10
González Arias A. y Horta Rangel F. A. Ciencia, pedagogía y cultura científica. Elementos 87 (2012) 3-11 3 www.elementos.buap.mx Es verdad lo que rebasa la prueba de la experiencia Albert Einstein C iencia, pedagogía y c u l t u r a c i e n t í f i c a Arnaldo González Arias Francisco A. Horta Rangel ¿Existe alguna forma simple de conocer si una propuesta que se publicita como científica lo es en realidad? Para promover la cultura científica es necesario, ante todo, tener una noción clara de la ciencia; solo así será posible diferenciar si un resultado propuesto como científico realmente lo es. Sin embargo, existen “teorías” supuestamente científicas que ni siquiera mencionan el método científico, ni proponen en su lugar algún otro proce- dimiento concreto de acción. Tampoco es raro encontrar en los medios de comunicación la oferta de algún producto o técnica que se presenta como científico sin serlo, pero adornado de for- ma tal con terminologías afines a la ciencia que impiden valorar fácilmente su autenticidad. Recientemente se ha cuestionado si la pedagogía contempo- ránea y otras áreas o campos del conocimiento como las cien- cias políticas son realmente ciencias o caen en el ámbito de las humanidades, ya que no logran encontrar relaciones generales de causa-efecto en su área de estudio ni hacer predicciones de algún tipo. En la pedagogía hay que añadir que es común tra- tar de generalizar soluciones sin tomar en cuenta las diferencias entre grupos de estudiantes; el historial docente puede ser muy diferente en diversos lugares, y también lo serán los resultados. Entonces, ¿cómo distinguir la ciencia de lo que aparenta serlo, pero no lo es? Cualquier ciencia debe cumplir una serie de normas que incluyen el estudiar entidades reales y estar basada en cono- cimientos anteriores y actualizados sobre el tema de que se trate; utilizar procedimientos escrutables, justificables y verificables, en lo esencial siguiendo el método científico; buscar leyes o su refinamiento; mantener una estrecha comunicación con otros in- vestigadores y ser compatible e interaccionar con otras ciencias. Elementos 87, 2012, pp. 3-11

Ciencia, pedagogía y - .:: GEOCITIES.ws ::.¡lez Arias A. y Horta Rangel F. A. Ciencia, pedagogía y cultura científica. Elementos 87 (2012) 3-11 3 Es verdad lo que rebasa la prueba

Embed Size (px)

Citation preview

González Arias A. y Horta Rangel F. A. Ciencia, pedagogíay cultura científica. Elementos 87 (2012) 3-11

3

w w w . e l e m e n t o s . b u a p . m x

Es verdad lo que rebasa la prueba de la experiencia

Albert Einstein

Ciencia, pedagogía yc u l t u r a c i e n t í f i c a

Arnaldo González AriasFrancisco A. Horta Rangel

¿Existe alguna forma simple de conocer si una propuesta que

se publicita como científica lo es en realidad? Para promover la

cultura científica es necesario, ante todo, tener una noción clara

de la ciencia; solo así será posible diferenciar si un resultado

propuesto como científico realmente lo es. Sin embargo, existen

“teorías” supuestamente científicas que ni siquiera mencionan

el método científico, ni proponen en su lugar algún otro proce-

dimiento concreto de acción. Tampoco es raro encontrar en los

medios de comunicación la oferta de algún producto o técnica

que se presenta como científico sin serlo, pero adornado de for-

ma tal con terminologías afines a la ciencia que impiden valorar

fácilmente su autenticidad.

Recientemente se ha cuestionado si la pedagogía contempo-

ránea y otras áreas o campos del conocimiento como las cien-

cias políticas son realmente ciencias o caen en el ámbito de las

humanidades, ya que no logran encontrar relaciones generales

de causa-efecto en su área de estudio ni hacer predicciones de

algún tipo. En la pedagogía hay que añadir que es común tra-

tar de generalizar soluciones sin tomar en cuenta las diferencias

entre grupos de estudiantes; el historial docente puede ser muy

diferente en diversos lugares, y también lo serán los resultados.

Entonces, ¿cómo distinguir la ciencia de lo que aparenta serlo,

pero no lo es? Cualquier ciencia debe cumplir una serie de normas

que incluyen el estudiar entidades reales y estar basada en cono-

cimientos anteriores y actualizados sobre el tema de que se trate;

utilizar procedimientos escrutables, justificables y verificables,

en lo esencial siguiendo el método científico; buscar leyes o su

refinamiento; mantener una estrecha comunicación con otros in-

vestigadores y ser compatible e interaccionar con otras ciencias.

E l e m e n t o s 8 7 , 2 0 1 2 , p p . 3 - 1 1

4

Para fomentar la cultura científica no basta con divul-

gar y popularizar la ciencia; también es necesario denun-

ciar y criticar las pseudociencias.

