕ+ = −  

          ( ) ( )sin sinϕ π ϕ+ = −          

Hence  interchanging   R1  and  

R2  is  equivalent  to  changing  

          θ π θ→ −             ϕ ϕ π→ +  

      ( ),mlY π θ π ϕ− + =   ( ),m

lY θ ϕ+       l    even                 ( ),m

lY θ ϕ−       l  odd     Transformations  are  equivalent  to  

       x xy yz z

−⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟→ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

  (inversion)  

  where  the  inversion  is  expressed  using  the  angular  variables.       s,  d,  g        functions  are  even  under  inversion    (like  J=0,2,4,…)       p,  f   functions  are  odd  under  inversion        (like  J=1,3,5,…)           0,2,4..J =   even  under   1 2R R↔       1,3,5..J =   odd  under   1 2R R↔  

     Antisymmetric  nuclear  wavefunctions  (fermions):       ( ),triplet

spin Jφ ψ θ ϕ⋅          Even                    Odd  

Or   ( )sin glet ,spin Jφ ψ θ ϕ⋅     The  only  allowed  combinations  for   2H              Odd     Even          

            (H is  fermion)    Symmetric  nuclear  wavefunctions  (bosons):        

( ),tripletspin Jφ ψ θ ϕ⋅  

       Even                    Even  Or   ( )sin glet ,spin Jφ ψ θ ϕ⋅     Overall  symmetric  for   2D  

         Odd     Odd        

            (D  is  boson)  The  restriction  to  either  overall  symmetric  wavefunctions  or  overall  antisymmetric  wavefunctions  amounts  to  a  “coupling”  between  rotational  and  nuclear  partition  function.  Hence  they  should  be  treated  together.  We  refer  to  the  combined  nuclear  spin  and  rotational  partition  function  as   qnR .    

For   2H  (fermions,  antisymmetric)  12

I =  

Page 18: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

58  

    qnR

H2 = 3 2J +1( )e−BJ J+1( )/kT

J=1,3,5..∑ +1 2J +1( )e−BJ J+1( )/kT

J=0,2,4..∑  

For   2D  (bosons,  symmetric)   1I =  

    qnR

D2 = 6 2J +1( )e−BJ J+1( )/kT

J=0,2,4..∑ + 3 2J +1( )e−BJ J+1( )/kT

J=1,3,5..∑  

 Remember  number  of  spin  states:             ( )1/ 2H I =     ( )1D I =  

    Odd           ( )2 1I I +                  1                  3  

    Even   ( )( )1 2 1I I+ +                  3                  6  

    Total   ( )22 1I +    For  HD  no  symmetry  requirement,   2 3 6ng = ⋅ = (degeneracies)  

    qnR

HD = 6 2J +1( )e−BJ J+1( )/kT

J=0,1,2..∑

   Summary:  In  general  for  homonuclear  diatomics  with  nuclear  spin   I  

Fermion:   ( )( ) ( )( )1 2 1 2 1Odd EvenR RI I q I I q+ + ⋅ + + ⋅  

Bosons:         ( )( ) ( )( )2 1 1 2 1Odd EvenR RI I q I I q+ ⋅ + + + ⋅  

    For  heteronuclear  diatomics:         ( )( )2 1 2 1 total

nR A B Rq I I q= + + ⋅            For  spin   AI  and  spin   BI    How  does  this  reduce  to  the  symmetry  factor  σ  for  rotational  wavefunction?  

a) ( )22 1 nucleareven oddn n I q+ = + =    

b) 12

even odd totalR R Rq q q≈ ≈  

Proof  of  b):  

2J +1( )e−BJ J+1( )/kBT

J=0,2,4∑     → substitute J = 2k  

    = 4k +1( )e−B2k 2k+1( )/kBT

k=0,1,2..∑     24 2y k k= + ,   8 2dy k= +  

    → 1

2e− y B/kBT( ) dy = 1

2kBTB0

∫  

  Similarly:    

   

2J +1( )e−BJ J+1( )/kBT

J=1,3,5∑     2 1J k= + ,   0,1,2..k =  

   

2 2k +1( ) +1( )e−B 2k+1( ) 2k+2( )/kBT

J=1,3,5∑    

( )( )2 1 2 2y k k= + + ,           dy = 2 2k + 2( ) + 2 2k +1( ) = 2*[2(2k +1)+1)]  

Page 19: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

59  

→ 1

2e− y B/kBT( ) dy = 1

2kBTB0

∫    

 →      Same  high  temperature  limit,  multiplied  by  a  factor  ½.  This  analysis  is  quite  involved.  We  will  do  a  simulation  in  Matlab  to  clarify.  Importantly  for  systems  like  H2,  D2  and  HD  this  has  all  been  beautifully  demonstrated  by  both  theory  and  experiment.      Polyatomic  Systems    

Consider  system  with   N  atoms   3N→  coordinates.  3  collective  coordinates  describe  the  overall  translation  of  center  of  mass.  If  we  choose  to  optimize  the  equilibrium  geometry  we  can  identify  3  collective  coordinates  that  describe  rigid  rotation  (2  for  linear  molecules).    3 6N −  collective  coordinates  remain  that  describe  internal  vibrations  (3 5N −  for  linear  molecule)    Solve  electronic  Schrodinger  equation  for  fixed  nuclear  position   iR ,   1i = ,  3N  

      H R{ }( )ψ r ,

R{ }( ) = E

R{ }( )ψ r ,

R{ }( )  

  3N→  dimensional  potential  energy  surface  (PES)  

     

∂E∂Rj

= 0 ∀j        →    extrema  on  PES  

              Different  isomers:  different  minima  on  PES       Transition  State:  Saddle  points  on  PES  (Max  in  one  direction,  min  in  all  others  (like  a                                                              mountain  pass  in  3d)      

a) Vibrations    

  Taylor  series  of  potential  energy  surface  around  minimum     Re    (3  N  coordinates)    

   

ER( ) = E

Re( ) + ∂E

∂Ri R=Re

R −Re( )i

+i∑ 1

2∂2 E

∂Ri ∂Rj R=Re

R −Re( )i

i∑

R −Re( ) j

 

      Extremum    →    

∂E∂Ri

= 0 ∀i  

  Mass-­‐weighted  Hessian    (This  is  a  detail,  to  be  complete)  

Page 20: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

60  

     

Hij = Mi

∂2 E∂Ri ∂Rj R=

Re

M j  

(to  account  for  nuclear  masses  in  nuclear  kinetic  energy  term)         Diagonalize  “mass-­‐weighted  Hessian”   ijH  

    6  (5  for  linear  molecule)  eigenvalues  are  0:  correspond  to  overall  translation,  overall                                                                rotation.  3 6N −  (or  3 5N − )  eigenvalues   iε  of  Hessian  correspond  to  normal  modes   i .  

  The  eigenvalues   ε i  are  analogous  to  the  force  constant  for  a  diatomic  molecule  (denoted  g)  By  diagonalizing  the  Hessian,  the  vibrational  problem  is  reduced  to   3N − 6 (or5)  independent  harmonic  oscillator  problems  

 

        − !

2

2d 2

dqi2 +

12ε iqi

2⎡

⎣⎢

⎦⎥ χn qi( ) = En

i( )χ qi( )  

      Define     !ω i =

ε i

1   (analog  of  

!ω i =

gµ,  with   µ = 1)  

        En

i( ) = ni +12

⎛⎝⎜

⎞⎠⎟ω i  

If  all   iε ,   iω  >  0  ,  then  stationary  points  is  minimum.  If  precisely  one  of  the   iε  is  negative,  or,   iω  is  imaginary,  then  structure  is  transition  state    Vibrational  frequencies  and  normal  modes  are  obtained  from  Hessian.    Can  be  calculated  using  quantum  chemistry  program  (e.g.  Gaussian).  As  usual  the  vibrational  “energies”  are  usually  expressed  in  wave  numbers.  We  have  seen  that  before.    b) Rotations:  