CULTURA CIENTÍFICA

En 2005 la Oficina Regional de Educación para Amé-

rica Latina y el Caribe de la UNESCO publicó un extenso

documento: “Cómo promover el interés por la cultura

científica”, accesible en http://www.oei.es/decada/libro.

htm, sobre la necesidad de promover esta temática en

la región, incluyendo recomendaciones. Los criterios allí

expuestos se pueden resumir expresando que la cultura

científica es necesaria por las siguientes razones:

• Con el fin de posibilitar el conocimiento de nosotros

mismos y el mundo que nos rodea, creando así mejores

condiciones de vida en lo individual.

• Con el objetivo de promover la toma de conciencia y

la participación en los problemas que afectan a la comu-

nidad y a la sociedad.

• Con vistas a facilitar la toma de decisiones de todo

tipo, a cualquier nivel, sobre la base de criterios sólidos.

Un criterio adicional sería el de instruir a todos en có-

mo diferenciar la ciencia de las pseudociencias y pseu-

dotecnologías, bastante extendidas en muchos lugares,

con el fin de evitar posibles daños a la economía y a las

personas (ver, por ejemplo, http://www.fisica.uh.cu/ra-

tionalis/index.htm).

Sin embargo, cuando nos referimos a la cultura cien-

tífica, ¿existe alguna forma simple de conocer si una

propuesta que se publicita como científica lo es en reali-

dad? Aún más: ¿cuál es el criterio a seguir para identifi-

car si una proposición concreta, incluso un determinado

campo o área del conocimiento, es científica o no? ¿Es

posible hablar de cultura científica si se desconoce el

método científico?

No son preguntas ociosas. Actualmente es posible

encontrar en los medios de comunicación la propuesta de

algún producto, técnica o procedimiento “novedoso” que

se nos presenta como científico, pero que en realidad no

lo es. Se proponen pulseras holográficas, collares cuánti-

cos, agua magnetizada o “productos naturales” capaces

de aliviar diversas dolencias, mejorar el “balance energé-

tico” o recuperar el vigor sexual, prometiendo grandes be-

neficios con muy poco esfuerzo por parte del interesado.

Por regla general, la aparente terminología científica con

la que se adornan tales propuestas hace difícil discernir lo

que hay de cierto en su discurso, aún para aquellos con

formación científica en áreas relacionadas al tema.1,2,3

La tergiversación no solo se refiere a productos o téc-

nicas; también se extiende a algunos campos del cono-

cimiento. Referencias recientes cuestionan el carácter

científico de determinadas áreas del conocimiento como

la pedagogía.4,5 Críticas similares también han aparecido

en relación a las ciencias políticas.6

El principal inconveniente para alcanzar la categoría de

ciencia que se atribuye a estas áreas del conocimiento es

que, a diferencia de las ciencias reconocidas, no son capa-

ces de predecir absolutamente nada. De aquí que muchos

las consideren, en vez de ciencias, como pertenecientes

a las Humanidades. Estas últimas (por ejemplo, el arte, la

literatura, la filología, la lingüística) estudian particularida-

des; no intentan encontrar leyes o postulados universales;

esa es la diferencia fundamental entre unas y otras. Lo que

no parece ser impedimento para que en algunos lugares

se otorguen títulos de “Doctor en Ciencias Filológicas” o

“Doctor en Ciencias del Arte”.

Avicena, “príncipe de los médicos”, enseñando. Grabado de una edición latina del Canon, 1520-1522. Foto © Jean-Loup Charmet, Biblioteca de la antigua Facultad de Medicina, París. Tomado de El correo de la UNESCO, Año 33, España, 1980.

ARNALDO González y FRANCISCO A. Horta

5

LEYES PEDAGÓGICAS Y COMPLEJIDAD

En la pedagogía hay que añadir que en ocasiones apa-

recen afirmaciones desligadas del consenso científico

universal. Por ejemplo, alguien ha alegado haber descu-

bierto supuestas “leyes pedagógicas”, que incluso otros

usan de referencia en sus artículos y las repiten en sus

cursos, aunque tales “leyes” nada tienen que ver con el

concepto de ley tal como se entiende en la filosofía y en la

ciencia.7 Otra característica de los artículos pedagógicos

contemporáneos es que resulta bastante común tratar de

generalizar soluciones a partir de experiencias particula-

res, sin tomar en cuenta las diferencias del grupo de es-

tudiantes analizados con las de otros grupos. El historial

social y docente de cada grupo puede ser muy diferente,

incluso dentro de un mismo país o región, y por lo tanto

los resultados también lo serán. El psicólogo estadouni-

dense David Ausubel (1918-2008), creador de la Teoría del

Aprendizaje Significativo y uno de los fundadores de las

modernas teorías constructivistas, ha escrito al respecto:

“Si tuviese que reducir toda la psicología educativa a un

solo principio, enunciaría este: el factor más importante

que influye en el aprendizaje es lo que el alumno ya

sabe. Averígüese esto y enséñese consecuentemente”.8

De existir en realidad alguna ley pedagógica, ésta con-

clusión de Ausubel tendría que ocupar un lugar primordial:

lo que es capaz de aprender un estudiante dependerá, en

primerísimo lugar, de sus conocimientos previos. Otras

veces se adoptan criterios como el de la complejidad, de

Edgard Morin, y se pretende sustituir la pedagogía por una

supuesta filosofía que emplea o incluso inventa palabras

compuestas, vanas e imprecisas; enunciados confusos

y conceptos enmarañados y pobremente definidos para

ocultar verdades de Perogrullo. Tales proposiciones abun-

dan en lugares comunes, carecen de novedad científica y

usualmente van acompañadas de una verbosidad que en

ocasiones llega a la verborrea.9,10 Por ejemplo, el supues-

tamente novedoso “principio dialógico” de Morin recuer-

da en demasía la “ley de unión y lucha de contrarios” de la

filosofía marxista. Aparte del rejuego de palabras oscuras

y equívocas que pretenden representar conceptos nove-

dosos; estas “teorías” pedagógicas le dan la espalda al

método científico, metodología por excelencia empleada

en cualquier investigación de la ciencia. Ni lo mencionan

ni proponen en su lugar algún plan de acción concreto;

tampoco presentan experiencias demostrables y repro-

ducibles. La mayor parte de las veces todo se reduce a

“ideas” o “proposiciones” con muy poco o ningún fun-

damento ligado a la práctica. Se predica lo que supues-

tamente se debe alcanzar, pero en ningún lugar se dice lo

más importante: cómo hacerlo.

Por absurdo que pueda parecer, el desconocimiento

sobre la metodología de la ciencia se encuentra bastante

extendido, incluso entre aquellos docentes que se dedi-

can a impartir ciencia; el método científico no se aplica

regularmente como una herramienta de trabajo ni se en-

señan sus aspectos básicos a los estudiantes.11

PROBLEMAS SEMÁNTICOS

En la cultura científica la semántica también es importan-

te, ya que en ocasiones se tergiversan y divulgan termi-

nologías propias de la ciencia asignándoles un significado

ajeno al reconocido universalmente.

C i e n c i a , p e d a g o g í a y c u l t u r a c i e n t í f i c a

Infierno y paraíso como lugares e imágenes de la memoria. Cosimo Roselli, Xilografía, 177 x 120 mm, 1579. Tomado de Pietro Corsi, The Enchanted Loom, Oxford University Press, Inc., New York, 1991.

6

Por ejemplo, un procedimiento imprescindible en la

investigación científica, empleado desde sus mismos ini-

cios, es el uso de modelos. Un modelo es un esquema

simplificado del fenómeno real; una primera aproxima-

ción a la resolución del problema. Posibilita su tratamien-

to matemático y la obtención de relaciones cuantitativas

entre sus diferentes aspectos.

El refinamiento del modelo proporciona una mejor

comprensión del fenómeno, encontrar relaciones cuan-

titativas más exactas y un acercamiento cada vez mayor

a la realidad, que siempre es más compleja y nunca debe

confundirse con el modelo. En consecuencia, la prédica

de que el estudio de los fenómenos se debe llevar a cabo

desde sus mismos inicios en toda su complejidad es, al

menos, acientífica, por ser ajena a la historia de la ciencia

y a la realidad de su desarrollo.

Son de uso común en cualquier sistema educativo,

entre otros, los modelos ondulatorio y corpuscular de la

luz, el modelo planetario del átomo, el modelo cuántico,

los diferentes modelos macroeconómicos, el modelo he-

liocéntrico del sistema solar y el modelo del gas ideal. Sin

embargo, es posible encontrar artículos y libros sobre

pedagogía donde se llama “modelos” a lo que en realidad

son diferentes métodos o sistemas de enseñanza y no

aproximaciones simplificadas de la realidad.12,13,14,15

Algo similar sucede con la economía y los modelos

matemáticos econométricos, donde el término “modelo”

se emplea tergiversado como sinónimo de teoría o sis-

tema económico (i.e., modelo neoliberal, etc.) y no se

ajusta a otros significados de la palabra. Esta práctica de

utilizar conceptos propios de la ciencia con una acepción

“novedosa” (existiendo ya la denominación precisa para

hacerlo) no reconocida por las academias de la lengua,

ni registrada en diccionarios o enciclopedias, también

conspira fuertemente contra la diseminación de la cultu-

ra científica. El ejemplo anterior no es, ni mucho menos,

el único. Entre otras tergiversaciones notables, vale la

pena mencionar que algunos psicólogos han elaborado

supuestas “teorías” curativas, divorciadas de la eviden-

cia experimental, mediante la suplantación de los con-

ceptos bioenergía y bioenergética. Otros no tergiversan;

simplemente inventan energías inexistentes persiguien-

do fines similares.16,17

Ante estas realidades, ¿cómo orientarse hacia una

correcta difusión de la ciencia y la promoción de una cul-

tura científica popular?

¿QUÉ ES LA CIENCIA?