    Position  of  minimum:             , jRα     α = x, y,z ,       1,2,...j N=  (number  of  nuclei)  

       

Rcm

α = 1

mj∑mk Rα ,k

k∑  

  Moment  of  inertia  tensor:  

      ( )( ) ( )2, , , , ,1

N

j j cm j cm j j cmj j

I m R R R R m R Rα β γα β α β α β γ

γδ

=

= − − − + −∑ ∑ ∑  

        ,Iα β  →    3  x  3  matrix  

  Diagonalizing  matrix   I  yields  3  eigenvalues     , ,A B CI I I       -­‐  Spherical  Top     A B CI I I= =       -­‐  Symmetric  Top     A B CI I I= >    (prolate  cigar)  or   A B CI I I> =      (oblate  disk)       -­‐  Asymmetric  Top     A B CI I I> >        

Page 21: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

61  

  Rotational  eigenvalues  spectrum  can  be  calculated  purely  from   , ,A B CI I I .  The  various  cases  are  somewhat  complicated.       ‘High’  Temperature  partition  function  always  has  a  simple  form  (used  in  practice.  This  is  usually                                accurate)  

        qR T( ) = π

σTTA

⎝⎜⎞

⎠⎟

1/2TTB

⎝⎜⎞

⎠⎟

1/2TTC

⎝⎜⎞

⎠⎟

1/2

  TA =

!2

2kB I A

     

This  formula  always  works,  except  for  linear  molecules,  where  one  uses     RR

TqTσ

= ,   TR = !

2

2kB I  

(only  2  rotational  degrees  of  freedom.  Rotation  around  molecular  axis  has  no  meaning)        

Symmetry  Factorσ :  #  of  pure  rotations  in  the  point  group  of  the  molecule,  known  from  group  theory.  (#  of  rotations  that  map  molecule  onto  itself).  This  is  again  due  to  the  interplay  of  rotational  and  nuclear  spin  patterns.  The  details  are  complicated  (I  myself  don’t  know  how  this  works  precisely).  Examples:  

      2H O   σ =  2               4CH     3 4 12σ = × =      4  3-­‐fold  rotation  axes  

3NH          σ =  3             6 6C H       12σ =                            1  6-­‐fold  axis  +  two  times  3  2-­‐fold  axis!    Summary:  Overall  partition  function  for  polyatomic  molecule  (non-­‐linear):  

          qmol = qtqRqnqvqe  

 

  Translational:     3/2tVq TNα=  

α =

2π MkB

h2

⎛⎝⎜

⎞⎠⎟

3/2

  jj

M m=∑  

  Vibrational:       qv =

e−1

2hω i /kBT

1− e−hω i /kBTi=1

3N−6 (or5)

∏    

One  factor  for  each  vibrational  mode,  including  zeropoint  frequency  If  we  define  the  vibrational  zeropoint  energy    

  Ezp =

12i=1

3N−6

∑ !ω i  

Then:      

    qv = e−Ezp /kBT (1− e−hω i /kBT )−1

i=1

3N−6

∏ = e−Ezp /kBT (1− e−TV( i ) /T )−1

i=1

3N−6

∏  

By  far  the  most  important  contribution  is  the  zeropoint  energy  contribution.  The  other  factors  are  typically  close  to  unity.  It  is  helpful  to  write  

 

qV = qV ,zpqV ,rest

qV ,zp = e−Ezp /kBT ; qV ,rest = (1− e−TV( i ) /T )−1

i=1

3N−6 (or5)

∏ ≈1  

 

Page 22: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

62  

  Rotational:   qnR = π

σTTA

⎛⎝⎜

⎞⎠⎟

12 T

TB

⎛⎝⎜

⎞⎠⎟

12 T

TC

⎛⎝⎜

⎞⎠⎟

12

    TA =

!2

2kB I A

   etc.    

        Nuclear  Spin     ( )2 1nq Iα

α= +∏   Iα :  nuclear  magnetic  moment  for  nucleus  α  

 

  Electronic:     e−E0

el /kBT        or,    if  we  have  very  low-­‐lying  excited  states  (e.g.  for  magnetic  systems)  

  e−E0

el /kBT e−( Eiel−E0

el )/kBT

i∑    

    E0el :    The  electronic  energy  at  the  minimum  of  the  potential  energy  curve.  

 Often  it  is  convenient  to  treat  the  vibrational  zeropoint  energy  and  the  electronic  energy  together,  and  (as  for  diatomics)  we  define    

  Eg = E0

el + Ezp; qe/Vzp = e−Eg /kBT  

This  energy  is  the  energy  of  the  molecule  in  its  ground  electronic  and  ground  vibrational  state.    The  ground  state  energy  

Eg  plays  its  most  important  role  when  we  compare  the  relative  stability  of  two  

different  isomers,  and  we  can  calculate  the  difference  in  energy  (see  later).  From  electronic  structure  (quantum  chemistry)  calculations  we  can  calculate  the  absolute  energies.  They  are  very  large  (negative)  numbers  however.  Often  we  forget  about  the  ground  state  energy,  and  just  add  excited  electronic  states  in  the  sum  (if  necessary)  if  we  are  purely  interested  in  the  temperature  dependence  of  U,  Cv  and  so  on.  The  total  vibrational/electronic  ground  state  energy  plays  a  vital  role  when  discussing  chemical  equilibria.      Many  quantities  can  be  calculated  accurately  from  contemporary  electronic  structure  calculations.  Geometries  and  vibrational  frequencies  are  fairly  accurate  (but  within  harmonic  approximations).  Atomization  energies/reaction  energies  would  be  the  hardest  to  obtain  accurately.    The  harmonic  approximation  is  poor  for  floppy  molecules.  This  is  difficult  to  correct.  Other  very  low  frequencies  of  vibrations,  e.g.  internal  rotation  for  example  in  ethane   3 3CH CH−  can  be  treated  in  advanced  calculations,  e.g.         Potential  along  torsional  mode  

          ( ) ( )cos 3V Aϕ ϕ=   A :  barrier  height    

Page 23: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

63  

This  can  be  included  (neglect  mode-­‐coupling).  There  are  remaining  problems  for  floppy  molecules  though  (think  molecules  with  many  conformers,  many  systems  in  biology).    There  are  also  other  problematic  cases,  where  electronic  structure  calculations  are  difficult  (e.g.  when  the  molecular  orbital  picture  breaks  down).  The  bottom  line  however  is  that  this  type  of  approach  works  very  well  for  many  molecules.  The  current  discussion  is  focused  on  molecules  in  the  gas  phase,  neglecting  interactions.    In  this  case  the  expensive  part  of  the  calculation  is  the  electronic  structure  calculation:  optimizing  geometry,  calculating  vibrational  frequencies  and  obtaining  an  accurate  electronic  energy.  The  calculation  of  the  thermal  corrections  due  to  statistical  mechanics,  do  not  take  much  time  at  all  after  this  (seconds).  The  statmech  procedure  can  also  be  readily  developed  for  solid  state  materials,  where  the  material  is  pefectly  crystalline  and  periodic.  Of  course  calculations  will  be  more  costly  than  for  gas  phase  molecules.  The  most  complicated  case  concerns  liquids  where  molecules  are  strongly  interacting.  This  situation  is  not  so  different  from  the  case  of  molecules  with  a  large  number  of  conformers.  In  such  cases  one  has  to  use  extensive  sampling  procedures  and  simulations  to  obtain  suitable  averaged  results.  One  mostly  uses  classical  mechanics  in  this  sampling,  although  quantum  mechanical  procedure  using  path  integrals  are  also  used.  In  all  cases  the  calculations  become  far  more  expensive  and  only  dedicated  users  typically  performed  such  calculations.  In  contrast,  the  use  of  electronic  structure  calculations  using  for  example  the  Gaussian  program  has  become  a  routine  tool  for  any  chemist.        Chemical  Reactions  and  Equilibrium  (recall  from  thermodynamics).  