Para hablar sobre cultura científica es necesario, ante to-

do, describir adecuadamente qué es la ciencia. Una defi-

nición aparentemente válida, que resume otras –pero que

resulta insuficiente, como se verá más adelante– es la

siguiente: esfera de la actividad humana dirigida a la ad-

quisición sistemática de nuevos conocimientos, refleja-

dos en leyes e interpretaciones de todo lo que nos rodea.

Una ley es un nexo estable y reiterado entre fenómenos;

las leyes son relaciones universales de causa-efecto a

cumplirse bajo condiciones determinadas. Hay muchas

leyes y principios, tanto en las ciencias naturales como

en las sociales; baste citar entre las primeras las de gra-

vitación universal (Newton, física), la de las proporciones

definidas (Proust, química) y las de la herencia (Mendel,

biología). Ejemplos de las segundas son las leyes de Pa-

reto o del 80/20 y la de Gresham (“el dinero malo expulsa

al bueno”) en economía.

Las ciencias naturales estudian los aspectos físicos

(no humanos) del mundo; incluyen entre otras la química,

De

embr

yoni

s. A

nóni

mo,

145

x 2

07 m

m, 1

347?

Tom

ado

de P

ietr

o Co

rsi,

The

Ench

ante

d Lo

om, O

xfor

d Un

iver

sity

Pre

ss, I

nc.,

New

Yor

k, 1

991.

ARNALDO González y FRANCISCO A. Horta

7

la física y la biología. las ciencias sociales estudian el

comportamiento y actividades de los seres humanos no

estudiados por las ciencias naturales. pertenecen a este

grupo la economía, psicología, derecho y arqueología,

entre otras. Las ciencias de la salud incluyen en su seno

tanto ciencias naturales como sociales, más otras espe-

cíficas como la anestesiología, la cirugía o la bromatolo-

gía, hasta llegar a unas treinta.

Es de notar que algunas ciencias, como la geogra-

fía, a veces aparecen clasificadas como naturales y otras

como sociales. No deben confundirse las ciencias con

las humanidades (arte, literatura, etc.); como se dijo an-

teriormente, estas últimas estudian particularidades sin

pretender encontrar leyes o postulados universales. Paul

G. Hewitt, autor de libros de enseñanza de la física y ga-

nador de varios premios en la temática, proporciona una

definición de ciencia un poco más completa, pero que

aún no resulta totalmente suficiente y no será analizada

en detalle.18

¿CÓMO AVANZA LA CIENCIA?

La Figura 1 muestra esquemáticamente algunos criterios

generales que condicionan el progreso científico desde

una visión naturalista o materialista del mundo; la otra

posibilidad es la visión supernaturalista o idealista, poco

compatible con el método científico (ver más adelante).

La forma usual de comprobar en la práctica las

ideas sobre las cosas reales tiene que ver con el método

científico, analizado más adelante. Hay algunas pseudo-

ciencias que en principio practican el método científico,

aunque solo sea parcialmente o aplicando procedimien-

tos erróneos; es por eso que las discusiones sobre la

búsqueda de criterios para separar la ciencia de lo que

no lo es han sido bastante extensas en los últimos años.

A nuestro entender, el más completo de estos criterios

ha sido propuesto por Mario Bunge, quien considera que

toda ciencia debe cumplir necesariamente una serie de

normas o requisitos y no se puede diferenciar de lo que

no es ciencia a partir de un solo criterio. Bunge desauto-

riza con argumentos muy sólidos propuestas anteriores

como las del Círculo de Viena (liderado por Carnap) y los

posteriores de Karl Popper y seguidores. En lo esencial,

estos autores consideran que los enunciados científicos

se pueden diferenciar de los no científicos a partir de un

solo criterio, la refutabilidad o falsabilidad, o la reformada

demostrabilidad o comprobabilidad. 20,21,22,23

CAMPOS DE INVESTIGACIÓN Y PSEUDOCIENCIA

Para definir la ciencia, Bunge reconoce la existencia de

una familia de campos de investigación que poseen las

siguientes características:*

1. Cada uno de ellos está formado por una comunidad

de investigadores, personas que han recibido instrucción

especializada y mantienen lazos estrechos de comunica-

ción entre sí.

2. La sociedad alberga y fomenta (o tolera) la activi-

dad de esta comunidad.

3. Se investigan entidades reales y no ideas que “flo-

tan” libremente.

4. Todo cambia según ciertas leyes, no hay nada in-

mutable o milagroso; el conocimiento refleja la realidad,

no es subjetivo.

C i e n c i a , p e d a g o g í a y c u l t u r a c i e n t í f i c a

* Con el fin de facilitar la comprensión del lector se han sustituido u omitido términos muy específicos, propios de la filosofía o campos afines.

Figura 1. La matriz filosófica del progreso científico.

HUMANISMO CIENTIFICISMO

SISTEMISMO REALISMO

MATERIALISMO

CIENCIA

Materialismo: el universo está compuesto por cosas concretas, materiales, que se comportan con arreglo a leyes.

Realismo: el mundo existe con independencia de quienes lo investigan y puede llegar a ser conocido, al menos gradualmente.