 Consider  reactions  in  gas  phase    a) Thermodynamics:  

Prototype  reaction:       aA+ bB cC + dD    

, , ,a b c d :  stoichiometric  coefficients                   , , ,A B C D :  chemical  species     Reactants  →  Products  

      Write  it  in  the  form           0cC dD aA bB+ − − =  

      0AA

Aυ =∑   0Aυ >  for  products             0Aυ <  for  reactants  

    Since  we  will  consider  equilibrium,  reactants  vs  products  is  an  arbitrary  choice         At  chemical  equilibrium  

        0reactionGΔ =      and       0A AAυ µ =∑  

( ) ( )ln /oA A A oT RT P Pµ µ= +  

  oP =  standard  pressure,     AP =  partial  pressure  of  species   A    For  ideal  gases:   A AP x P=   Ax :  mole  fraction  of  species   A  

      ( ) ( )ln / lnoA A o AT RT P P RT xµ µ= + +  

        ( ), lnoA AT P RT xµ= +  (alternative  expression  in  mole  fractions.  See  

thermo)  

Page 24: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

64  

 

      0reaction A AA

G υ µΔ = =∑  

        ( ) ( )ln / AoA A A o

A AT RT P P υυ µ= +∑ ∑  

        ( ) ( )ln / AoA A A o

A AT RT P P υυ µ= +∑ ∏  

    Define  equilibrium  constant         ( )/ A

p A oA

K P P υ=∏  

        ( ) lnoA A p

AT RT Kυ µ = −∑   ( )o

A AA

Tυ µ∑  from  stat  mech  

    In  practice  we  can  calculate   ( )o

A Tµ  from  QM  and  Stat-­‐Mech         →  first  principles  theory  of  chemical  equilibrium       For  previous  example:       aA+ bB cC + dD  

       ( ) ( )( ) ( )/ /

/ /

c dC o D o

p a bA o B o

P P P PK

P P P P=  

    Often  it  is  easier  to  work  with  molefractions   A AP x P=  

      ( ) ( )/ /A A

P A o A oA A

K P P x P Pυ υ= =∏ ∏  

        ( ) / AAA o

A A

x P P υυ= ⋅∏ ∏  

        ( ) /AA o

A

x P P υυ Δ= ⋅∏     AA

υ υΔ =∑  

      ( )/P x oK K P P υΔ=  

        ( ) ( )/A

x A p oA

K x K P Pυ υ−Δ= =∏  

This  is  all  a  repeat  of  what  was  done  in  thermodynamics.  Let  us  take  the  next  step.    Statistical  Mechanics  of  Gibbs  free  energy         Chemical  potential  =  Gibbs  Free  energy           G = A+ PV = A+ NkBT   (ideal  gas)  

              = −kBT ln qN

N !⎛⎝⎜

⎞⎠⎟+ NkBT  

              = −NkBT lnq + kBT N ln N − N( ) + NkBT  

              = −NkBT lnq + kBTN ln N  

             

= −NkBT ln q / N( )G = −nRT ln q / N( )  

Page 25: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

65  

   

      tv R n e

qq q q q qN N

= ⋅  

      3/2tM

q V TN N

α=                 α M =

2π MkB

h2

⎛⎝⎜

⎞⎠⎟

3/2

 

      PV = NkBT →     VN

=kBTP

 

       

qt

N=α M kBT 5/2

P       Gibbs  free  energy  use  P  as  variable,  not  V.       The  other,  very  important  contribution  is  electronic  +  zeropoint

 

 

        qe/Vzp = e−Eg /kBT ; Eg = E0

el + Ezp = E0el + 1

2i=1

3N−6 (or 5)

∑ !ω i    

      qnR ,qV ,rest :  can  both  be  calculated  for  each  species  in  chemical  reactions,  exactly  as  we  

did  for  polyatomic  molecules  in  general.    