Cientificismo: indica racionalismo (consistencia interna de las ideas y su coherencia lógica) y empirismo (toda idea acerca de cosas reales debe ser comprobada en la práctica).

Sistemismo: diferentes aspectos de la ciencia conforman un sistema, de forma que las teorías científicas no entran en conflicto entre sí.

Humanismo: que puede resumirse en la máxima “persigue tu propio bienestar –biológico, mental y social– y el de los demás”, y abstente de causar daños innecesarios.19

8

5. La investigación se desarrolla a partir de una co-

lección de teorías lógicas y matemáticas actualizadas,

no obsoletas.

6. Emplea una colección de datos, hipótesis y teorías

razonablemente bien confirmadas (aunque corregibles),

junto a métodos de investigación eficaces, producidos en

otras áreas de investigación.

7. Únicamente estudia problemas referentes a la natu-

raleza de entidades reales de su campo de investigación o

de algún otro.

8. Se basa en conocimientos previos actualizados y

comprobables (aunque no definitivos).

9. Tiene por objetivo descubrir o utilizar leyes y ten-

dencias, sistematizar hipótesis generales y refinar méto-

dos de investigación.

10. La metodología empleada consta exclusivamente

de procedimientos escrutables (controlables, analizables,

criticables) y justificables (explicables), en primer lugar me-

diante el método científico.

11. Para cada campo de investigación, existe al menos

un campo contiguo en el que ambos comparten elemen-

tos, o el dominio de un campo está incluido dentro del otro.

12. La composición de los elementos del 4 al 11 cam-

bia –por lo general muy lentamente– como resultado de la

investigación realizada en el propio campo y en los cam-

pos relacionados.

Bunge considera que todo campo de investigación que

no cumpla la totalidad de las 12 condiciones es acientífi-

co, y llama semiciencia o protociencia a cualquiera que

las satisfaga de manera aproximada. Todo campo de co-

nocimiento que no es científico, pero se publicita como tal,

es pseudocientífico. También señala una serie de diferen-

cias características entre los individuos que se dedican a

la actividad científica y quienes cultivan la pseudociencia,

reproducidas en la Tabla 1.19

Particularidades adicionales sobre quienes adoptan

las manifestaciones más burdas de la pseudociencia se

han publicado en otros lugares.24

A las actitudes que aparecen en la Tabla 1 se les pue-

de añadir que en las investigaciones científicas honestas

–la inmensa mayoría– los investigadores tratan de en-

contrar la verdad, cualquiera que esta sea, por encima de

sus preferencias; en la pseudociencia es bastante común

que las investigaciones, si las hay, sean tendenciosas y

tengan por finalidad tratar de convencer a los demás de

las ideas preconcebidas de los autores. Según Merton,

uno de los clásicos de la escuela norteamericana de

sociología, el desinterés debe ser uno de los principios

guías de la buena ciencia.

Significa que no se deben presentar resultados enla-

zándolos a creencias personales o al activismo por una

causa; las simpatías deben mantenerse separadas de los

resultados científicos.25

EL MÉTODO CIENTÍFICO

En la ciencia, la adquisición de nuevos conocimientos se

lleva a cabo a través del método científico, procedimiento

derivado de la práctica y la experiencia de muchas gene-

raciones. En las ciencias médicas, cuando hay pacientes

involucrados, en vez de experimentos se acostumbra ha-

blar de ensayos clínicos.

Tabla 1

ACTITUDES Y ACTIVIDADES TÍPICASDE CIENTÍFICOS Y PSEUDOCIENTÍFICOS19

Científico Pseudocientífico

SÍ NO SÍ NO Op*

Admite su propia ignorancia y, por ende, la necesidad de mayor investigación.

• •

Considera que su propio campoes difícil y está lleno de lagunas.

• •

Avanza mediante el planteamiento yla resolución de nuevos problemas.

• •

Recibe con agrado nuevashipótesis y métodos.

• •

Propone y ensaya nuevas hipótesis. • •

Intenta descubrir o aplicar leyes. • •

Aprecia la unidad de la ciencia. • •

Se apoya en la lógica. • •

Utiliza la matemática. • •

Recoge o utiliza datos,especialmente cuantitativos.

••

Busca contraejemplos. • •

Inventa o aplica procedimientosobjetivos de control.

• •

Resuelve las disputas por mediodel experimento o el cálculo.

• •

Recurre de manerasistemática a la autoridad.

• •

Suprime o tergiversa losdatos no favorables.

• •

Actualiza la información. • •

Busca comentarios críticos de otros. • •

Escribe artículos que pueden serentendidos por cualquier persona.

• •

Es probable que adquierafama instantáneamente.

• •

* Opcional

ARNALDO González y FRANCISCO A. Horta

9C i e n c i a , p e d a g o g í a y c u l t u r a c i e n t í f i c a

En la Figura 2 aparece un esquema que muestra, a

grandes rasgos, en qué consiste el método. Nos dice que

cuando tenemos nociones de determinado fenómeno

(observación), usualmente se establece una suposición

acerca de por qué ocurre y cuáles son sus causas (hipó-

tesis). Es necesario entonces repetir el fenómeno –o par-

te de él– controladamente (experimentación), con el fin

de evitar la interferencia de agentes ajenos que afecten

lo que se desea estudiar y obtener así valores numéricos

confiables y reproducibles.