    tqN

 determines  the  pressure  dependence  

    −nRT ln

qt

N⎛⎝⎜

⎞⎠⎟= −nRT ln

α M kBT 5/2

Po

+ nRT ln PPo

⎛⎝⎜

⎞⎠⎟  

    qt ,0 = −nRT ln

α M kBT 5/2

P0

     →        enters   reactionGΔ  (see  previous  thermo  

discussion).    Connect  to  thermodynamics  of  chemical  equilibrium    

      ( )ln op A A

ART K Tυ µ− =∑  

        ln AA

A

qRTN

υ ⎛ ⎞= − ⎜ ⎟⎝ ⎠∑  

        ln lnA A

A A

A A

q qRT RTN N

υ υ⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑ ∏  

     A

Ap

A

qKN

υ⎛ ⎞= ⎜ ⎟⎝ ⎠

∏  

        =

qt ,oA

N

⎝⎜

⎠⎟

υA

qe,VzpA( )υA qRn

A( )υA qV ,restA( )υA

A∏ qn

A( )υA  

Page 26: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

66  

        = Kt ,0Ke,Vzp KRn(KV ,rest Kn )    

Each  factor  is  a  ratio  of  corresponding   q ’s.  This  is  a  very  convenient  and  insightful  result!    Let  us  analyze  different  factors:  

-­‐  nuclear  spin  factor:  easiest,  since  the  number  of  nuclei  does  not  change  between  reactants  and  products  and  neither  does  nuclear  spin  

       reactants 1productsn

nn

q Kq

= =   (always)  

 

  -­‐  rotational  factors:  Just  has  to  be  calculated  for  each  molecule,  (for  atoms  →   qRA = 1 )  

    For  linear  molecules  use   qR,n =

TσTR

   (Good  enough.  Include  symmetry  factor)  

    Polyatomics:  

11 122 2

RA B C

T T TqT T T

πσ

⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠    

    -­‐  temperature  dependence  of   3/2T υ⋅Δ  (if  no  atoms/linear  molecules.  But  always  simple)    

  -­‐  translational  factor:    

kBT 5/2

Po

⎝⎜⎞

⎠⎟

Δυ

α AυA

A∏   A

Aυ υΔ =∑  

  For  both  rotational  and  translation  factors   xT υΔ  dependence  reflects  entropic  contributions    

0υΔ >  →  more  species  on  product  side  →  increase  in  entropy  (#  of  states)  upon  reaction  

    -­‐  vibrational  +  electronic  factor:  

These  factors  are  numerically  (by  far)  most  important.  Let  us  try  to  understand  how  the  terms  originate.  Let  us  for  definiteness  consider  a  concrete  reaction  HCN CNH→    PES  along  reaction  coordinate  

Page 27: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

67  

   We  would  make  a  harmonic  oscillator  model  for  reactant  and  products  (3  normal  modes  each).  The  change  in  electronic  energy  is  determined  from  the  difference  in  energy  at  the  bottoms  of  the  well.    

The  zeropoint  vibrations  energy  for  each  species  A  would  be   ( )12

AAzp i

iE ω=∑ h .  Sum  over  

normal  modes  (here  4  for  a  linear  molecules  like  HCN  and  HNC)    In  general  energy  difference  for  reaction  can  be  written  as  sum  over  electronic  energies  at  the  respective  minima  and  sum  over  zero  point  frequencies       e zpE E EΔ = Δ + Δ  

            12

A AA e i A

A A iEυ ω υ⎛ ⎞= + ⎜ ⎟

⎝ ⎠∑ ∑ ∑ h    

    Kzp,e = e−ΔE /kBT  

 In  this  description  of  chemical  equilibrium  we  limit  ourselves  to  only  considering  non-­‐degenerate  ground  states.  Things  will  get  slighty  more  complicated  when  degeneracies  occur.  Principles  are  the  same.    