Esto último es de primordial importancia. Si los re-

sultados de un experimento no son reproducibles en otros

laboratorios, por otros operadores y utilizando otro ins-

trumental, no se podrá afirmar absolutamente nada de los

resultados obtenidos. Significa que el resultado particular

obtenido fue, si no erróneo, cuando más casual. Es un in-

dicio de que el experimento no fue controlado lo suficiente

y hubo factores ajenos, no identificados por el operador,

que afectaron el resultado. Una vez que se tiene el resul-

tado de un experimento, –que puede confirmar o negar la

hipótesis– es necesario buscar alguna explicación racional

basada en ese resultado. Se llega así a la teoría. Y cuando

se posee una teoría, a partir de esta siempre es posible

tratar de predecir lo que ocurrirá en alguna otra situación

parecida, e idear algún otro experimento que servirá de

comprobación al anterior y también a la teoría (de ahí la

doble flecha en el esquema de la Figura 2.

Así se establece una interacción continua entre teo-

ría y experimento, que constituye sin lugar a dudas el

núcleo esencial o “fuerza motriz” del método científico.

Asociada a la interacción teoría-experimento hay todo

un proceso de divulgación internacional de resultados

a través de publicaciones en revistas científicas arbitra-

das, críticas, errores y rectificaciones. Y no es raro que

teorías muy bien establecidas deban ser reformadas, al

detectarse algún nuevo fenómeno que la teoría existente

no es capaz de explicar satisfactoriamente.

Cuando la teoría se hace lo suficiente amplia y sólida,

cuando es capaz de dar explicación a una gran cantidad

de fenómenos y relaciones de causa-efecto y también de

rebatir racionalmente cualquier crítica, se llega a la ley.

Las leyes tampoco son eternas. Muchas veces se hace

necesario generalizarlas para lograr explicar fenómenos

no detectados hasta el momento. Hay muchísimas leyes

físicas, químicas, biológicas y de otras ciencias: todas

ellas provienen del proceso que acabamos de describir.

En realidad, la afirmación anterior no se ajusta estricta-

mente a la verdad, pues en algunas áreas del conocimien-

to es materialmente imposible llevar a cabo experimentos

controlados en relación a un determinado fenómeno. Así

ocurre, por ejemplo, en la geología o la astronomía, cuyos

métodos de análisis e investigación no se han considera-

do. No obstante, en esos casos la observación precisa y

reproducible sustituye al experimento, y las teorías se con-

sideran válidas cuando:

a) Son capaces asociar racionalmente muchos hechos

en apariencia independientes.

b) Logran predecir la existencia de relaciones y fenóme-

nos no detectados hasta el momento.

LA PSEUDOCIENCIA

Junto a la ciencia también existe la falsa ciencia o pseudo-

ciencia, que aparentando ser ciencia en realidad obvia la

parte esencial del método científico, pasando directamen-

te de la hipótesis a algún punto medio entre la teoría y la

ley, sin realizar experimentos (Figura 3).

De esta manera las suposiciones e hipótesis de algún

“iluminado” y sus seguidores se convierten en “leyes” sin

pasar por el fino tamiz de la interacción teoría-experimen-

to. Estas suposiciones, al hacer abundante uso de la ter-

minología científica en sus descripciones y aseveraciones,

pueden engañar fácilmente a cualquiera no familiarizado

Figura 2. El método científico.

Adaptada a cada caso (ensayos clínicos, doble ciega, etcétera).Hay valores numéricos y reproducibilidad

Críticas, dudas y cuestionamientos como motor impulsor

Observación

Hipótesis

Experimentación

Teoría

Ley

10

con el quehacer científico. La mayor parte de las veces la

experimentación simplemente se omite y se toma la hipó-

tesis como una verdad absoluta.

En otras ocasiones se llevan a cabo unos pocos ex-

perimentos mal diseñados y se propone una teoría desli-

gada del experimento. Si hay resultados experimentales

aparentemente favorables, siempre son casuales; no son

reproducibles. Como el motor de avance de la ciencia es

precisamente la crítica y la interacción teoría-experimen-

to, la pseudociencia no tiene forma de avanzar. Invaria-

blemente, sus “leyes” y “teorías” están dadas de una vez

y para siempre.

Existen pseudociencias que emplean la terminología

científica para ocultar o disfrazar su trasfondo esencial-

mente religioso.26

De hecho, el predominio de las creencias es algo co-

mún a la religión y las pseudociencias, pues es posible

dividir el conocimiento en dos grandes campos; por una

parte se encuentran los campos de investigación, donde

se agrupan las humanidades, las ciencias básicas y aplica-

das, las matemáticas y la tecnología, incluyendo la medi-

cina y el derecho. El otro incluye los campos de creencias,

donde junto a las religiones y las ideologías políticas apa-

recen las pseudotecnologías y las pseudociencias.19

En el campo de las ciencias médic as no faltan las

afirmaciones falsas, elaboradas concienzudamente con

el único fin de engañar al paciente y justificar de alguna

forma la validez de una u otra pseudoterapia. A pesar de lo

absurdo que pudiera parecer a primera vista, es un tema

actual y una posibilidad muy real a tomar en cuenta ante

afirmaciones de supuestas terapias maravillosas, que cu-

ran infinidad de dolencias. Se pueden encontrar prome-

sas que van desde “aliviar” cualquier tipo de cáncer con

productos homeopáticos, que no son más que agua pura,

hasta efectuar curaciones a distancia con un péndulo y

una fotografía del paciente).27,28

Hay al menos tres razones para denunciar y condenar

la pseudociencia:

1. Es falsa. Toda pseudociencia predica nociones con-

trarias a las reconocidas por la ciencia.

2. Constituye una pérdida de tiempo, esfuerzo, recur-

sos, y algo similar a lo que los economistas llaman “cos-

to de oportunidad”. Es decir, no solo se pierde lo dicho

anteriormente, también se pierde lo que se pudiera haber

ganado de emplear esos recursos y esfuerzos en algo

realmente productivo.

3. Cuando la pseudociencia está ligada a una falsa

terapia, el posible perjuicio para el paciente siempre está

presente, ya bien sea por causa directa, o porque este no

logre atender a tiempo su dolencia al entretenerse con la

pseudoterapia, sin someterse a un tratamiento verdade-

ramente eficaz.

CONCLUSIONES

Para contribuir a la cultura científica es necesario, ante to-

do, tener una noción muy clara acerca de la ciencia, para

así poder diferenciar cuando un resultado es científico o no

lo es. Existen teorías supuestamente científicas que ni si-

quiera mencionan el método científico y tampoco proponen

en su lugar algún otro método concreto de acción. No es

posible diferenciar inequívocamente la ciencia de lo que no

lo es a partir de un criterio único.

Cualquier ciencia debe cumplir una serie de requisitos

o normas básicas que incluyen, entre otras, una instruc-

ción especializada de los investigadores en el campo de

conocimiento en cuestión; el estudiar entidades reales

y estar basada en conocimientos anteriores, actualiza-

dos y corregibles; el uso de procedimientos escrutables

y justificables; la búsqueda de leyes o su refinamiento;

la estrecha comunicación con otros investigadores y la

compatibilidad e interacción con otras ciencias, conside-

rando que no hay nada inmutable y que la verdad existe,

es alcanzable y refleja la realidad, aunque solo sea de for-

ma parcial y no definitiva.

No hay esperimentos o están mal diseñados.No reproducibles.

No hay confrontación.No avanza.

Observación

Hipótesis

Experimentación

Teoría

¿Ley?

Figura 3. La tergiversación pseudocientífica.

ARNALDO González y FRANCISCO A. Horta

11

Company, New York (1997) 1-7. Accesible en http://www.fisica.uh.cu/bibvirtual/

vidaytierra/Paul G. Hewitt - Acerca de la Ciencia.pdf19 Bunge M. Las pseudociencias, ¡vaya timo! 1ra. Ed. Editorial Laetoli, Pamplona,

España, (2010) 18, 49, 50 y 223. 20 Hempel CG. Problems and changes in the empiricist criterion of meaning. Revue

Internationale de Philosophie 11, (1950) 41-63.21 Popper KR. Conjectures and refutations: the growth of scientific knowledge. Ba-

sic Books, New York (1962). En español: Conjeturas y refutaciones, el desarrollo del

conocimiento científico, Paidós, Barcelona (1994).22 Hansson SO. “Science and pseudoscience” in Edward N. Zalta (Ed), Stanford

Encyclopaedia of Philosophy (2008). Accesible en http://plato.stanford.edu/entries/

pseudo-science/23 Bunge M. What is science? Does it matter to distinguish it from pseudoscience?

A reply to my commentators. New ideas in psychology 9 (1991) 245-283.24 González Arias A. La ciencia cabeza abajo, Revista Española de Física. Nov. (2008).25 Merton RK. Sociología de la ciencia, Editorial Alianza, Madrid (1977).26 González Arias A. Terapia floral de Bach: El carrusel de las ilusiones, 28/2/11 (2011),

Aporrea.org, url=(0046)http://www.aporrea.org/actualidad/a118601.html. Acce-

sible en http://www.fisica.uh.cu/rationalis/homeopatia/Bach/Aporrea%20Terapia%

20floral%20de%20Bach%20El%20carrusel%20de%20las%20ilusiones.htm 27 López Borgoñoz S. Sobre Cuba y el Vidatox, El Escéptico 1 (2011) p. 14.28 Ávila J y Fonte P. Salud Ecológica. Editorial de Ciencias Médicas, La Habana (2004).