For  each  species  there  would  be  in  addition  the  factor   qV ,rest = (1− e−!ω i /kBT )−1

i∏ .  This  

factor  is  usually  very  close  to  unity  (1).    In   KV ,rest  one  would  take  the  ratio  of  products  

and  reactants.  I  think  it  is  clearest  to  write  the  electronic-­‐vibrational  contribution  as    

      Ke ⋅Kzp ⋅KV ,rest  

        Ke = e−ΔEe /kBT   Ae A o

AE EυΔ =∑  

Page 28: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

68  

        Kzp = e−ΔEzp /kBT  

ΔEzp =

12ω i

i∈A∑⎛⎝⎜

⎞⎠⎟υA

A∑  

        Kv =

11− e−!ω i /kBT

i∈A∏⎛⎝⎜

⎞⎠⎟

υA

A∏  

      A :  label  for  species   i :    normal  mode  for  species  A       This  clearly  indicates  the  origin  of  the  various  terms             K p = KeKzp Kt KR,nKV ,rest  

  This  indicates  the  importance  of  various  factors     ~e zp t R vK K K K K>> > >  

 

,e zpK K  contribute  to  an  exponential  factor   e−ΔE /kBT  and  this  absolutely  dominates  the  

equilibrium  constant.  Other  factors  depend  on  powers  of  T .  Pressure  dependence  derives  from  

translational  partition  function   lno

PRTP

.  We  have  reached  the  essential  usage  of  statistical  

mechanics  in  chemistry.  It  is  worthwhile  to  look  at  examples.  These  final  results  suggest  that  nowadays  it  is  well  possible  to  calculate  gas  phase  molecular  partition  functions  and  equilibrium  constants.  We  will  go  in  the  computer  lab  and  run  Gaussian  calculations.  We  can  also  obtain  the  relevant  data  from  the  Gaussian  program  and  do  the  statmech  ourselves  using  a  simple  Matlab  program.    This  way  you  can  convince  yourself  of  the  possibilities  of  computational  chemistry.  In  the  Gaussian  program  all  the  statmech  is  done  exactly  as  described  here.    Let  me  provide  a  somewhat  more  detailed  discussion  of  the  temperature  dependence  of  the  equilibrium  constant.  We  know  (neglecting  the  usually  unimportant  “rest  of  vibrational  term)  that    

KP = Kel ,zp Kt ,P0KRn  

 Each  of  the  individual  K’s  is  a  ratio  of  partition  functions.  This  yields  the  following  temperature  dependences:  a)  Electronic  +  zero-­‐point  

  Kel ,zp = e−ΔEel ,zp

rxn / RT,  here  

ΔEel ,zp

rxn  is  the  reaction  energy  for  1  mole  of  reaction.  This  can  

be  calculated  using  a  quantum  chemistry  program  like  Gaussian.  This  energy  difference  itself  is  rigorously  independent  of  temperature.  b)    Translational  motion  

  qt ,P0 ~ T 5/2 ,      

Kt ,P0 ~ T Δν 5/2 , Δν = ν i

i∈reactants,products∑  

c) Rotational  

qR,n ~ T for linear molecules

qR,n ~ T 3/2 for non-linear molecules  

      It  then  follows  that  the  equilibrium  constant  can  be  written  generically  as  

Page 29: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Statistical’Mechanics’of’diatomic’molecules

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules        

69  

    KP = aT xe−ΔE / RT

    Here  a  and  x  are  constants  that  depend  on  the  particular  molecules  involved.     Hence:  

   

−RT ln K p = −RT (ln a + x lnT −ΔEel ,zp

rxn

RT)

= ΔEel ,zprxn −T (R ln a + Rx lnT )

 

    Form  Thermodynamics  we  know       −RT ln KP = ΔrG

0(T ) = Δr H −TΔrS      

Often  this  expression  is  interpreted  as   ΔH  is  independent  of  temperature,  while  the  other  term  depends  linearly  on  Temperature  using   TΔrS .  The  Stat-­‐mech  expression  is  more  pure.      

ΔEel ,zprxn ≈ ΔH is rigorously independent of T

(R ln a + Rx lnT ) ≈ ΔS , has a weak temperature dependence  

 This  is  a  non-­‐standard  treatment,    but  it  provides  insight  in  what  is  measured  experimentally.