Accesible en http://bvs.sld.cu/salud_ecologica/indice_p.html, ver también las críticas

en http://bvs.sld.cu/salud_ecologica/nota_editorial.htm

Arnaldo González AriasDepartamento de FísicaUniversidad de La [email protected]@yahoo.comFrancisco Antonio Horta RangelDepartamento de Ingeniería Civil y Ambiental de la Universidad de [email protected]

Una semiciencia o protociencia es aquella que sin

apegarse estrictamente a las normas muestra claras se-

ñales de poder hacerlo en el futuro; una pseudociencia es

la que se publicita como científica pero contradice alguna

de las normas. También es posible diferenciar ciencias y

pseudociencias analizando las actitudes típicas de quie-

nes practican unas u otras.

Para fomentar la cultura científica no basta con divul-

gar y popularizar la ciencia; también es necesario denun-

ciar y criticar las pseudociencias.

R E F E R E N C I A S

1 Barret Stephen MD. Quack Electrodiagnostic Devices (2007). http://www.quackwatch.

com/01QuackeryRelatedTopics/electro.html 2 Pérez-Lanzac C. Sanidad advierte contra las pulseras holográficas: esta es su his-

toria (2010). http://www.elpais.com/articulo/sociedad/Sanidad/advierte/pulseras/

holograficas/historia/elpepusoc/20100428elpepusoc_5/Tes” .3 Bergado JA. Medicina sin apellidos, Juventud Técnica Digital (2011). Accesible en

http://www.juventudtecnica.cu/Juventud%20T/2011/la%20opinion/paginas/sin%20

apellidos.html4 Moreno Castillo R. Panfleto antipedagógico (2007). Accesible en http://www.

mat.ub.edu/~cerda/Pamflet.pdf 5 Moreno Castillo R. ¿Es la pedagogía una ciencia?, Foro de Educación 11, (2009)

67-83. Accesible en www.forodeeducacion.com/numero11/006.pdf. 6 Oxhorn P. El arte de la “ciencia” política. Temas y debates 14 (2007) 85-93.7 Ortiz Ocaña AL. Construyendo la nueva escuela: Leyes pedagógicas y principios di-

dácticos (2005). Monografías.com; consulta agosto 2011, http://www.monografias.

com/trabajos28/construir-nueva-escuela/construir-nueva-escuela.shtml8 Ausubel DP, Novak JD y Hanesian H. Psicología educativa: un punto de vista cognos-

citivo, Editorial Trillas, México (1963).9 Critici G. Crítica destructiva. Pensamiento complejo, Luventicus (2003). http://www.

luventicus.org/articulos/03R009/index.html10 Reynoso C. Modelos o Metáforas: crítica del Paradigma de la Complejidad de

Edgar Morin. Editorial Prometeo, Argentina (2009).11 González Arias A. ¿Educación científica sin método científico?, Juventud Técnica

Digital, junio 6 (2008). Accesible en www.fisica.uh.cu/rationalis/ciencia/educacion/

educ-cientifica.htm12 Fernández J y Orribo T. Los modelos didácticos en la enseñanza de la Física.

Ponencia IX Congreso de la Didáctica de la Física, Universidad Nacional de Educa-

ción a Distancia, Madrid. Septiembre (1995).13 Ortiz Ocaña AL. Modelos pedagógicos: Hacia una escuela de desarrollo integral.

Monografías.com, consulta Sept. 2011, http://www.monografias.com/trabajos26/

modelos-pedagogicos/modelos-pedagogicos.shtml. 14 Santángelo HN. Modelos Pedagógicos en los Sistemas de Enseñanza no Presencial

basados en Nuevas Tecnologías y Redes de Comunicación, Revista Iberoamericana

de Educación 24. (2000).15 Arévalo A. Los modelos pedagógicos, visto en Sept. 2011, http://arevalodeleon.

com/focim/Bodega/PATRICIA%20AIDA/23-julio-literatuta%20disertacion/22-

Los _ modelos _ pedagogicos.pdf16 González Arias A. Ciencia, pseudociencia y bioenergía. Rev Cub Fis vol. 25, No. 1

(2008) 17-21.17 González Arias A. Use and misuse of the concept energy, Latin Am J of Phys Educ

(2012) (en vías de publicación).18 Hewitt PG. Conceptual Physics, 3rd Edition. Ch. 1. Ed. Addison Wesley Publishing C i e n c i a , p e d a g o g í a y c u l t u r a c i e n t í f i c a

Las

capa

s de

l cer

ebro

. Joh

anne

s D

ryan

der,

1537

. Tom

ado

de H

arry

Rob

in, T

he S

cien

tific

Imag

e:

From

Cav

e to

Com

pute

r. H

arry

N. A

bram

s, In

c., P

ublis

hers

, New

Yor

k, 1

992.

De ordine universi et de principiis naturae ad immitationem Timaei platonici. Andrea Baci, Grabado, 286 x 415 mm, 1581? Tomado de Pietro Corsi, The Enchanted Loom, Oxford University Press, Inc., New York, 1991.